1
|
Liu Z, Lv R, Guo H, Zhang B, Wang X, Qiang P, Xiong Y, Chang Y, Peng Y, Hao J, Wang X, Shimosawa T, Xu Q, Yang F. Proliferation of renal macrophage via MR/CSF1 pathway induced with aldosterone and inhibited by esaxerenone. Int Immunopharmacol 2025; 149:114208. [PMID: 39923576 DOI: 10.1016/j.intimp.2025.114208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
Macrophage proliferation plays a critical role in kidney injury and repair, but due to their high plasticity and heterogeneity, the origins and subtypes of these proliferating cells remain unclear. This study investigates aldosterone-induced proliferation of renal macrophages, focusing on their origins, subtypes, and regulatory mechanisms using immunofluorescence, flow cytometry, and single-cell sequencing. The findings suggest that both resident and infiltrating macrophages proliferate in response to aldosterone, a significant proportion of which are renal resident macrophages, predominantly of the M1 subtype. The study also identifies the mineralocorticoid receptor/colony stimulation factor-1 (MR/CSF1) pathway as a key regulator of this process. Inhibition of this pathway through antagonists and inhibitors reduces macrophage proliferation and kidney damage, suggesting that targeting MR/CSF1 could be therapeutic against aldosterone-induced renal damage and inflammation.
Collapse
Affiliation(s)
- Ziqian Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Ruyan Lv
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Haixia Guo
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Boya Zhang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xuan Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Panpan Qiang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yunzhao Xiong
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yi Chang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yunsong Peng
- Nephrology Department, Shijiazhuang Hospital of Traditional Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Juan Hao
- Nephrology Department, Shijiazhuang Hospital of Traditional Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Xiangting Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Narita 286-8686, Japan
| | - Qingyou Xu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Fan Yang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| |
Collapse
|
2
|
Nachiappa Ganesh R, Garcia G, Truong L. Monocytes and Macrophages in Kidney Disease and Homeostasis. Int J Mol Sci 2024; 25:3763. [PMID: 38612574 PMCID: PMC11012230 DOI: 10.3390/ijms25073763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The monocyte-macrophage lineage of inflammatory cells is characterized by significant morphologic and functional plasticity. Macrophages have broad M1 and M2 phenotype subgroups with distinctive functions and dual reno-toxic and reno-protective effects. Macrophages are a major contributor to injury in immune-complex-mediated, as well as pauci-immune, glomerulonephritis. Macrophages are also implicated in tubulointerstitial and vascular disease, though there have not been many human studies. Patrolling monocytes in the intravascular compartment have been reported in auto-immune injury in the renal parenchyma, manifesting as acute kidney injury. Insights into the pathogenetic roles of macrophages in renal disease suggest potentially novel therapeutic and prognostic biomarkers and targeted therapy. This review provides a concise overview of the macrophage-induced pathogenetic mechanism as a background for the latest findings about macrophages' roles in different renal compartments and common renal diseases.
Collapse
Affiliation(s)
- Rajesh Nachiappa Ganesh
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA;
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Gabriela Garcia
- Department of Medicine, Renal Division, University of Colorado, Anschutz Medical Campus, Aurora, CO 605006, USA;
| | - Luan Truong
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA;
| |
Collapse
|
3
|
Sandersfeld M, Büttner-Herold M, Ferrazzi F, Amann K, Benz K, Daniel C. Macrophage subpopulations in pediatric patients with lupus nephritis and other inflammatory diseases affecting the kidney. Arthritis Res Ther 2024; 26:46. [PMID: 38331818 PMCID: PMC10851514 DOI: 10.1186/s13075-024-03281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Macrophages play an important role in the pathogenesis of lupus nephritis (LN), but less is known about macrophage subtypes in pediatric LN. Here we compared renal inflammation in LN with other inflammatory pediatric kidney diseases and assessed whether inflammation correlates with clinical parameters. METHODS Using immunofluorescence microscopy, we analyzed renal biopsies from 20 pediatric patients with lupus nephritis (ISN/RPS classes II-V) and pediatric controls with other inflammatory kidney diseases for infiltration with M1-like (CD68 + /CD206 - , CD68 + /CD163 -), M2a-like (CD206 + /CD68 +), and M2c-like macrophages (CD163 + /CD68 +) as well as CD3 + T-cells, CD20 + B-cells, and MPO + neutrophilic granulocytes. In addition, the correlation of macrophage infiltration with clinical parameters at the time of renal biopsy, e.g., eGFR and serum urea, was investigated. Macrophage subpopulations were compared with data from a former study of adult LN patients. RESULTS The frequency of different macrophage subtypes in biopsies of pediatric LN was dependent on ISN/RPS class and showed the most pronounced M1-like macrophage infiltration in patients with LN class IV, whereas M2c-like macrophages were most abundant in class III and IV. Interestingly, on average, only half as many macrophages were found in renal biopsies of pediatric LN compared to adult patients with LN. The distribution of frequencies of macrophage subpopulations, however, was different for CD68 + CD206 + (M2a-like) but comparable for CD68 + CD163 - (M1-like) CD68 + CD163 + (M2c-like) cells in pediatric and adult patients. Compared to other inflammatory kidney diseases in children, fewer macrophages and other inflammatory cells were found in kidney biopsies of LN. Depending on the disease, the frequency of individual immune cell types varied, but we were unable to confirm disease-specific inflammatory signatures in our study due to the small number of pediatric cases. Worsened renal function, measured as elevated serum urea and decreased eGFR, correlated particularly strongly with the number of CD68 + /CD163 - M1-like macrophages and CD20 + B cells in pediatric inflammatory kidney disease. CONCLUSION Although M1-like macrophages play a greater role in pediatric LN patients than in adult LN patients, M2-like macrophages appear to be key players and are more abundant in other pediatric inflammatory kidney diseases compared to LN.
