1
|
Antoniadi M, Lambrou D, Mylona F, Florentin L, Bili C, Stefanidis CJ, Kostaridou S. Neonatal Onset Distal Renal Tubular Acidosis: Description of Two Novel Variants on the ATP6V0A4 Gene and Review of the Literature on Associated Extrarenal Manifestations. J Pediatr Genet 2024; 13:335-344. [PMID: 39502851 PMCID: PMC11534435 DOI: 10.1055/s-0043-1772213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/07/2023] [Indexed: 11/08/2024]
Abstract
Distal renal tubular acidosis (dRTA) is an extremely rare disease that affects the distal tubule's ability to excrete proton cations, acidify urine, and maintain the acid-base balance. The clinical presentation of dRTA typically includes normal anion gap metabolic acidosis with decreased serum bicarbonate levels, hypokalemia, hypercalcemia, nephrocalcinosis, and alkaline urine. Hereditary causes of dRTA include pathogenic variants in ATP6V1B1 , ATP6V0A4 , SLC4A1 , FOXI1 , and WDR72 genes, which encode different transmembrane proteins on the apical surface of type A intercalated cells in the distal tubule. Variants in these genes lead to various defects in the function of the encoded proteins and can also account for extrarenal manifestations of dRTA due to the expression of these proteins in other organs, such as the stria vascularis of the inner ear. However, the literature on extrarenal manifestations, associated renal complications of hereditary dRTA, and appropriate investigations, and follow-up for patients with dRTA is scarce. In this article, we present a challenging case of neonatal-onset dRTA and contribute two novel variants of the ATP6V0A4 gene and a novel phenotype associated with a pathogenic variant on ATP6V0A4 to the scientific community. We also review the existing literature on hereditary causes of dRTA, with emphasis on associated renal and extrarenal complications.
Collapse
Affiliation(s)
- Marita Antoniadi
- Pediatric Department, Penteli Children's Hospital, Athens, Greece
| | - Dimitra Lambrou
- Pediatric Department, Penteli Children's Hospital, Athens, Greece
| | - Fani Mylona
- Pediatric Department, Penteli Children's Hospital, Athens, Greece
| | - Lina Florentin
- AlfaLab Genetics and Genomics Center Athens, Athens, Greece
| | | | | | | |
Collapse
|
2
|
Boyer O, Ould Rabah M, Preka E. Recent Developments in the Treatment of Pediatric Distal Renal Tubular Acidosis. Paediatr Drugs 2024; 26:649-657. [PMID: 39325135 DOI: 10.1007/s40272-024-00651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
Distal renal tubular acidosis (dRTA) is characterized by a primary defect in proton secretion by α-intercalated cells of the collecting duct, leading to impaired urine acidification and resulting in metabolic acidosis, hypokalemia, and hypercalciuria. Inherited forms of dRTA are currently associated with variants in five genes (SLC4A1, ATP6V1B1, ATP6V0A4, FOXI1, and WDR72), each being associated with specific extra-renal manifestations. Acquired forms can result from autoimmune diseases or drug side effects. Classical complications include nephrolithiasis, nephrocalcinosis, reduced glomerular filtration rate (GFR), bone demineralization, and growth failure. Treatment focuses on correcting the acid-base imbalance through alkali supplementation (potassium, sodium, or magnesium bicarbonate or citrate) to reduce renal disease progression and promote normal growth and mineralization. Traditional treatments (alkali and potassium supplementation) often suffer from poor adherence due to frequent day and night administrations, gastrointestinal discomfort, and unpleasant taste. A novel investigational drug, ADV7103, which contains potassium citrate and potassium bicarbonate in an extended-release formulation, has recently been approved by the European Medicine Agency (EMA) for dRTA. Recent studies support its use as a first-line treatment, given its efficacy and safety profile.
Collapse
Affiliation(s)
- Olivia Boyer
- Néphrologie Pédiatrique, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et l'Adulte (MARHEA), Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (APHP), Institut Imagine, Laboratory of Hereditary Kidney Diseases, INSERM U1163, Université Paris Cité, 149 Rue de Sèvres, 75015, Paris, France.
| | - Mélissa Ould Rabah
- Explorations Fonctionnelles, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Evgenia Preka
- Néphrologie Pédiatrique, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et l'Adulte (MARHEA), Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (APHP), Institut Imagine, Laboratory of Hereditary Kidney Diseases, INSERM U1163, Université Paris Cité, 149 Rue de Sèvres, 75015, Paris, France
- INSERM U970, PARCC, Paris Translational Research Centre for Organ, Transplantation, Paris, France
| |
Collapse
|
3
|
Wu Y, Ding J. Severe Hypokalemia and Poor Appetite in a 20-Month-Old Male. Clin Pediatr (Phila) 2024:99228241248975. [PMID: 38680022 DOI: 10.1177/00099228241248975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Affiliation(s)
- Yuping Wu
- Children's Medical Ward I,Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Juanjuan Ding
- Children's Medical Ward I,Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
Gefen AM, Zaritsky JJ. Review of childhood genetic nephrolithiasis and nephrocalcinosis. Front Genet 2024; 15:1381174. [PMID: 38606357 PMCID: PMC11007102 DOI: 10.3389/fgene.2024.1381174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Nephrolithiasis (NL) is a common condition worldwide. The incidence of NL and nephrocalcinosis (NC) has been increasing, along with their associated morbidity and economic burden. The etiology of NL and NC is multifactorial and includes both environmental components and genetic components, with multiple studies showing high heritability. Causative gene variants have been detected in up to 32% of children with NL and NC. Children with NL and NC are genotypically heterogenous, but often phenotypically relatively homogenous, and there are subsequently little data on the predictors of genetic childhood NL and NC. Most genetic diseases associated with NL and NC are secondary to hypercalciuria, including those secondary to hypercalcemia, renal phosphate wasting, renal magnesium wasting, distal renal tubular acidosis (RTA), proximal tubulopathies, mixed or variable tubulopathies, Bartter syndrome, hyperaldosteronism and pseudohyperaldosteronism, and hyperparathyroidism and hypoparathyroidism. The remaining minority of genetic diseases associated with NL and NC are secondary to hyperoxaluria, cystinuria, hyperuricosuria, xanthinuria, other metabolic disorders, and multifactorial etiologies. Genome-wide association studies (GWAS) in adults have identified multiple polygenic traits associated with NL and NC, often involving genes that are involved in calcium, phosphorus, magnesium, and vitamin D homeostasis. Compared to adults, there is a relative paucity of studies in children with NL and NC. This review aims to focus on the genetic component of NL and NC in children.
