1
|
Ren T, Chen Q, Zhu C. The extrahepatic markers in postmenopausal women with metabolic dysfunction-associated steatotic liver disease: A systematic review. Clin Nutr ESPEN 2025; 68:22-31. [PMID: 40315986 DOI: 10.1016/j.clnesp.2025.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/25/2025] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent, multifactorial systemic metabolic disorder, now recognized as the most common chronic liver disease globally. Female susceptibility to MASLD varies across menstrual states, influenced by genetic factors, age, menopausal status, and physical activity. Postmenopausal women, experiencing a significant reduction in estrogen, are particularly vulnerable to metabolic imbalances, increasing their risk of MASLD, disease progression, liver fibrosis, insulin resistance, and adverse cardiovascular events compared to premenopausal women and age-matched men. This review systematically synthesizes current research on extrahepatic abnormalities associated with MASLD in postmenopausal women. This review identifies key extrahepatic markers associated with MASLD in postmenopausal women, highlighting gaps in current research and proposing targeted screening and management strategies. (Graphical Abstract).
Collapse
Affiliation(s)
- Tingting Ren
- Department of Infectious Disease, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Qingling Chen
- Department of Infectious Disease, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Chuanlong Zhu
- Department of Infectious Disease, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China; Department of Infectious and Tropical Diseases, The Second Affiliated Hospital, NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, China.
| |
Collapse
|
2
|
Dong R, Tian T, Ming C, Zhang R, Xue H, Luo Z, Shen C, Ni Y, Shao J, Wang J. Multifaceted environmental factors linked to metabolic dysfunction-associated fatty liver disease: an environment-wide association study. BMC Public Health 2025; 25:709. [PMID: 39979906 PMCID: PMC11843789 DOI: 10.1186/s12889-025-21930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 02/12/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Environmental factors, or exposome, are non-negligible contributors to the occurrence and progression of metabolic dysfunction-associated fatty liver disease (MAFLD). Therefore, this environment-wide association study (EWAS) aimed to investigate the associations between multifarious environmental factors and MAFLD among the general adult population in the United States. METHODS Eligible participants were obtained from the National Health and Nutrition Examination Survey 2005-2020 cycles. Survey-weighted multivariate logistic regression models were constructed to identify and tentatively validate MAFLD-associated environmental factors. The least absolute shrinkage and selection operator (LASSO) regression was conducted to identify tentatively validated environmental factors with stronger associations with MAFLD. Moreover, the importance, discrimination power, correlation patterns, subgroup-specific differences, and survey cycle heterogeneity of the identified factors were further examined by multiple statistical strategies. RESULTS A total of 14,416 participants were included in this EWAS. Among 511 candidate environmental factors, 167 were identified and tentatively validated, and 45 were preserved after the LASSO selection and correlation evaluation. In this study, most previously known factors were replicated with reduced bias, and several poorly studied environmental factors were discovered, for example, upper leg length, access to care, mid-upper arm circumference, and total trabecular bone score. Their importance, discrimination ability, pairwise correlations, subgroup variations, and heterogeneity across survey cycles were further systematically and rigorously evaluated. CONCLUSIONS This EWAS comprehensively explored the associations between environmental factors and MAFLD in the general adult population from a panoramic perspective. The findings may provide clues for further understanding this disease and promote early prevention and risk prediction strategies in the future.