Collapse
Affiliation(s)
- Mira Sandersfeld
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 8-10, Erlangen, 91054, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 8-10, Erlangen, 91054, Germany
| | - Fulvia Ferrazzi
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 8-10, Erlangen, 91054, Germany
- Institute of Pathology, FAU Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 8-10, Erlangen, 91054, Germany
| | - Kerstin Benz
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 8-10, Erlangen, 91054, Germany
- Department of Pediatrics, FAU Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 8-10, Erlangen, 91054, Germany.
| |
Collapse
|
4
|
Liu SY, Chen H, He LJ, Huang CK, Wang P, Rui ZR, Wu J, Yuan Y, Zhang Y, Wang WJ, Wang XD. Changes in macrophage infiltration and podocyte injury in lupus nephritis patients with repeated renal biopsy: Report of three cases. World J Clin Cases 2024; 12:188-195. [PMID: 38292643 PMCID: PMC10824197 DOI: 10.12998/wjcc.v12.i1.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/02/2024] Open
Abstract
BACKGROUND In this study, we retrospectively analysed macrophage infiltration and podocyte injury in three patients with diffuse proliferative lupus nephritis (LN) who underwent repeated renal biopsy. CASE SUMMARY Clinical data of three diffuse proliferative LN patients with different pathological characteristics (case 1 was LN IV-G (A), case 2 was LN IV-G (A) + V, and case 3 was LN IV-G (A) + thrombotic microangiopathy) were reviewed. All patients underwent repeated renal biopsies 6 mo later, and renal biopsy specimens were studied. Macrophage infiltration was assessed by CD68 expression detected by immunohistochemical staining, and an immunofluorescence assay was used to detect podocin expression to assess podocyte damage. After treatment, Case 1 changed to LN III-(A), Case 2 remained as type V LN lesions, and Case 3, which changed to LN IV-S (A), had the worst prognosis. We observed reduced macrophage infiltration after therapy. However, two of the patients with active lesions after treatment still showed macrophage infiltration in the renal interstitium. Before treatment, the three patients showed discontinuous expression of podocin. Notably, the integrity of podocin was restored after treatment in Case 1. CONCLUSION It may be possible to reverse podocyte damage and decrease the infiltrating macrophages in LN patients through effective treatment.
Collapse
Affiliation(s)
- Shi-Yuan Liu
- Central Laboratory, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Hao Chen
- Department of Nephropathy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Li-Jia He
- Central Laboratory, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Chun-Kai Huang
- Central Laboratory, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Pu Wang
- Central Laboratory, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Zhang-Ru Rui
- Department of Nephropathy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Jue Wu
- Department of Nephropathy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Yang Yuan
- Department of Nephropathy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Yue Zhang
- Department of Nephropathy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Wen-Ju Wang
- Central Laboratory, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Xiao-Dan Wang
- Central Laboratory, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
| |
Collapse
|
5
|
Hattori T, Fujioka K, Nagai T, Kondo S, Kagami S, Hirayama M, Urushihara M. Intrarenal renin-angiotensin system activation and macrophage infiltrations in pediatric chronic glomerulonephritis. Pediatr Nephrol 2023; 38:3711-3719. [PMID: 37231123 PMCID: PMC10514104 DOI: 10.1007/s00467-023-06026-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND The current study tested the hypothesis that urinary angiotensinogen (UAGT) and urinary monocyte chemoattractant protein-1 (UMCP-1) levels provide a specific index of intrarenal renin-angiotensin system (RAS) status and the degree of infiltration of macrophages associated with RAS blockade and immunosuppressant treatment in pediatric patients with chronic glomerulonephritis. METHODS We measured baseline UAGT and UMCP-1 levels to examine the correlation between glomerular injury in 48 pediatric chronic glomerulonephritis patients before treatment. Furthermore, we performed immunohistochemical analysis of angiotensinogen (AGT) and CD68 in 27 pediatric chronic glomerulonephritis patients treated with RAS blockades and immunosuppressants for 2 years. Finally, we examined the effects of angiotensin II (Ang II) on monocyte chemoattractant protein-1 (MCP-1) expression in cultured human mesangial cells (MCs). RESULTS Baseline UAGT and UMCP-1 levels positively correlated with urinary protein levels, scores for mesangial hypercellularity, rate of crescentic formation, and expression levels of AGT and CD68 in renal tissues (p < 0.05). UAGT and UMCP-1 levels were significantly decreased after RAS blockade and immunosuppressant treatment (p < 0.01), which was accompanied by AGT and CD68 (p < 0.01), as well as the magnitude of glomerular injury. Cultured human MCs showed increased MCP-1 messenger ribonucleic acid and protein levels after Ang II treatment (p < 0.01). CONCLUSIONS The data indicates that UAGT and UMCP-1 are useful biomarkers of the degree of glomerular injury during RAS blockade and immunosuppressant treatment in pediatric patients with chronic glomerulonephritis.
Collapse
Affiliation(s)
- Tomoki Hattori
- Department of Pediatrics, Tokushima University Graduate School of Biomedical Sciences, Kuramoto-cho 3-18-15, Tokushima, Tokushima, 770-8503, Japan
- Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Keisuke Fujioka
- Department of Pediatrics, Tokushima University Graduate School of Biomedical Sciences, Kuramoto-cho 3-18-15, Tokushima, Tokushima, 770-8503, Japan
| | - Takashi Nagai
- Department of Pediatrics, Tokushima University Graduate School of Biomedical Sciences, Kuramoto-cho 3-18-15, Tokushima, Tokushima, 770-8503, Japan
| | - Shuji Kondo
- Department of Pediatrics, Tokushima University Graduate School of Biomedical Sciences, Kuramoto-cho 3-18-15, Tokushima, Tokushima, 770-8503, Japan
| | - Shoji Kagami
- Department of Pediatrics, Tokushima University Graduate School of Biomedical Sciences, Kuramoto-cho 3-18-15, Tokushima, Tokushima, 770-8503, Japan
| | - Masahiro Hirayama
- Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Maki Urushihara
- Department of Pediatrics, Tokushima University Graduate School of Biomedical Sciences, Kuramoto-cho 3-18-15, Tokushima, Tokushima, 770-8503, Japan.