Collapse
Affiliation(s)
- Ashley M. Gefen
- Phoenix Children’s Hospital, Department of Pediatrics, Division of Nephrology, Phoenix, AZ, United States
| | | |
Collapse
|
5
|
Zhong J, Dong J, Ruan W, Duan X. Potential Theranostic Roles of SLC4 Molecules in Human Diseases. Int J Mol Sci 2023; 24:15166. [PMID: 37894847 PMCID: PMC10606849 DOI: 10.3390/ijms242015166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The solute carrier family 4 (SLC4) is an important protein responsible for the transport of various ions across the cell membrane and mediating diverse physiological functions, such as the ion transporting function, protein-to-protein interactions, and molecular transduction. The deficiencies in SLC4 molecules may cause multisystem disease involving, particularly, the respiratory system, digestive, urinary, endocrine, hematopoietic, and central nervous systems. Currently, there are no effective strategies to treat these diseases. SLC4 proteins are also found to contribute to tumorigenesis and development, and some of them are regarded as therapeutic targets in quite a few clinical trials. This indicates that SLC4 proteins have potential clinical prospects. In view of their functional characteristics, there is a critical need to review the specific functions of bicarbonate transporters, their related diseases, and the involved pathological mechanisms. We summarize the diseases caused by the mutations in SLC4 family genes and briefly introduce the clinical manifestations of these diseases as well as the current treatment strategies. Additionally, we illustrate their roles in terms of the physiology and pathogenesis that has been currently researched, which might be the future therapeutic and diagnostic targets of diseases and a new direction for drug research and development.
Collapse
Affiliation(s)
| | | | | | - Xiaohong Duan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (J.Z.); (J.D.); (W.R.)
| |
Collapse
|
6
|
Guo W, Ji P, Xie Y. Genetic Diagnosis and Treatment of Inherited Renal Tubular Acidosis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:371-383. [PMID: 37901710 PMCID: PMC10601937 DOI: 10.1159/000531556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/12/2023] [Indexed: 10/31/2023]
Abstract
Background Renal tubular acidosis (RTA) is caused by various disruptions to the secretion of H+ by distal renal tubules and/or dysfunctional reabsorption of HCO3- by proximal renal tubules, which causes renal acidification dysfunction, ultimately leading to a clinical syndrome characterized by hyperchloremic metabolic acidosis with a normal anion gap. With the development of molecular genetics and gene sequencing technology, inherited RTA has also attracted attention, and an increasing number of RTA-related pathogenic genes have been discovered and reported. Summary This paper focuses on the latest progress in the research of inherited RTA and systematically reviews the pathogenic genes, protein functions, clinical manifestations, internal relationship between genotypes and clinical phenotypes, diagnostic clues, differential diagnosis, and treatment strategies associated with inherited RTA. This paper aims to deepen the understanding of inherited RTA and reduce the missed diagnosis and misdiagnosis of RTA. Key Messages This review systematically summarizes the pathogenic genes, pathophysiological mechanisms, differential diagnosis, and treatment of different types of inherited RTA, which has good clinical value for guiding the diagnosis and treatment of inherited RTA.
Collapse
Affiliation(s)
- Wenkai Guo
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Pengcheng Ji
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yuansheng Xie
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
7
|
Hamada S, Takata T, Yamada K, Yamamoto M, Mae Y, Iyama T, Sugihara T, Takata M, Isomoto H. Renal tubular acidosis without interstitial nephritis in Sjögren's syndrome: a case report and review of the literature. BMC Nephrol 2023; 24:237. [PMID: 37582721 PMCID: PMC10426178 DOI: 10.1186/s12882-023-03290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Renal tubular acidosis is the principal clinical feature associated with tubulointerstitial nephritis in patients with primary Sjögren's syndrome. Renal tubular dysfunction due to interstitial nephritis has been considered the underlying pathophysiology connecting renal tubular acidosis and primary Sjögren's syndrome. However, the detailed mechanisms underlying the pathophysiology of renal tubular acidosis in primary Sjögren's syndrome is not fully understood. CASE PRESENTATION A 30-year-old woman was admitted with complaints of weakness in the extremities. The patient was hospitalized thirteen years earlier for similar issues and was diagnosed with hypokalemic paralysis due to distal renal tubular acidosis with primary Sjögren's syndrome. This diagnosis was based on a positive Schirmer's test. Besides, anti-Sjögren's syndrome-related antigen A was also detected. Laboratory tests indicated distal RTA; however, a renal biopsy showed no obvious interstitial nephritis. Laboratory tests conducted during the second admission indicated distal renal tubular acidosis. Therefore, a renal biopsy was performed again, which revealed interstitial nephritis. Histological analysis of acid-base transporters revealed the absence of vacuolar type H+-ATPases in the collecting duct. The vacuolar type H+-ATPase was also absent in the past renal biopsy, suggesting that the alteration in acid-base transporters is independent of interstitial nephritis. CONCLUSIONS This case study demonstrates that vacuolar-type H+-ATPases are associated with distal renal tubular acidosis, and distal renal tubular acidosis precedes interstitial nephritis in patients with primary Sjögren's syndrome.
Collapse
Affiliation(s)
- Shintaro Hamada
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, 683-8504, Japan
| | - Tomoaki Takata
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, 683-8504, Japan.
| | - Kentaro Yamada
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, 683-8504, Japan
| | - Marie Yamamoto
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, 683-8504, Japan
| | - Yukari Mae
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, 683-8504, Japan
| | - Takuji Iyama
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, 683-8504, Japan
| | - Takaaki Sugihara
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, 683-8504, Japan
| | - Miki Takata
- Department of Respiratory Medicine and Rheumatology Graduate School of Medicine, Tottori University Hospital, Yonago, Tottori, 683-8504, Japan
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, 683-8504, Japan
| |
Collapse
|
8
|
Wagner CA, Unwin R, Lopez-Garcia SC, Kleta R, Bockenhauer D, Walsh S. The pathophysiology of distal renal tubular acidosis. Nat Rev Nephrol 2023; 19:384-400. [PMID: 37016093 DOI: 10.1038/s41581-023-00699-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/06/2023]
Abstract
The kidneys have a central role in the control of acid-base homeostasis owing to bicarbonate reabsorption and production of ammonia and ammonium in the proximal tubule and active acid secretion along the collecting duct. Impaired acid excretion by the collecting duct system causes distal renal tubular acidosis (dRTA), which is characterized by the failure to acidify urine below pH 5.5. This defect originates from reduced function of acid-secretory type A intercalated cells. Inherited forms of dRTA are caused by variants in SLC4A1, ATP6V1B1, ATP6V0A4, FOXI1, WDR72 and probably in other genes that are yet to be discovered. Inheritance of dRTA follows autosomal-dominant and -recessive patterns. Acquired forms of dRTA are caused by various types of autoimmune diseases or adverse effects of some drugs. Incomplete dRTA is frequently found in patients with and without kidney stone disease. These patients fail to appropriately acidify their urine when challenged, suggesting that incomplete dRTA may represent an intermediate state in the spectrum of the ability to excrete acids. Unrecognized or insufficiently treated dRTA can cause rickets and failure to thrive in children, osteomalacia in adults, nephrolithiasis and nephrocalcinosis. Electrolyte disorders are also often present and poorly controlled dRTA can increase the risk of developing chronic kidney disease.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK.