Collapse
Affiliation(s)
- Rui Dong
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Jiangsu, 211166, China
| | - Ting Tian
- Institute of Nutrition and Food Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Chen Ming
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Ru Zhang
- School of Nursing and Midwifery, Jiangsu College of Nursing, Huaian, China
| | - Hong Xue
- Department of Liver Disease, Third Affiliated Hospital of Nantong University, Nantong, China
| | - Zhenghan Luo
- East China Institute of Biomedical Technology, Nanjing, China
| | - Chao Shen
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Yunlong Ni
- Institute of Nutrition and Food Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jianguo Shao
- Department of Gastroenterology, Third Affiliated Hospital of Nantong University, 60 Qingnian Middle Avenue, Chongchuan District, Jiangsu, 226001, China.
| | - Jie Wang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Jiangsu, 211166, China.
| |
Collapse
|
3
|
Tao J, Li H, Wang H, Tan J, Yang X. Metabolic dysfunction-associated fatty liver disease and osteoporosis: the mechanisms and roles of adiposity. Osteoporos Int 2024; 35:2087-2098. [PMID: 39136721 DOI: 10.1007/s00198-024-07217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/26/2024] [Indexed: 11/21/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has recently been renamed metabolic dysfunction-associated fatty liver disease (MAFLD) by international consensus. Both MAFLD and osteoporosis are highly prevalent metabolic diseases. Recent evidence indicates that NAFLD increases the risk of low bone mineral density and osteoporosis, likely mediated by obesity. NAFLD has a close association with obesity and other metabolic disorders. Although obesity was previously thought to protect against bone loss, it now heightens osteoporotic fracture risk. This overview summarizes current clinical correlations between obesity, NAFLD, and osteoporosis, with a focus on recent insights into potential mechanisms interconnecting these three conditions. This study reviewed the scientific literature on the relationship between obesity, nonalcoholic fatty liver disease, and osteoporosis as well as the scientific literature that reveals the underlying pathophysiologic mechanisms between the three. Emerging evidence suggests obesity plays a key role in mediating the relationship between NAFLD and osteoporosis. Accumulating laboratory evidence supports plausible pathophysiological links between obesity, NAFLD, and osteoporosis, including inflammatory pathways, insulin resistance, gut microbiota dysbiosis, bone marrow adiposity, and alterations in insulin-like growth factor-1 signaling. Adiposity has important associations with NAFLD and osteoporosis, the underlying pathophysiologic mechanisms between the three may provide new therapeutic targets for this complex patient population.
Collapse
Affiliation(s)
- Jie Tao
- Department of General Practice, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Hong Li
- Department of Health Management Center, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Honggang Wang
- Department of Gastroenterology, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Juan Tan
- Department of General Practice, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China.
| | - Xiaozhong Yang
- Department of Gastroenterology, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China.
| |
Collapse
|
4
|
Gao H, Peng X, Li N, Gou L, Xu T, Wang Y, Qin J, Liang H, Ma P, Li S, Wu J, Qin X, Xue B. Emerging role of liver-bone axis in osteoporosis. J Orthop Translat 2024; 48:217-231. [PMID: 39290849 PMCID: PMC11407911 DOI: 10.1016/j.jot.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
Background Increasing attention to liver-bone crosstalk has spurred interest in targeted interventions for various forms of osteoporosis. Liver injury induced by different liver diseases can cause an imbalance in bone metabolism, indicating a novel regulatory paradigm between the liver and bone. However, the role of the liver-bone axis in both primary and secondary osteoporosis remains inadequately elucidated. Therefore, exploring the exact regulatory mechanisms of the liver-bone axis may offer innovative clinical approaches for treating diseases associated with the liver and bone. Methods Here, we summarize the latest research on the liver-bone axis by searching the PubMed and Web of Science databases and discuss the possible mechanism of the liver-bone axis in different types of osteoporosis. The literature directly reporting the regulatory role of the liver-bone axis in different types of osteoporosis from the PubMed and Web of Science databases has been included in the discussion of this review (including but not limited to the definition of the liver-bone axis, clinical studies, and basic research). In addition, articles discussing changes in bone metabolism caused by different etiologies of liver injury have also been included in the discussion of this review (including but not limited to clinical studies and basic research). Results Several endocrine factors (IGF-1, FGF21, hepcidin, vitamin D, osteocalcin, OPN, LCAT, Fetuin-A, PGs, BMP2/9, IL-1/6/17, and TNF-α) and key genes (SIRT2, ABCB4, ALDH2, TFR2, SPTBN1, ZNF687 and SREBP2) might be involved in the regulation of the liver-bone axis. In addition to the classic metabolic pathways involved in inflammation and oxidative stress, iron metabolism, cholesterol metabolism, lipid metabolism and immunometabolism mediated by the liver-bone axis require more research to elucidate the regulatory mechanisms involved in osteoporosis. Conclusion During primary and secondary osteoporosis, the liver-bone axis is responsible for liver and bone homeostasis via several hepatokines and osteokines as well as biochemical signaling. Combining multiomics technology and data mining technology could further advance our understanding of the liver-bone axis, providing new clinical strategies for managing liver and bone-related diseases.The translational potential of this article is as follows: Abnormal metabolism in the liver could seriously affect the metabolic imbalance of bone. This review summarizes the indispensable role of several endocrine factors and biochemical signaling pathways involved in the liver-bone axis and emphasizes the important role of liver metabolic homeostasis in the pathogenesis of osteoporosis, which provides novel potential directions for the prevention, diagnosis, and treatment of liver and bone-related diseases.