| |
Collapse
|
6
|
Kercheva M, Ryabov V, Gombozhapova A, Stepanov I, Kzhyshkowska J. Macrophages of the Cardiorenal Axis and Myocardial Infarction. Biomedicines 2023; 11:1843. [PMID: 37509483 PMCID: PMC10376845 DOI: 10.3390/biomedicines11071843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of our study was to compare the features of macrophage (mf) composition of the kidneys in patients with fatal myocardial infarction (MI) and in patients without cardiovascular diseases (CVD). We used kidney fragments taken during autopsy. Macrophage infiltration was assessed by immunohistochemistry: antibodies CD68 were used as a common mf marker, CD80-M1 type mf marker, CD163, CD206, and stabilin-1-M2 type. Macrophage composition of the kidneys in patients with fatal MI was characterized by the predominance of CD163+ cells among studied cells, and the control group was characterized by the predominance of CD163+, CD206+, and CD68+. In patients with MI, biphasic response from kidney cells was characterized for CD80+ and CD206+: their number decreased by the long-term period of MI; other cells did not show any dynamics. The exact number of CD80+ cells in kidneys of individuals without CVD was slightly higher than in patients with MI, and the number of CD206+-strikingly predominant. Subsequent analysis of CD80+ and CD206+ cells in a larger sample, as well as comparison of data with results obtained from survivors of MI, may bring us closer to understanding whether the influence on these cells can serve as a new target in personalized therapy in postinfarction complications.
Collapse
Affiliation(s)
- Maria Kercheva
- Cardiology Division, Siberian State Medical University, 2 Moscovsky Trakt, 634055 Tomsk, Russia
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, 111a Kievskaya Street, 634012 Tomsk, Russia
| | - Vyacheslav Ryabov
- Cardiology Division, Siberian State Medical University, 2 Moscovsky Trakt, 634055 Tomsk, Russia
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, 111a Kievskaya Street, 634012 Tomsk, Russia
- Laboratory of Translational and Cellular Biomedicine, National Research Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russia
| | - Aleksandra Gombozhapova
- Cardiology Division, Siberian State Medical University, 2 Moscovsky Trakt, 634055 Tomsk, Russia
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, 111a Kievskaya Street, 634012 Tomsk, Russia
| | - Ivan Stepanov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, 111a Kievskaya Street, 634012 Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational and Cellular Biomedicine, National Research Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, University of Heidelberg, 1-3 Theodor-Kutzer Ufer, 68167 Mannheim, Germany
| |
Collapse
|
7
|
Dube P, Aradhyula V, Lad A, Khalaf FK, Breidenbach JD, Kashaboina E, Gorthi S, Varatharajan S, Stevens TW, Connolly JA, Soehnlen SM, Sood A, Marellapudi A, Ranabothu M, Kleinhenz AL, Domenig O, Dworkin LD, Malhotra D, Haller ST, Kennedy DJ. Novel Model of Oxalate Diet-Induced Chronic Kidney Disease in Dahl-Salt-Sensitive Rats. Int J Mol Sci 2023; 24:10062. [PMID: 37373209 DOI: 10.3390/ijms241210062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/12/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Diet-induced models of chronic kidney disease (CKD) offer several advantages, including clinical relevance and animal welfare, compared with surgical models. Oxalate is a plant-based, terminal toxic metabolite that is eliminated by the kidneys through glomerular filtration and tubular secretion. An increased load of dietary oxalate leads to supersaturation, calcium oxalate crystal formation, renal tubular obstruction, and eventually CKD. Dahl-Salt-Sensitive (SS) rats are a common strain used to study hypertensive renal disease; however, the characterization of other diet-induced models on this background would allow for comparative studies of CKD within the same strain. In the present study, we hypothesized that SS rats on a low-salt, oxalate rich diet would have increased renal injury and serve as novel, clinically relevant and reproducible CKD rat models. Ten-week-old male SS rats were fed either 0.2% salt normal chow (SS-NC) or a 0.2% salt diet containing 0.67% sodium oxalate (SS-OX) for five weeks.Real-time PCR demonstrated an increased expression of inflammatory marker interleukin-6 (IL-6) (p < 0.0001) and fibrotic marker Timp-1 metalloproteinase (p < 0.0001) in the renal cortex of SS-OX rat kidneys compared with SS-NC. The immunohistochemistry of kidney tissue demonstrated an increase in CD-68 levels, a marker of macrophage infiltration in SS-OX rats (p < 0.001). In addition, SS-OX rats displayed increased 24 h urinary protein excretion (UPE) (p < 0.01) as well as significant elevations in plasma Cystatin C (p < 0.01). Furthermore, the oxalate diet induced hypertension (p < 0.05). A renin-angiotensin-aldosterone system (RAAS) profiling (via liquid chromatography-mass spectrometry; LC-MS) in the SS-OX plasma showed significant (p < 0.05) increases in multiple RAAS metabolites including angiotensin (1-5), angiotensin (1-7), and aldosterone. The oxalate diet induces significant renal inflammation, fibrosis, and renal dysfunction as well as RAAS activation and hypertension in SS rats compared with a normal chow diet. This study introduces a novel diet-induced model to study hypertension and CKD that is more clinically translatable and reproducible than the currently available models.