| | - Robert Unwin
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| | - Sergio C Lopez-Garcia
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Robert Kleta
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| | - Detlef Bockenhauer
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Stephen Walsh
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| |
Collapse
|
9
|
Pathophysiologic approach in genetic hypokalemia: An update. ANNALES D'ENDOCRINOLOGIE 2023; 84:298-307. [PMID: 36639120 DOI: 10.1016/j.ando.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 01/12/2023]
Abstract
The pathophysiology of genetic hypokalemia is close to that of non-genetic hypokalemia. New molecular pathways physiologically involved in renal and extrarenal potassium homeostasis have been highlighted. A physiological approach to diagnosis is illustrated here, with 6 cases. Mechanisms generating and sustaining of hypokalemia are discussed. After excluding acute shift of extracellular potassium to the intracellular compartment, related to hypokalemic periodic paralysis, inappropriate kaliuresis (>40mmol/24h) concomitant to hypokalemia indicates renal potassium wasting. Clinical analysis distinguishes hypertension-associated hypokalemia, due to hypermineralocorticism or related disorders. Genetic hypertensive hypokalemia is rare. It includes familial hyperaldosteronism, Liddle syndrome, apparent mineralocorticoid excess,11beta hydroxylase deficiency and Geller syndrome. In case of normo- or hypo-tensive hypokalemia, two etiologies are to be considered: chloride depletion or salt-wasting tubulopathy. Diarrhea chlorea is a rare disease responsible for intestinal chloride depletion. Due to the severity of hypokalemic metabolic alkalosis, this disease can be misdiagnosed as pseudo-Bartter syndrome. Gitelman syndrome is the most frequent cause of genetic hypokalemia. It typically associates renal sodium and potassium wasting, hypomagnesemia, conserved chloride excretion (>40mmol/24h), and low-range calcium excretion (urinary Ca/creatinine ratio<0.20mmol/mmol). Systematic analysis of hydroelectrolytic disorder and dynamic hormonal investigation optimizes indications for and orientation of genotyping of hereditary salt-losing tubulopathy.
Collapse
|
10
|
Calvó P, Bauza JL, Julià F, Guimerá J, Pieras EC, Costa-Bauzá A, Grases F. Characterization of deposits on double J stents. CR CHIM 2022. [DOI: 10.5802/crchim.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Jennings ML. Cell Physiology and Molecular Mechanism of Anion Transport by Erythrocyte Band 3/AE1. Am J Physiol Cell Physiol 2021; 321:C1028-C1059. [PMID: 34669510 PMCID: PMC8714990 DOI: 10.1152/ajpcell.00275.2021] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The major transmembrane protein of the red blood cell, known as band 3, AE1, and SLC4A1, has two main functions: 1) catalysis of Cl-/HCO3- exchange, one of the steps in CO2 excretion; 2) anchoring the membrane skeleton. This review summarizes the 150 year history of research on red cell anion transport and band 3 as an experimental system for studying membrane protein structure and ion transport mechanisms. Important early findings were that red cell Cl- transport is a tightly coupled 1:1 exchange and band 3 is labeled by stilbenesulfonate derivatives that inhibit anion transport. Biochemical studies showed that the protein is dimeric or tetrameric (paired dimers) and that there is one stilbenedisulfonate binding site per subunit of the dimer. Transport kinetics and inhibitor characteristics supported the idea that the transporter acts by an alternating access mechanism with intrinsic asymmetry. The sequence of band 3 cDNA provided a framework for detailed study of protein topology and amino acid residues important for transport. The identification of genetic variants produced insights into the roles of band 3 in red cell abnormalities and distal renal tubular acidosis. The publication of the membrane domain crystal structure made it possible to propose concrete molecular models of transport. Future research directions include improving our understanding of the transport mechanism at the molecular level and of the integrative relationships among band 3, hemoglobin, carbonic anhydrase, and gradients (both transmembrane and subcellular) of HCO3-, Cl-, O2, CO2, pH, and NO metabolites during pulmonary and systemic capillary gas exchange.
Collapse
Affiliation(s)
- Michael L Jennings
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
12
|
Li W, Zhao Y, Wang D, Ding Z, Li C, Wang B, Xue X, Ma J, Deng Y, Liu Q, Zhang G, Zhang Y, Wang K, Yuan B. Transcriptome research identifies four hub genes related to primary myelofibrosis: a holistic research by weighted gene co-expression network analysis. Aging (Albany NY) 2021; 13:23284-23307. [PMID: 34633991 PMCID: PMC8544335 DOI: 10.18632/aging.203619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 09/29/2021] [Indexed: 01/14/2023]
Abstract
Objectives: This study aimed to identify specific diagnostic as well as predictive targets of primary myelofibrosis (PMF). Methods: The gene expression profiles of GSE26049 were obtained from Gene Expression Omnibus (GEO) dataset, WGCNA was constructed to identify the most related module of PMF. Subsequently, Gene Ontology (GO), Kyoto Encyclopedia Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA) and Protein-Protein interaction (PPI) network were conducted to fully understand the detailed information of the interested green module. Machine learning, Principal component analysis (PCA), and expression pattern analysis including immunohistochemistry and immunofluorescence of genes and proteins were performed to validate the reliability of these hub genes. Results: Green module was strongly correlated with PMF disease after WGCNA analysis. 20 genes in green module were identified as hub genes responsible for the progression of PMF. GO, KEGG revealed that these hub genes were primarily enriched in erythrocyte differentiation, transcription factor binding, hemoglobin complex, transcription factor complex and cell cycle, etc. Among them, EPB42, CALR, SLC4A1 and MPL had the most correlations with PMF. Machine learning, Principal component analysis (PCA), and expression pattern analysis proved the results in this study. Conclusions: EPB42, CALR, SLC4A1 and MPL were significantly highly expressed in PMF samples. These four genes may be considered as candidate prognostic biomarkers and potential therapeutic targets for early stage of PMF. The effects are worth expected whether in the diagnosis at early stage or as therapeutic target.