Collapse
Affiliation(s)
- Hongliang Gao
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
- Jiangsu Key Laboratory of Early Development and Chronic Disease Prevention in Children,Nanjing, Jiangsu,PR China
- Core Laboratory, Department of Clinical Laboratory, Sir Run Run Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, PR China
- Department of pathophysiology, Wannan Medical College, Wuhu, Anhui, PR China
| | - Xing Peng
- Core Laboratory, Department of Clinical Laboratory, Sir Run Run Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Ning Li
- Core Laboratory, Department of Clinical Laboratory, Sir Run Run Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Liming Gou
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
- Jiangsu Key Laboratory of Early Development and Chronic Disease Prevention in Children,Nanjing, Jiangsu,PR China
| | - Tao Xu
- Core Laboratory, Department of Clinical Laboratory, Sir Run Run Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yuqi Wang
- Core Laboratory, Department of Clinical Laboratory, Sir Run Run Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Jian Qin
- Department of Orthoprdics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu , PR China
| | - Hui Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Peiqi Ma
- Medical Imaging Center, Fuyang People's Hospital, Fuyang, Anhui, PR China
| | - Shu Li
- Department of pathophysiology, Wannan Medical College, Wuhu, Anhui, PR China
| | - Jing Wu
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
- Jiangsu Key Laboratory of Early Development and Chronic Disease Prevention in Children,Nanjing, Jiangsu,PR China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xihu Qin
- Department of General Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, PR China
| | - Bin Xue
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
- Jiangsu Key Laboratory of Early Development and Chronic Disease Prevention in Children,Nanjing, Jiangsu,PR China
- Core Laboratory, Department of Clinical Laboratory, Sir Run Run Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, PR China
- Department of General Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, PR China
| |
Collapse
|
5
|
Zhang Y, Chen Q. Novel insights into osteocyte and inter-organ/tissue crosstalk. Front Endocrinol (Lausanne) 2024; 14:1308408. [PMID: 38685911 PMCID: PMC11057460 DOI: 10.3389/fendo.2023.1308408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/14/2023] [Indexed: 05/02/2024] Open
Abstract
Osteocyte, a cell type living within the mineralized bone matrix and connected to each other by means of numerous dendrites, appears to play a major role in body homeostasis. Benefiting from the maturation of osteocyte extraction and culture technique, many cross-sectional studies have been conducted as a subject of intense research in recent years, illustrating the osteocyte-organ/tissue communication not only mechanically but also biochemically. The present review comprehensively evaluates the new research work on the possible crosstalk between osteocyte and closely situated or remote vital organs/tissues. We aim to bring together recent key advances and discuss the mutual effect of osteocyte and brain, kidney, vascular calcification, muscle, liver, adipose tissue, and tumor metastasis and elucidate the therapeutic potential of osteocyte.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingchang Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|