Collapse
Affiliation(s)
- Prabhatchandra Dube
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - Vaishnavi Aradhyula
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - Apurva Lad
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - Fatimah K Khalaf
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
- Department of Medicine, University of Alkafeel College of Medicine, Najaf 54001, Iraq
| | - Joshua D Breidenbach
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - Eshita Kashaboina
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - Snigdha Gorthi
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - Shangari Varatharajan
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - Travis W Stevens
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - Jacob A Connolly
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - Sophia M Soehnlen
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - Ambika Sood
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - Amulya Marellapudi
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - Meghana Ranabothu
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - Andrew L Kleinhenz
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | | | - Lance D Dworkin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - Deepak Malhotra
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - Steven T Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - David J Kennedy
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| |
Collapse
|
8
|
Mohan C, Zhang T, Putterman C. Pathogenic cellular and molecular mediators in lupus nephritis. Nat Rev Nephrol 2023:10.1038/s41581-023-00722-z. [PMID: 37225921 DOI: 10.1038/s41581-023-00722-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
Kidney involvement in patients with systemic lupus erythematosus - lupus nephritis (LN) - is one of the most important and common clinical manifestations of this disease and occurs in 40-60% of patients. Current treatment regimens achieve a complete kidney response in only a minority of affected individuals, and 10-15% of patients with LN develop kidney failure, with its attendant morbidity and considerable prognostic implications. Moreover, the medications most often used to treat LN - corticosteroids in combination with immunosuppressive or cytotoxic drugs - are associated with substantial side effects. Advances in proteomics, flow cytometry and RNA sequencing have led to important new insights into immune cells, molecules and mechanistic pathways that are instrumental in the pathogenesis of LN. These insights, together with a renewed focus on the study of human LN kidney tissue, suggest new therapeutic targets that are already being tested in lupus animal models and early-phase clinical trials and, as such, are hoped to eventually lead to meaningful improvements in the care of patients with systemic lupus erythematosus-associated kidney disease.
Collapse
Affiliation(s)
- Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| | - Ting Zhang
- Division of Rheumatology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaim Putterman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
- Division of Rheumatology and Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
9
|
Macrophages in Lupus Nephritis: Exploring a potential new therapeutic avenue. Clin Exp Rheumatol 2022; 21:103211. [PMID: 36252930 DOI: 10.1016/j.autrev.2022.103211] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
Lupus nephritis (LN) is a serious complication of systemic lupus erythematosus (SLE) that occurs in about half of patients. LN is characterized by glomerular deposition of immune complexes, leading to subendothelial, mesangial and subepithelial electron dense deposits, triggering immune cell infiltration and glomerular as well as tubulointerstitial injury. Monocytes and macrophages are abundantly present in inflammatory lesions, both in glomeruli and the tubulointerstitium. Here we discuss how monocytes and macrophages are involved in this process and how monocytes and macrophages may represent specific therapeutic targets to control LN.
Collapse
|
10
|
Pfenning MB, Schmitz J, Scheffner I, Schulte K, Khalifa A, Tezval H, Weidemann A, Kulschewski A, Kunzendorf U, Dietrich S, Haller H, Kielstein JT, Gwinner W, Bräsen JH. High Macrophage Densities in Native Kidney Biopsies Correlate With Renal Dysfunction and Promote ESRD. Kidney Int Rep 2022; 8:341-356. [PMID: 36815108 PMCID: PMC9939427 DOI: 10.1016/j.ekir.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Macrophages and monocytes are main players in innate immunity. The relevance of mononuclear phagocyte infiltrates on clinical outcomes remains to be determined in native kidney diseases. Methods Our cross-sectional study included 324 patients with diagnostic renal biopsies comprising 17 disease entities and normal renal tissues for comparison. All samples were stained for CD68+ macrophages. Selected groups were further subtyped for CD14+ monocytes and CD163+ alternatively activated macrophages. Using precise pixel-based digital measurements, we quantified cell densities as positively stained areas in renal cortex and medulla as well as whole renal tissue. Laboratory and clinical data of all cases at the time of biopsy and additional follow-up data in 158 cases were accessible. Results Biopsies with renal disease consistently revealed higher CD68+-macrophage densities and CD163+-macrophage densities in cortex and medulla compared to controls. High macrophage densities correlated with impaired renal function at biopsy and at follow-up in all diseases and in diseases analyzed separately. High cortical CD68+-macrophage densities preceded shorter renal survival, defined as requirement of permanent dialysis. CD14+ monocyte densities showed no difference compared to controls and did not correlate with renal function. Conclusion Precise quantification of macrophage densities in renal biopsies may contribute to risk stratification to identify patients with high risk for end-stage renal disease (ESRD) and might be a promising therapeutic target in renal disease.