Collapse
Affiliation(s)
- Weihang Li
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Yingjing Zhao
- Department of Intensive Care Unit, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu Province, China
| | - Dong Wang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Ziyi Ding
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Chengfei Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Bo Wang
- Department of Spine Surgery, Daxing Hospital, Xi'an 710016, Shaanxi, China
| | - Xiong Xue
- Department of Spine Surgery, Daxing Hospital, Xi'an 710016, Shaanxi, China
| | - Jun Ma
- Department of Spine Surgery, Daxing Hospital, Xi'an 710016, Shaanxi, China
| | - Yajun Deng
- Department of Spine Surgery, Daxing Hospital, Xi'an 710016, Shaanxi, China
| | - Quancheng Liu
- Department of Spine Surgery, Daxing Hospital, Xi'an 710016, Shaanxi, China
| | - Guohua Zhang
- Department of Spine Surgery, Daxing Hospital, Xi'an 710016, Shaanxi, China
| | - Ying Zhang
- Department of Spine Surgery, Daxing Hospital, Xi'an 710016, Shaanxi, China
| | - Kai Wang
- Department of Hematology, Daxing Hospital, Xi'an 710016, Shaanxi, China
| | - Bin Yuan
- Department of Spine Surgery, Daxing Hospital, Xi'an 710016, Shaanxi, China
| |
Collapse
|
13
|
Basok AB, Haviv YS, Rogachev B, Vorobiov M. Renal Tubular Acidosis Type I with Prominent Hypokalemia and Nephrolithiasis as a Presentation of Sjögren's/Systemic Lupus Erythematosus Disease. Case Rep Nephrol Dial 2021; 11:247-253. [PMID: 34595212 PMCID: PMC8436655 DOI: 10.1159/000515050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/29/2021] [Indexed: 01/19/2023] Open
Abstract
Female patient, suffering from nephrolithiasis, at the age of 32 was admitted for renal colic caused by a stone obstructing UP junction with left hydronephrosis. Nephrostomy was placed, resulting in brisk diuresis. Severe metabolic acidosis with normal anion gap and urine pH of 6.5 was noted. Potassium level dropped to extremely low level (1.6 mEq/L), causing muscle paralysis and respiratory failure, necessitating mechanical ventilation. The patient was treated by potassium chloride infusion, followed by correction of severe metabolic acidosis by sodium bicarbonate. Diagnosis of distal type renal tubular acidosis type I (dRTA) was made based on normal anion gap metabolic acidosis, alkaline urine, hypokalemia, and nephrolithiasis. Five years later, the patient presented with severe hypoxia, lung opacities, and bronchiolitis obliterans organizing pneumonia which was confirmed by bronchoscopy with lung tissue biopsy. Concurrently, the patient presented with dry mouth, pruritus, skin rash with hypocomplementemia, elevated anti-DNA, anti-Ro, and anti-SmAb. Diagnosis of overlap Sjögren's/systemic lupus erythematosus disease was done and treatment by hydroxychloroquine, prednisone, and azathioprine was started. Possible presence of Sjögren's syndrome should be considered in adult patients with unexplained dRTA.
Collapse
Affiliation(s)
- Anna B Basok
- Department of Nephrology, Soroka Medical Center, Ben Gurion University, Beer Sheva, Israel
| | - Yosef-S Haviv
- Department of Nephrology, Soroka Medical Center, Ben Gurion University, Beer Sheva, Israel
| | - Boris Rogachev
- Department of Nephrology, Soroka Medical Center, Ben Gurion University, Beer Sheva, Israel
| | - Marina Vorobiov
- Department of Nephrology, Soroka Medical Center, Ben Gurion University, Beer Sheva, Israel
| |
Collapse
|
14
|
Kidney function in patients with primary distal renal tubular acidosis. Pediatr Nephrol 2021; 36:1931-1935. [PMID: 33834289 DOI: 10.1007/s00467-021-05068-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/26/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Recent reports indicate that chronic reduction of glomerular filtration rate (GFR) is common in patients with distal renal tubular acidosis (DRTA). Factors responsible for decreased GFR need clarification. METHODS We reviewed records of 25 patients with genetically confirmed DRTA included in the RenalTube database. Patients < 18 years at diagnosis and having at least one annual follow-up were selected and classified in two groups according to GFR ≥ 90 (normal GFR) or < 90 mL/min/1.73 m2 (low GFR) after median follow-up of 8.8 years. RESULTS Eighteen and seven patients had normal and low GFR (X ± SEM, 121.16 ± 28.87 and 71.80 ± 10.60 mL/min/1.73 m2, respectively, p < 0.01). At diagnosis, these 2 subgroups did not differ in sex, age, underlying mutated gene, GFR, height SDS, or percentage of ultrasound nephrocalcinosis. Serum creatinine (SCr) was different but likely due to median ages of presentation being 0.6 and 4.0 in normal and low GFR patients, respectively. On the last recorded visit, no differences between both groups were found in serum bicarbonate, serum potassium, or alkali dosage. Height SDS of patients with normal GFR was - 0.15 ± 0.47 whereas it was - 1.06 ± 0.60 in the low GFR group (p = 0.27). Interestingly, 23% of the whole group had low birth weight (LBW; < 2500 g), equating to 20% and 29% in the normal and low GFR patients, respectively (p = 0.65). CONCLUSIONS Our findings confirm the risk of kidney function reduction in patients with DRTA of pediatric age onset, suggesting that low GFR is related with less favorable growth outcome and discloses the high frequency of LBW in primary DRTA, a hitherto unrecognized feature.
Collapse
|
15
|
Gómez-Conde S, García-Castaño A, Aguirre M, Herrero M, Gondra L, Castaño L, Madariaga L. Hereditary distal renal tubular acidosis: Genotypic correlation, evolution to long term, and new therapeutic perspectives. Nefrologia 2021; 41:383-390. [PMID: 36165107 DOI: 10.1016/j.nefroe.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/14/2020] [Indexed: 06/16/2023] Open
Abstract
Distal renal tubular acidosis (DRTA) is a rare disease resulting from a failure in the normal urine acidification process at the distal tubule and collecting duct level. It is characterised by persistent hyperchloremic metabolic acidosis, with a normal anion gap in plasma, in the presence of high urinary pH and low urinary excretion of ammonium. To date, 5 genes whose mutations give rise to primary DRTA have been described. Alterations in the ATP6V1B1 and ATP6V0A4 genes are inherited recessively and are associated with forms of early onset and, in many cases, with neurosensorial deafness. Pathogenic variants in the SLC4A1 gene are habitually inherited dominantly and give rise to milder symptoms, with a later diagnosis and milder electrolytic alterations. Nonetheless, evolution to nephrocalcinosis and lithiasis, and the development of chronic kidney disease in the medium to long term has been described in a similar manner in all 3 groups. Lastly, recessive forms of DTRA associated to mutations in the FOXI1 and WDR72 genes have also been described. The clinical management of DTRA is based on bicarbonate or citrate salts, which do not succeed in correcting all cases of the metabolic alterations described and, thus, the consequences associated with them. Recently, a new treatment based on slow-release bicarbonate and citrate salts has received the designation of orphan drug in Europe for the treatment of DTRA.