Collapse
Affiliation(s)
- Maren B. Pfenning
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Lower Saxony, Germany,Medical Department I, Gastroenterology, Hepatology and Nephrology, Clinics Passau, Passau, Bavaria, Germany
| | - Jessica Schmitz
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Irina Scheffner
- Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Kevin Schulte
- Clinic for Nephrology and Hypertension, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Abedalrazag Khalifa
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Hossein Tezval
- Department of Urology and Urological Oncology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Alexander Weidemann
- Medical Clinic III – Nephrology and Dialysis, St. Vinzenz Hospital, Paderborn, North Rhine-Westphalia, Germany
| | - Anke Kulschewski
- Clinic for Nephrology and Hypertension, University Hospital Oldenburg, Oldenburg, Lower Saxony, Germany
| | - Ulrich Kunzendorf
- Clinic for Nephrology and Hypertension, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Sebastian Dietrich
- Clinic for Nephrology and Hypertension, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Hermann Haller
- Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Jan T. Kielstein
- Medical Clinic V, Nephrology, Rheumatology and Blood Purification, Academic Teaching Hospital Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Wilfried Gwinner
- Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Jan H. Bräsen
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Lower Saxony, Germany,Correspondence: Jan Hinrich Bräsen, Nephropathology Unit, Institute of Pathology, Hannover Medical School, OE 5110, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
11
|
Wang W, Fan Y, Wang X. Lactobacillus: Friend or Foe for Systemic Lupus Erythematosus? Front Immunol 2022; 13:883747. [PMID: 35677055 PMCID: PMC9168270 DOI: 10.3389/fimmu.2022.883747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
The cause of Systemic Lupus Erythematosus (SLE) remains largely unknown, despite the fact that it is well understood that a complex interaction between genes and environment is required for disease development. Microbiota serve as activators and are essential to immune homeostasis. Lactobacillus is thought to be an environmental agent affecting the development of SLE. However, beneficial therapeutic and anti-inflammatory effects of Lactobacillus on SLE were also explored. The discovery of Lactobacillus involvement in SLE will shed light on how SLE develops, as well as finding microbiota-targeted biomarkers and novel therapies. In this review, we attempt to describe the two sides of Lactobacillus in the occurrence, development, treatment and prognosis of SLE. We also discuss the effect of different strains Lactobacillus on immune cells, murine lupus, and patients. Finally, we try to illustrate the potential immunological mechanisms of Lactobacillus on SLE and provide evidence for further microbiota-targeted therapies.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yongsheng Fan
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinchang Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
12
|
Chen J, Cui L, Ouyang J, Wang J, Xu W. Clinicopathological significance of tubulointerstitial CD68 macrophages in proliferative lupus nephritis. Clin Rheumatol 2022; 41:2729-2736. [PMID: 35616755 DOI: 10.1007/s10067-022-06214-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Tubulointerstitial macrophage plays a pathogenic role in renal damage of lupus nephritis (LN). However, the clinical and pathological role of these CD68 macrophages has not been fully described. The aim of the present study is to decipher the correlation between clinicopathological features and tubulointerstitial CD68 macrophages in 76 proliferative LN patients and further evaluate the prognostic significance of tubulointerstitial CD68 macrophages. METHODS Tubulointerstitial CD68 macrophages were quantitated by standard histochemical staining. The correlation between the number of tubulointerstitial CD68 macrophages and clinicopathological features was analyzed by Spearman's correlation analysis. Factors potentially affecting renal prognosis were further evaluated by Cox regression analysis. RESULTS Among the 76 proliferative LN cases, the number of CD68 macrophage infiltrates was positively correlated with serum creatinine (SCr) level, the proportion of glomeruli sclerosis and focal segmental sclerosis, tubulointerstitial inflammation, and chronicity indices, while negatively correlated with the glomerular filtration rate. During a mean follow-up period of 45 months, 5 patients (6.6%) progressed to dialysis, and 3 patents (3.9%) had a twofold increase in SCr. Multivariate Cox regression analysis showed that the number of tubulointerstitial CD68 macrophages was an independent variable associated with poor renal outcomes (HR = 1.002, P = 0.012). The optimal cutoff value of tubulointerstitial CD68 macrophages was 340/mm2 in our study with 87.5% sensitivity and 61.8% specificity to predict end-stage renal disease within 4 years. CONCLUSION The number of tubulointerstitial CD68 macrophages was positively linked to poor prognosis of LN. Urgent immunosuppression should be considered in LN patients with abundant tubulointerstitial CD68 macrophages. Key Points • Tubulointerstitial CD68 macrophage infiltrates are positively correlated with clinicohistologic impairment in proliferative lupus nephritis. • The positive association between the number of tubulointerstitial CD68 macrophages and poor renal outcome of lupus nephritis patients were observed. • Urgent immunosuppression and monitor are required when abundant tubulointerstitial CD68 macrophage infiltrates are detected.
Collapse
Affiliation(s)
- Jiejian Chen
- Department of Nephrology, The 900Th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian Province, China
| | - Linlin Cui
- Kidney Institute of CPLA and Division of Nephrology, Changzheng Hospital, Naval Military Medical University, Shanghai, China
| | - Jinge Ouyang
- Department of Cardiology, The 900Th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian Province, China
| | - Jian Wang
- Department of Nephrology, No.2 People's Hospital of Fuyang City, Fuyang, Anhui Province, China
| | - Weijia Xu
- Department of Nephrology, The 900Th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian Province, China.
| |
Collapse
|
13
|
Elsayed MS, Abu-Elsaad NM, Nader MA. The NLRP3 inhibitor dapansutrile attenuates folic acid induced nephrotoxicity via inhibiting inflammasome/caspase-1/IL axis and regulating autophagy/proliferation. Life Sci 2021; 285:119974. [PMID: 34560082 DOI: 10.1016/j.lfs.2021.119974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/26/2022]
Abstract
AIMS Chemical renal toxicity is common and has limited therapeutic interventions. The NLRP3 inhibitor dapansutrile (DAPA) undergoes clinical phase II trials and it shows promising beneficial effects in various inflammatory diseases. The current study aims at evaluating the effect of DAPA on folic acid (FA) induced acute kidney injury (AKI) and its possible transition to chronic injury. MATERIALS AND METHODS Two treatment protocols were studied depending on DAPA injection timing. A prophylactic protocol involving the injection of DAPA (0.2 mg/kg) daily for seven days before FA challenge and a therapeutic protocol where DAPA was injected after FA. Each protocol included four groups of rats: control group, DAPA group, FA group and DAPA+FA group. Serum creatinine, urea and uric acid were measured. Also, kidney injury, necrosis and fibrosis percentage in addition to infiltration of CD68 positive cells were evaluated. Activation markers of inflammasome and the expression of Ki-67 and LC-3 were measured. KEY FINDINGS Results showed an improvement in renal tissue integrity and a significant decrease in kidney function biomarkers, caspase-1, IL-1β and IL-18 by DAPA injection (p < 0.05). In addition, DAPA decreased the proliferation marker Ki-67 and the autophagic marker LC-3 (p < 0.01). SIGNIFICANCE DAPA potentially alleviates FA induced nephrotoxicity through targeting inflammasome/caspase-1/IL axis. Moreover, it shows a regulatory effect on renal regeneration and autophagy.