Collapse
Affiliation(s)
- Sara Gómez-Conde
- Instituto de Investigación Sanitaria Biocruces Bizkaia, Barakaldo, Bizkaia, Spain
| | - Alejandro García-Castaño
- Instituto de Investigación Sanitaria Biocruces Bizkaia, Barakaldo, Bizkaia, Spain; CIBERDEM, CIBERER, Endo-ERN
| | - Mireia Aguirre
- Instituto de Investigación Sanitaria Biocruces Bizkaia, Barakaldo, Bizkaia, Spain; Sección de Nefrología Pediátrica, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain
| | - María Herrero
- Instituto de Investigación Sanitaria Biocruces Bizkaia, Barakaldo, Bizkaia, Spain; Sección de Nefrología Pediátrica, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain
| | - Leire Gondra
- Instituto de Investigación Sanitaria Biocruces Bizkaia, Barakaldo, Bizkaia, Spain; Sección de Nefrología Pediátrica, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain; Departamento de Pediatría, Universidad del País Vasco UPV/EHU, Barakaldo, Bizkaia, Spain
| | - Luis Castaño
- Instituto de Investigación Sanitaria Biocruces Bizkaia, Barakaldo, Bizkaia, Spain; CIBERDEM, CIBERER, Endo-ERN; Sección de Endocrinología Pediátrica, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain; Departamento de Pediatría, Universidad del País Vasco UPV/EHU, Barakaldo, Bizkaia, Spain
| | - Leire Madariaga
- Instituto de Investigación Sanitaria Biocruces Bizkaia, Barakaldo, Bizkaia, Spain; CIBERDEM, CIBERER, Endo-ERN; Sección de Nefrología Pediátrica, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain; Departamento de Pediatría, Universidad del País Vasco UPV/EHU, Barakaldo, Bizkaia, Spain.
| |
Collapse
|
16
|
D'Ambrosio V, Azzarà A, Sangiorgi E, Gurrieri F, Hess B, Gambaro G, Ferraro PM. Results of a Gene Panel Approach in a Cohort of Patients with Incomplete Distal Renal Tubular Acidosis and Nephrolithiasis. Kidney Blood Press Res 2021; 46:469-474. [PMID: 34107482 DOI: 10.1159/000516389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/07/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Distal renal tubular acidosis (dRTA) is characterized by an impairment of urinary acidification resulting in metabolic acidosis, hypokalemia, and inappropriately elevated urine pH. If not treated, this chronic condition eventually leads to nephrocalcinosis, nephrolithiasis, impaired renal function, and bone demineralization. dRTA is a well-defined entity that can be diagnosed by genetic testing of 5 genes known to be disease-causative. Incomplete dRTA (idRTA) is defined as impaired urinary acidification that does not lead to overt metabolic acidosis and therefore can be diagnosed if patients fail to adequately acidify urine after an ammonium chloride (NH4Cl) challenge or furosemide and fludrocortisone test. It is still uncertain whether idRTA represents a distinct entity or is part of the dRTA spectrum and whether it is caused by mutations in the same genes of overt dRTA. METHODS In this cross-sectional study, we investigated a group of 22 stone formers whose clinical features were suspicious of idRTA. They underwent an NH4Cl challenge and were found to have impaired urinary acidification ability. These patients were then analyzed by genetic testing with sequencing of 5 genes: SLC4A1, ATP6V1B1, ATP6V0A4, FOXI1, and WDR72. RESULTS Two unrelated individuals were found to have two different variants in SLC4A1 that had never been described before. CONCLUSIONS Our results suggest the involvement of other genes or nongenetic tubular dysfunction in the pathogenesis of idRTA in stone formers. However, genetic testing may represent a cost-effective tool to recognize, treat, and prevent complications in these patients.
Collapse
Affiliation(s)
- Viola D'Ambrosio
- U.O.S. Terapia Conservativa della Malattia Renale Cronica, U.O.C. Nefrologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessia Azzarà
- Istituto di Medicina Genomica, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eugenio Sangiorgi
- Università Cattolica del Sacro Cuore, Rome, Italy.,Istituto di Medicina Genomica, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fiorella Gurrieri
- Unità di genetica Medica e Funzionale, Università Campus Bio-Medico, Rome, Italy
| | - Bernhard Hess
- Internal Medicine and Nephrology, Klinik Im Park, Zurich, and University of Zurich, Zurich, Switzerland
| | - Giovanni Gambaro
- Renal Unit, Division of Nephrology and Dialysis, Department of Medicine, University of Verona, Verona, Italy
| | - Pietro Manuel Ferraro
- U.O.S. Terapia Conservativa della Malattia Renale Cronica, U.O.C. Nefrologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
17
|
Leventoğlu E, Fidan K, Girgin C, Yazol M, Varol Ş, Söylemezoğlu O. Endolymphatic sac enlargement in an infant with metabolic acidosis. J Nephrol 2021; 35:333-335. [PMID: 34086198 DOI: 10.1007/s40620-021-01085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Emre Leventoğlu
- Faculty of Medicine, Department of Pediatric Nephrology, Gazi University, Ankara, Turkey.
| | - Kibriya Fidan
- Faculty of Medicine, Department of Pediatric Nephrology, Gazi University, Ankara, Turkey
| | - Cansu Girgin
- Faculty of Medicine, Nephrogenetics Laboratory, Gazi University, Ankara, Turkey
| | - Merve Yazol
- Faculty of Medicine, Department of Radiology, Gazi University, Ankara, Turkey
| | - Şeyda Varol
- Faculty of Medicine, Department of Radiology, Gazi University, Ankara, Turkey
| | - Oğuz Söylemezoğlu
- Faculty of Medicine, Department of Pediatric Nephrology, Gazi University, Ankara, Turkey
| |
Collapse
|
18
|
Giglio S, Montini G, Trepiccione F, Gambaro G, Emma F. Distal renal tubular acidosis: a systematic approach from diagnosis to treatment. J Nephrol 2021; 34:2073-2083. [PMID: 33770395 PMCID: PMC8610947 DOI: 10.1007/s40620-021-01032-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/16/2021] [Indexed: 12/03/2022]
Abstract
Renal tubular acidosis (RTA) comprises a group of disorders in which excretion of hydrogen ions or reabsorption of filtered HCO3 is impaired, leading to chronic metabolic acidosis with normal anion gap. In the current review, the focus is placed on the most common type of RTA, Type 1 RTA or Distal RTA (dRTA), which is a rare chronic genetic disorder characterized by an inability of the distal nephron to secrete hydrogen ions in the presence of metabolic acidosis. Over the years, knowledge of the molecular mechanisms behind acid secretion has improved, thereby greatly helping the diagnosis of dRTA. The primary or inherited form of dRTA is mostly diagnosed in infancy, childhood, or young adulthood, while the acquired secondary form, as a consequence of other disorders or medications, can happen at any age, although it is more commonly seen in adults. dRTA is not as “benign” as previously assumed, and can have several, highly variable long-term consequences. The present review indeed reports and summarizes both clinical symptoms and diagnosis, long-term outcomes, genetic inheritance, epidemiology and current treatment options, with the aim of shedding more light onto this rare disorder. Being a chronic condition, dRTA also deserves attention in the transition between pediatric and adult nephrology care, and as a rare disease it has a place in the European and Italian rare nephrological diseases network.
Collapse
Affiliation(s)
- Sabrina Giglio
- Medical Genetics Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.
| | - Giovanni Montini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Nephrology, Dialysis and PediatricTransplant Unit, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy.,Biogem Research Institute Ariano Irpino, Ariano Irpino, Italy
| | - Giovanni Gambaro
- Nephrology Department of Medicine, University of Verona, Verona, Italy
| | - Francesco Emma
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
19
|
Zhang L, Xu B, Niu Y, Wang Y, Tang H. Familial distal renal tubular acidosis. J Int Med Res 2021; 49:3000605211000533. [PMID: 33726529 PMCID: PMC7975576 DOI: 10.1177/03000605211000533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We report the case of a family in which two sisters have distal renal tubular
acidosis (dRTA). Familial dRTA is a rare disorder, with both autosomal dominant
and recessive transmission. This is a report of familial dRTA from China.