Collapse
Affiliation(s)
- Mohamed S Elsayed
- Pharmacology and Toxicology Dep., Faculty of Pharmacy, Mansoura University, Egypt
| | - Nashwa M Abu-Elsaad
- Pharmacology and Toxicology Dep., Faculty of Pharmacy, Mansoura University, Egypt.
| | - Manar A Nader
- Pharmacology and Toxicology Dep., Faculty of Pharmacy, Mansoura University, Egypt
| |
Collapse
|
14
|
Liang CL, Jiang H, Feng W, Liu H, Han L, Chen Y, Zhang Q, Zheng F, Lu CJ, Dai Z. Total Glucosides of Paeony Ameliorate Pristane-Induced Lupus Nephritis by Inducing PD-1 ligands + Macrophages via Activating IL-4/STAT6/PD-L2 Signaling. Front Immunol 2021; 12:683249. [PMID: 34290705 PMCID: PMC8288191 DOI: 10.3389/fimmu.2021.683249] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/24/2021] [Indexed: 01/19/2023] Open
Abstract
Macrophages, a major subset of innate immune cells, are main infiltrating cells in the kidney in lupus nephritis. Macrophages with different phenotypes exert diverse or even opposite effects on the development of lupus nephritis. Substantial evidence has shown that macrophage M2 polarization is beneficial to individuals with chronic kidney disease. Further, it has been reported that PD-1 ligands (PD-Ls) contribute to M2 polarization of macrophages and their immunosuppressive effects. Total glucosides of paeony (TGP), originally extracted from Radix Paeoniae Alba, has been approved in China to treat some autoimmune diseases. Here, we investigated the potentially therapeutic effects of TGP on lupus nephritis in a pristane-induced murine model and explored the molecular mechanisms regulating macrophage phenotypes. We found that TGP treatment significantly improved renal function by decreasing the urinary protein and serum creatinine, reducing serum anti-ds-DNA level and ameliorating renal immunopathology. TGP increased the frequency of splenic and peritoneal F4/80+CD11b+CD206+ M2-like macrophages with no any significant effect on F4/80+CD11b+CD86+ M1-like macrophages. Immunofluorescence double-stainings of the renal tissue showed that TGP treatment increased the frequency of F4/80+Arg1+ subset while decreasing the percentage of F4/80+iNOS+ subset. Importantly, TGP treatment increased the percentage of both F4/80+CD11b+PD-L1+ and F4/80+CD11b+PD-L2+ subsets in spleen and peritoneal lavage fluid as well as the kidney. Furthermore, TGP augmented the expressions of CD206, PD-L2 and phosphorylated STAT6 in IL-4-treated Raw264.7 macrophages in vitro while its effects on PD-L2 were abolished by pretreatment of the cells with an inhibitor of STAT6, AS1517499. However, TGP treatment did not affect the expressions of STAT1 and PD-L1 in Raw264.7 macrophages treated with LPS/IFN-γ in vitro, indicating a possibly indirect effect of TGP on PD-L1 expression on macrophages in vivo. Thus, for the first time, we demonstrated that TGP may be a potent drug to treat lupus nephritis by inducing F4/80+CD11b+CD206+ and F4/80+CD11b+PD-L2+ macrophages through IL-4/STAT6/PD-L2 signaling pathway.
Collapse
Affiliation(s)
- Chun-Ling Liang
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongliang Jiang
- Gaozhou Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Maoming, China
| | - Wenxuan Feng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huazhen Liu
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling Han
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuchao Chen
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qunfang Zhang
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fang Zheng
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuan-Jian Lu
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Zhenhua Dai
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| |
Collapse
|
15
|
Association between tubulointerstitial CD8+T cells and renal prognosis in lupus nephritis. Int Immunopharmacol 2021; 99:107877. [PMID: 34217995 DOI: 10.1016/j.intimp.2021.107877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Inflammatory cell infiltration is a pathological change commonly seen in renal biopsies from patients with lupus nephritis(LN), but its clinicalcorrelationwith clinical parameters and prognosis is unclear. METHODS Included in this retrospective study were 197 patients with ISN/ RPS Class III-V LN, in whom renal biopsy was performed to analyze the histological pattern. Tubulointerstitial infiltrates were quantitated by standard histochemical staining. Clinical and histologic variables were evaluated using a Cox proportional hazards model. End-stagerenaldisease(ESRD) progression was defined as a two-fold increase in serum creatinine (SCr) after biopsy, GFR decreased over 40%, initiation of dialysis, transplantation, or death. RESULTS Of the 197 patients, 166 patients (84.3%) had proliferative LN. The number of tubulointerstitial infiltrates was the lowest in LN patients with ISN/RPS class V, and the number of CD68+ macrophages was the highest in all ISN/RPS classes of LN. In addition, the number of CD8+T cell infiltrates was positively correlated the SLEDAI sore, SCr level, proteinuria, the ratio of glomerulosclerosis and the degree of tubulointerstitial inflammation, interstitial fibrosis and tubular atrophy, activity and chronicity indices, and negatively correlated with C3 level at presentation. Multivariate survival analysis showed that tubulointerstitial CD8 + T cells > 130/mm2 was associated with ESRD progression (HR 1.007; 95% CI 1.003 to 1.011; p < 0.001). CONCLUSION Tubulointerstitial CD8+T cells correlate with clinicohistologic impairment in LN. Tubulointerstitial CD8+T cells > 130/mm2 is independently associated with an unfavorable long-term kidney outcome.