Collapse
Affiliation(s)
- Lihong Zhang
- Department of Pediatrics, Baoding No. 1 Central Hospital, Baoding 071000, China
| | - Bei Xu
- Department of Pediatrics, Baoding No. 1 Central Hospital, Baoding 071000, China
| | - Ya Niu
- Department of Pediatrics, Baoding No. 1 Central Hospital, Baoding 071000, China
| | - Yajuan Wang
- Department of Pediatrics, Baoding No. 1 Central Hospital, Baoding 071000, China
| | - Hui Tang
- Department of Pediatrics, Baoding No. 1 Central Hospital, Baoding 071000, China
| |
Collapse
|
20
|
Palmer BF, Kelepouris E, Clegg DJ. Renal Tubular Acidosis and Management Strategies: A Narrative Review. Adv Ther 2021; 38:949-968. [PMID: 33367987 PMCID: PMC7889554 DOI: 10.1007/s12325-020-01587-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/26/2020] [Indexed: 12/29/2022]
Abstract
Renal tubular acidosis (RTA) occurs when the kidneys are unable to maintain normal acid−base homeostasis because of tubular defects in acid excretion or bicarbonate ion reabsorption. Using illustrative clinical cases, this review describes the main types of RTA observed in clinical practice and provides an overview of their diagnosis and treatment. The three major forms of RTA are distal RTA (type 1; characterized by impaired acid excretion), proximal RTA (type 2; caused by defects in reabsorption of filtered bicarbonate), and hyperkalemic RTA (type 4; caused by abnormal excretion of acid and potassium in the collecting duct). Type 3 RTA is a rare form of the disease with features of both distal and proximal RTA. Accurate diagnosis of RTA plays an important role in optimal patient management. The diagnosis of distal versus proximal RTA involves assessment of urinary acid and bicarbonate secretion, while in hyperkalemic RTA, selective aldosterone deficiency or resistance to its effects is confirmed after exclusion of other causes of hyperkalemia. Treatment options include alkali therapy in patients with distal or proximal RTA and lowering of serum potassium concentrations through dietary modification and potential new pharmacotherapies in patients with hyperkalemic RTA including newer potassium binders.
Collapse
|
21
|
Santos-Pereira C, Rodrigues LR, Côrte-Real M. Emerging insights on the role of V-ATPase in human diseases: Therapeutic challenges and opportunities. Med Res Rev 2021; 41:1927-1964. [PMID: 33483985 DOI: 10.1002/med.21782] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/05/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
The control of the intracellular pH is vital for the survival of all organisms. Membrane transporters, both at the plasma and intracellular membranes, are key players in maintaining a finely tuned pH balance between intra- and extracellular spaces, and therefore in cellular homeostasis. V-ATPase is a housekeeping ATP-driven proton pump highly conserved among prokaryotes and eukaryotes. This proton pump, which exhibits a complex multisubunit structure based on cell type-specific isoforms, is essential for pH regulation and for a multitude of ubiquitous and specialized functions. Thus, it is not surprising that V-ATPase aberrant overexpression, mislocalization, and mutations in V-ATPase subunit-encoding genes have been associated with several human diseases. However, the ubiquitous expression of this transporter and the high toxicity driven by its off-target inhibition, renders V-ATPase-directed therapies very challenging and increases the need for selective strategies. Here we review emerging evidence linking V-ATPase and both inherited and acquired human diseases, explore the therapeutic challenges and opportunities envisaged from recent data, and advance future research avenues. We highlight the importance of V-ATPases with unique subunit isoform molecular signatures and disease-associated isoforms to design selective V-ATPase-directed therapies. We also discuss the rational design of drug development pipelines and cutting-edge methodological approaches toward V-ATPase-centered drug discovery. Diseases like cancer, osteoporosis, and even fungal infections can benefit from V-ATPase-directed therapies.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal.,Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Lígia R Rodrigues
- Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| |
Collapse
|
22
|
El Khoury LY, Fu S, Hlady RA, Wagner RT, Wang L, Eckel-Passow JE, Castle EP, Stanton ML, Thompson RH, Parker AS, Ho TH, Robertson KD. Identification of DNA methylation signatures associated with poor outcome in lower-risk Stage, Size, Grade and Necrosis (SSIGN) score clear cell renal cell cancer. Clin Epigenetics 2021; 13:12. [PMID: 33461589 PMCID: PMC7814746 DOI: 10.1186/s13148-020-00998-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Despite using prognostic algorithms and standard surveillance guidelines, 17% of patients initially diagnosed with low risk clear cell renal cell carcinoma (ccRCC) ultimately relapse and die of recurrent disease, indicating additional molecular parameters are needed for improved prognosis. RESULTS To address the gap in ccRCC prognostication in the lower risk population, we performed a genome-wide analysis for methylation signatures capable of distinguishing recurrent and non-recurrent ccRCCs within the subgroup classified as 'low risk' by the Mayo Clinic Stage, Size, Grade, and Necrosis score (SSIGN 0-3). This approach revealed that recurrent patients have globally hypermethylated tumors and differ in methylation significantly at 5929 CpGs. Differentially methylated CpGs (DMCpGs) were enriched in regulatory regions and genes modulating cell growth and invasion. A subset of DMCpGs stratified low SSIGN groups into high and low risk of recurrence in independent data sets, indicating that DNA methylation enhances the prognostic power of the SSIGN score. CONCLUSIONS This study reports a global DNA hypermethylation in tumors of recurrent ccRCC patients. Furthermore, DMCpGs were capable of discriminating between aggressive and less aggressive tumors, in addition to SSIGN score. Therefore, DNA methylation presents itself as a potentially strong biomarker to further improve prognostic power in patients with low risk SSIGN score (0-3).
Collapse
Affiliation(s)
- Louis Y El Khoury
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.,Center for Individualized Medicine, Epigenomics Program, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Shuang Fu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.,Center for Individualized Medicine, Epigenomics Program, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.,Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ryan A Hlady
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.,Center for Individualized Medicine, Epigenomics Program, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ryan T Wagner
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.,Center for Individualized Medicine, Epigenomics Program, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Jeanette E Eckel-Passow
- Division of Biomedical Statistics and Informatics, Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Erik P Castle
- Department of Urology, Mayo Clinic, Phoenix, AZ, USA
| | - Melissa L Stanton
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ, USA
| | | | - Alexander S Parker
- Office of Research Affairs, University of Florida, Jacksonville, FL, USA
| | - Thai H Ho
- Division of Hematology and Medical Oncology, Mayo Clinic, 13400 E. Shea Blvd, Scottsdale, AZ, 85259, USA.