Collapse
|
16
|
Lee YH, Kim KP, Park SH, Kim DJ, Kim YG, Moon JY, Jung SW, Kim JS, Jeong KH, Lee SY, Yang DH, Lim SJ, Woo JT, Rhee SY, Chon S, Choi HY, Park HC, Jo YI, Yi JH, Han SW, Lee SH. Urinary chemokine C-X-C motif ligand 16 and endostatin as predictors of tubulointerstitial fibrosis in patients with advanced diabetic kidney disease. Nephrol Dial Transplant 2021; 36:295-305. [PMID: 31598726 DOI: 10.1093/ndt/gfz168] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/19/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Interstitial fibrosis and tubular atrophy (IFTA) is a well-recognized risk factor for poor renal outcome in patients with diabetic kidney disease (DKD). However, a noninvasive biomarker for IFTA is currently lacking. The purpose of this study was to identify urinary markers of IFTA and to determine their clinical relevance as predictors of renal prognosis. METHODS Seventy patients with biopsy-proven isolated DKD were enrolled in this study. We measured multiple urinary inflammatory cytokines and chemokines by multiplex enzyme-linked immunosorbent assay in these patients and evaluated their association with various pathologic features and renal outcomes. RESULTS Patients enrolled in this study exhibited advanced DKD at the time of renal biopsy, characterized by moderate to severe renal dysfunction [mean estimated glomerular filtration rate (eGFR) 36.1 mL/min/1.73 m2] and heavy proteinuria (mean urinary protein:creatinine ratio 7.8 g/g creatinine). Clinicopathologic analysis revealed that higher IFTA scores were associated with worse baseline eGFR (P < 0.001) and poor renal outcome (P = 0.002), whereas glomerular injury scores were not. Among measured urinary inflammatory markers, C-X-C motif ligand 16 (CXCL16) and endostatin showed strong correlations with IFTA scores (P = 0.001 and P < 0.001, respectively), and patients with higher levels of urinary CXCL16 and/or endostatin experienced significantly rapid renal progression compared with other patients (P < 0.001). Finally, increased urinary CXCL16 and endostatin were independent risk factors for poor renal outcome after multivariate adjustments (95% confidence interval 1.070-3.455, P = 0.029). CONCLUSIONS Urinary CXCL16 and endostatin could reflect the degree of IFTA and serve as biomarkers of renal outcome in patients with advanced DKD.
Collapse
Affiliation(s)
- Yu Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea.,Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Ki Pyo Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sun-Hwa Park
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Dong-Jin Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Yang-Gyun Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Su-Woong Jung
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Jin Sug Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Kyung-Hwan Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - So-Young Lee
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Dong-Ho Yang
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Sung-Jig Lim
- Department of Pathology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Jeong-Taek Woo
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Sang Youl Rhee
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Suk Chon
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Hoon-Young Choi
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyeong-Cheon Park
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Il Jo
- Division of Nephrology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, Korea
| | - Joo-Hark Yi
- Division of Nephrology, Department of Internal Medicine, Hanyang University Guri Hospital, Guri, Korea
| | - Sang-Woong Han
- Division of Nephrology, Department of Internal Medicine, Hanyang University Guri Hospital, Guri, Korea
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea.,Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Korea
| |
Collapse
|
17
|
Liang CL, Lu W, Qiu F, Li D, Liu H, Zheng F, Zhang Q, Chen Y, Lu C, Li B, Dai Z. Paeoniflorin ameliorates murine lupus nephritis by increasing CD4 +Foxp3 + Treg cells via enhancing mTNFα-TNFR2 pathway. Biochem Pharmacol 2021; 185:114434. [PMID: 33513343 DOI: 10.1016/j.bcp.2021.114434] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/18/2022]
Abstract
Treg cells are essential for re-establishing self-tolerance in lupus. However, given that direct Treg therapies may be inadequate to control autoimmunity and inflammation, a strategy of inducing or expanding endogenous Treg cells in vivo may be a good option. Macrophages are main tissue-infiltrating cells and play a role in promoting Treg differentiation while paeoniflorin (PF), a monoterpene glycoside, exhibits anti-inflammatory and immunoregulatory effects. Here, we studied the effects of PF on CD4+FoxP3+ Treg frequency and the potential mechanisms involving M2 macrophages. We demonstrated that PF ameliorated lupus nephritis in lupus-prone B6/gld mice by reducing urinary protein, serum creatinine and anti-dsDNA levels, diminishing renal cellular infiltration, improving renal immunopathology and downregulating renal gene and protein expressions of key cytokines, including IFN-γ, IL-6, IL-12 and IL-23. PF also lowered the percentage of CD44highCD62Llow effector T cells while augmenting CD4+FoxP3+ Treg frequency in B6/gld mice. Importantly, PF increased TNFR2 expression on CD4+FoxP3+ Tregs, but not CD4+FoxP3- T cells, in vivo and in vitro. Furthermore, we found that CD206+ subset of F4/80+CD11b+ macrophages expressed a higher level of mTNF-α than their CD206- counterparts while PF increased mTNF-α expression on CD206+ macrophages in vitro and in vivo. In vitro studies showed that mTNF-α+ M2 macrophages were more potent in inducing Treg differentiation and proliferation than their mTNF-α- counterparts, whereas the effects of mTNF-α+ M2 macrophages were largely reversed by separation of M2 macrophages using a transwell or TNFR2-blocking Ab in the culture. Finally, PF also promoted in vitro Treg generation induced by M2 macrophages. Thus, we demonstrated that mTNFα-TNFR2 interaction is a new mechanism responsible for Treg differentiation mediated by M2 macrophages. We provided the first evidence that PF may be used to treat lupus nephritis.
Collapse
Affiliation(s)
- Chun-Ling Liang
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Weihui Lu
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Feifei Qiu
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Dan Li
- Department of Immunology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huazhen Liu
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Fang Zheng
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Qunfang Zhang
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yuchao Chen
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Chuanjian Lu
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Bin Li
- Department of Immunology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhenhua Dai
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
18
|
de Araújo L, Costa-Pessoa JM, de Ponte MC, Oliveira-Souza M. Sodium Oxalate-Induced Acute Kidney Injury Associated With Glomerular and Tubulointerstitial Damage in Rats. Front Physiol 2020; 11:1076. [PMID: 32982795 PMCID: PMC7479828 DOI: 10.3389/fphys.2020.01076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Acute crystalline nephropathy is closely related to tubulointerstitial injury, but few studies have investigated glomerular changes in this condition. Thus, in the current study, we investigated the factors involved in glomerular and tubulointerstitial injury in an experimental model of crystalline-induced acute kidney injury (AKI). We treated male Wistar rats with a single injection of sodium oxalate (NaOx, 7 mg⋅100 g-1⋅day-1, resuspended in 0.9% NaCl solution, i.p.) or vehicle (control). After 24 h of treatment, food and water intake, urine output, body weight gain, and renal function were evaluated. Renal tissue was used for the morphological studies, quantitative PCR and protein expression studies. Our results revealed that NaOx treatment did not change metabolic or electrolyte and water intake parameters or urine output. However, the treated group exhibited tubular calcium oxalate (CaOx) crystals excretion, followed by a decline in kidney function demonstrated along with glomerular injury, which was confirmed by increased plasma creatinine and urea concentrations, increased glomerular desmin immunostaining, nephrin mRNA expression and decreased WT1 immunofluorescence. Furthermore, NaOx treatment resulted in tubulointerstitial injury, which was confirmed by tubular dilation, albuminuria, increased Kim-1 and Ki67 mRNA expression, decreased megalin and Tamm-Horsfall protein (THP) expression. Finally, the treatment induced increases in CD68 protein staining, MCP-1, IL-1β, NFkappaB, and α-SMA mRNA expression, which are consistent with proinflammatory and profibrotic signaling, respectively. In conclusion, our findings provide relevant information regarding crystalline-induced AKI, showing strong tubulointerstitial and glomerular injury with a possible loss of podocyte viability.
Collapse
Affiliation(s)
- Larissa de Araújo
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Martins Costa-Pessoa
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mariana Charleaux de Ponte
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Oliveira-Souza
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Sun J, Hao L, Shi H. Associations between the concentrations of CD68, TGF-β1, renal injury index and prognosis in glomerular diseases. Exp Ther Med 2020; 20:56. [PMID: 32952646 PMCID: PMC7485300 DOI: 10.3892/etm.2020.9184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 05/27/2020] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the association between the concentrations of CD68, TGF-β1, renal injury index and prognosis in glomerular diseases. Altogether 218 patients with glomerular diseases admitted to Weifang People's Hospital from January, 2014 to March, 2017 were used as the study group. A total of 100 healthy individuals who visited Weifang People's Hospital for a physical examination during the same time period were used as the control group. The levels of CD68 in peripheral blood obtained from the 2 groups of subjects were detected by flow cytometry, and the expression of TGF-β1 in serum was detected by enzyme-linked immunosorbent assay (ELISA). The concentrations of CD68 and TGF-β1 between the 2 groups were compared. The correlation between the concentrations of CD68, TGF-β1 and renal injury indexes in the study group was analyzed, as well as prognostic significance. The diagnostic value of CD68 and TGF-β1 in patients with glomerular disease was analyzed using a ROC curve, and the recovery of the patients was observed. The serum concentrations of CD68 and TGF-β1 in the study group were higher than those in the control group (P<0.05). The concentrations of CD68 and TGF-β1 in the study group positively correlated with the renal injury indexes, such as blood urea nitrogen (BUN), serum creatinine (SCR), uric acid (UA) and the 24-h urinary protein quantity (P<0.05). ROC curve analysis revealed that the area under the curve of CD68 and TGF-β1 as regards the diagnostic value in patients with glomerular disease was 0.808 and 0.738, respectively, while the area under the combined detection curve was 0.866. Multivariate unconditional logistic regression analysis revealed that the clinical classification and the concentrations of CD68 and TGF-β1 were independent prognostic factors in the study group. On the whole, the findings of the present study demonstrate that clinical classification, and the CD68 and TGF-β1 concentrations are independent prognostic factors for patients with glomerular disease. CD68 and TGF-β1 have certain value in the diagnosis of glomerular diseases, and may thus be used as predictors of the diagnosis and recovery of glomerular disease.
Collapse
Affiliation(s)
- Jingshu Sun
- Department of Nephrology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Lihai Hao
- Department of Nephrology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Hongbo Shi
- Department of Nephrology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The purpose of the study was to review the characteristics of renal macrophages and dendritic cells during homeostasis and disease, with a particular focus on lupus nephritis. RECENT FINDINGS Resident renal macrophages derive from embryonic sources and are long-lived and self-renewing; they are also replaced from the bone marrow with age. The unique characteristics of macrophages in each tissue are imposed by the microenvironment and reinforced by epigenetic modifications. In acute renal injury, inflammatory macrophages are rapidly recruited and then replaced by those with a wound healing/resolution phenotype. In lupus nephritis, dendritic cells infiltrate the kidneys and function to present antigen and organize tertiary lymphoid structures that amplify inflammation. In addition, both infiltrating and resident macrophages contribute to ongoing injury. These cells have a mixed inflammatory and alternatively activated phenotype that may reflect failed resolution, potentially leading to tissue fibrosis and irreversible damage. A further understanding of the renal inflammatory cells that mediate tissue injury and fibrosis should lead to new therapies to help preserve renal function in patients with lupus nephritis.
Collapse
Affiliation(s)
- Naomi I Maria
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, NY, 11030, USA
| | - Anne Davidson
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, NY, 11030, USA.
| |
Collapse
|