| | - Keith D Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA. .,Center for Individualized Medicine, Epigenomics Program, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
23
|
Safety, efficacy, and acceptability of ADV7103 during 24 months of treatment: an open-label study in pediatric and adult patients with distal renal tubular acidosis. Pediatr Nephrol 2021; 36:1765-1774. [PMID: 33635379 PMCID: PMC8172410 DOI: 10.1007/s00467-020-04873-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/21/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND A new prolonged-release formulation of potassium citrate and potassium bicarbonate, ADV7103, has been shown to improve metabolic control, palatability, and gastrointestinal safety in patients with distal renal tubular acidosis (dRTA) when compared to standard of care (SoC) treatments. The present work evaluates safety and efficacy of ADV7103 during 24 months. METHODS Thirty pediatric and adult patients were included in an open-label extension study after a phase II/III trial. Safety and tolerability were assessed. Plasma bicarbonate and potassium levels, as well as urine parameters, were evaluated over time. Acceptability, adherence, and quality of life were also assessed. The evolution of clinical consequences of dRTA in the cohort was explored. RESULTS There were 104 adverse events (AEs) reported, but only 9 gastrointestinal events observed in five patients (17%) were considered to be related to ADV7103 treatment. There were no AEs leading to treatment discontinuation. Plasma bicarbonate and potassium levels were in the normal ranges at the different visits, respectively, in 69-86% and 83-93% of patients. Overall adherence rates were ≥ 75% throughout the whole study in 79% patients. An average improvement of quality of life of 89% was reported at 24 months of study. CONCLUSIONS Common AEs concerned metabolism and gastrointestinal disorders; the former being related to the disease. Less than half of the gastrointestinal AEs were related to ADV7103 treatment and they were mostly mild in severity. Metabolic parameters were maintained in the normal ranges in most patients. Patient satisfaction was high and adherence to treatment was good and remained stable. TRIAL REGISTRATION NUMBER Registered as EudraCT 2013-003828-36 on the 3rd of September 2013.
Collapse
|
24
|
Hereditary distal renal tubular acidosis: Genotypic correlation, evolution to long term, and new therapeutic perspectives. Nefrologia 2020. [PMID: 33386195 DOI: 10.1016/j.nefro.2020.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Distal renal tubular acidosis (DRTA) is a rare disease resulting from a failure in the normal urine acidification process at the distal tubule and collecting duct level. It is characterised by persistent hyperchloremic metabolic acidosis, with a normal anion gap in plasma, in the presence of high urinary pH and low urinary excretion of ammonium. To date, 5 genes whose mutations give rise to primary DRTA have been described. Alterations in the ATP6V1B1 and ATP6V0A4 genes are inherited recessively and are associated with forms of early onset and, in many cases, with neurosensorial deafness. Pathogenic variants in the SLC4A1 gene are habitually inherited dominantly and give rise to milder symptoms, with a later diagnosis and milder electrolytic alterations. Nonetheless, evolution to nephrocalcinosis and lithiasis, and the development of chronic kidney disease in the medium to long term has been described in a similar manner in all 3groups. Lastly, recessive forms of DTRA associated to mutations in the FOXI1 and WDR72 genes have also been described. The clinical management of DTRA is based on bicarbonate or citrate salts, which do not succeed in correcting all cases of the metabolic alterations described and, thus, the consequences associated with them. Recently, a new treatment based on slow-release bicarbonate and citrate salts has received the designation of orphan drug in Europe for the treatment of DTRA.
Collapse
|
25
|
Gunaratne W, Dissanayake D, Jayaratne K, Premawardhana NP, Siribaddana S. A case series of distal renal tubular acidosis, Southeast Asian ovalocytosis and metabolic bone disease. BMC Nephrol 2020; 21:327. [PMID: 32758154 PMCID: PMC7409414 DOI: 10.1186/s12882-020-01959-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Familial distal renal tubular acidosis (dRTA) associated with mutations of solute carrier family 4 membrane - 1 (SLC4A1) gene could co-exist with red cell membrane abnormality, Southeast Asian ovalocytosis (SAO). Although this association is well described in Southeast Asian countries, it is less frequently found in Sri Lanka. CASE PRESENTATION We describe six patients who had dRTA co-existing with SAO. All of them initially presented with severe hypokalemia and paralysis. They presented within a period of six months to the Teaching Hospital Anuradhapura, Sri Lanka. All had metabolic acidosis indicated by low serum bicarbonate. Three of them were having underlying chronic kidney disease as well. Those three patients had mixed high and normal anion gap metabolic acidosis indicated by low delta ratio. In all dRTA was confirmed by presence of normal anion gap, hyperchloraemia, high urine pH and positive urine anion gap. Examination of blood films of all of them revealed presence of stomatocytes and macro-ovalocytosis compatible with SAO. In relation to complications of dRTA, two patients had medullary nephrocalcinosis. Three patients had biochemical evidence of osteomalacia, with two of them having radiological evidence of diffuse osteosclerosis. One patient had secondary hyperparathyroidism and a pathological fracture. CONCLUSIONS Erythrocyte in SAO is exceptionally rigid and this abnormality is said to be evolved as it protects against Plasmodium vivax malaria and cerebral malaria cause by Plasmodium falciparum. Although two families of SAO was described earlier, SAO and dRTA combination was reported only once in a patient from Anuradhapura district. Distal renal tubular acidosis, SAO combination and its related complications including nephrocalcinosis, chronic kidney disease and metabolic bone disease was not described in Sri-Lankan literature. This case series emphasize the importance of investigating recurrent/ chronic hypokalemia to diagnose dRTA and its associations, as early correction of acidosis could prevent development of chronic kidney disease and metabolic bone disease.
Collapse
Affiliation(s)
- Wmsn Gunaratne
- Professorial Medical Unit Teaching Hospital Anuradhapura, Anuradhapura, Sri Lanka.
| | - Dmdib Dissanayake
- Medical unit A Teaching Hospital Anuradhapura, Anuradhapura, Sri Lanka
| | - Kads Jayaratne
- Consultant hematologist Teaching Hospital Anuradhapura, Anuradhapura, Sri Lanka
| | - N P Premawardhana
- Professorial Medical Unit Teaching Hospital Anuradhapura, Anuradhapura, Sri Lanka
| | - Sisira Siribaddana
- Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka
| |
Collapse
|
26
|
Lopez-Garcia SC, Emma F, Walsh SB, Fila M, Hooman N, Zaniew M, Bertholet-Thomas A, Colussi G, Burgmaier K, Levtchenko E, Sharma J, Singhal J, Soliman NA, Ariceta G, Basu B, Murer L, Tasic V, Tsygin A, Decramer S, Gil-Peña H, Koster-Kamphuis L, La Scola C, Gellermann J, Konrad M, Lilien M, Francisco T, Tramma D, Trnka P, Yüksel S, Caruso MR, Chromek M, Ekinci Z, Gambaro G, Kari JA, König J, Taroni F, Thumfart J, Trepiccione F, Winding L, Wühl E, Ağbaş A, Belkevich A, Vargas-Poussou R, Blanchard A, Conti G, Boyer O, Dursun I, Pınarbaşı AS, Melek E, Miglinas M, Novo R, Mallett A, Milosevic D, Szczepanska M, Wente S, Cheong HI, Sinha R, Gucev Z, Dufek S, Iancu D, Kleta R, Schaefer F, Bockenhauer D. Treatment and long-term outcome in primary distal renal tubular acidosis. Nephrol Dial Transplant 2020; 34:981-991. [PMID: 30773598 DOI: 10.1093/ndt/gfy409] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Primary distal renal tubular acidosis (dRTA) is a rare disorder, and we aimed to gather data on treatment and long-term outcome. METHODS We contacted paediatric and adult nephrologists through European professional organizations. Responding clinicians entered demographic, biochemical, genetic and clinical data in an online form. RESULTS Adequate data were collected on 340 patients (29 countries, female 52%). Mutation testing had been performed on 206 patients (61%); pathogenic mutations were identified in 170 patients (83%). The median (range) presentation age was 0.5 (0-54) years and age at last follow-up was 11.0 (0-70.0) years. Adult height was slightly below average with a mean (SD score) of -0.57 (±1.16). There was an increased prevalence of chronic kidney disease (CKD) Stage ≥2 in children (35%) and adults (82%). Nephrocalcinosis was reported in 88%. Nephrolithiasis was more common with SLC4A1 mutations (42% versus 21%). Thirty-six percent had hearing loss, particularly in ATP6V1B1 (88%). The median (interquartile range) prescribed dose of alkali (mEq/kg/day) was 1.9 (1.2-3.3). Adequate metabolic control (normal plasma bicarbonate and normocalciuria) was achieved in 158 patients (51%), more commonly in countries with higher gross domestic product (67% versus 23%), and was associated with higher height and estimated glomerular filtration rate. CONCLUSION Long-term follow-up from this large dRTA cohort shows an overall favourable outcome with normal adult height for most and no patient with CKD Stage 5. However, 82% of adult patients have CKD Stages 2-4. Importance of adequate metabolic control was highlighted by better growth and renal function but was achieved in only half of patients.
Collapse
Affiliation(s)
- Sergio Camilo Lopez-Garcia
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK.,Centre for Nephrology, University College London, London, UK
| | - Francesco Emma
- Division of Nephrology, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Stephen B Walsh
- Centre for Nephrology, University College London, London, UK
| | - Marc Fila
- Pediatric Nephrology-CHU Arnaud de Villeneuve, Montpellier University Hospital, Montpellier, France
| | - Nakysa Hooman
- Ali-Asghar Clinical Research Development Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marcin Zaniew
- Department of Pediatrics, University of Zielona Góra, Zielona Góra, Poland
| | | | | | - Kathrin Burgmaier
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | | | | | | | - Neveen A Soliman
- Department of Pediatrics, Center of Pediatric Nephrology & Transplantation, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Gema Ariceta
- Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Biswanath Basu
- Division of Pediatric Nephrology, NRS Medical College, Kolkata, India
| | - Luisa Murer
- Pediatric Nephrology, Dialysis and Transplant Unit, Azienda Ospedaliera & University of Padova, Padova, Italy
| | - Velibor Tasic
- University Children's Hospital, Medical School, Skopje, Macedonia
| | - Alexey Tsygin
- National Medical and Research Centre for Children's Health, Moscow, Russia
| | - Stéphane Decramer
- Centre Hospitalier Universitaire de Toulouse, Service de Nephrologie Pediatrique, Hopital des Enfants, Centre De Reference des Maladies Rénales Rares du Sud Ouest, Toulouse, France
| | | | | | - Claudio La Scola
- Nephrology and Dialysis Unit, Department of Woman, Child and Urological Diseases, Azienda Ospedaliero-Universitaria Sant'Orsola-Malpighi, Bologna, Italy
| | | | | | - Marc Lilien
- Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | | | - Despoina Tramma
- Fourth Pediatric Department, Aristotle University, Thessaloniki, Greece
| | - Peter Trnka
- Lady Cilento Children's Hospital, Brisbane, Australia.,School of Medicine, the University of Queensland, Brisbane, Australia
| | - Selçuk Yüksel
- Department of Pediatric Nephrology, Pamukkale University School of Medicine, Denizli, Turkey
| | - Maria Rosa Caruso
- Nephrology Unit Azienda Ospedaliera, Papa Giovani XXIII, Bergamo, Italy
| | | | - Zelal Ekinci
- Group Florence Nightingale Hospitals, İstanbul, Turkey
| | - Giovanni Gambaro
- Fondazione Policlinico A. Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Jameela A Kari
- Pediatric Nephrology Center of Excellence and Pediatric Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Jens König
- University Children's Hospital, Münster, Germany
| | - Francesca Taroni
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Louise Winding
- Pediatric Department, Lillebaelt Hospital Kolding, Kolding, Denmark
| | - Elke Wühl
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University Hospital of Heidelberg, Heidelberg, Germany
| | - Ayşe Ağbaş
- Haseki Education and Research Hospital, Istanbul, Turkey
| | | | - Rosa Vargas-Poussou
- Department of Genetics, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Anne Blanchard
- Department of Genetics, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Giovanni Conti
- Pediatric Nephrology Unit, AOU Policlinic G Martino, Messina, Italy
| | | | - Ismail Dursun
- Faculty of Medicine, Department of Pediatric Nephrology, Erciyes University, Kayseri, Turkey
| | - Ayşe Seda Pınarbaşı
- Faculty of Medicine, Department of Pediatric Nephrology, Erciyes University, Kayseri, Turkey
| | | | - Marius Miglinas
- Nephrology Centre, Santaros Klinikos, Vilnius University, Vilnius, Lithuania
| | | | - Andrew Mallett
- School of Medicine, the University of Queensland, Brisbane, Australia.,Department of Renal Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | | | | | - Sarah Wente
- Department of Pediatric Nephrology, Hannover Medical School, Hannover, Germany
| | - Hae Il Cheong
- Department of Pediatrics, Seoul University Children's Hospital, Seoul, Korea
| | | | - Zoran Gucev
- Medical School, University Children's Hospital, Skopje, Macedonia
| | - Stephanie Dufek
- Centre for Nephrology, University College London, London, UK
| | - Daniela Iancu
- Centre for Nephrology, University College London, London, UK
| | | | - Robert Kleta
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK.,Centre for Nephrology, University College London, London, UK
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University Hospital of Heidelberg, Heidelberg, Germany
| | - Detlef Bockenhauer
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK.,Centre for Nephrology, University College London, London, UK
| |
Collapse
|
27
|
Screening and function discussion of a hereditary renal tubular acidosis family pathogenic gene. Cell Death Dis 2020; 11:159. [PMID: 32123165 PMCID: PMC7052238 DOI: 10.1038/s41419-020-2354-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 12/18/2022]
Abstract
Hereditary distal renal tubular acidosis (dRTA) is a rare disease of H+ excretion defect of α-intercalated cells in renal collecting duct, caused by decreased V-ATPase function due to mutations in the ATP6V1B1 or ATP6V0A4 genes. In the present study, a genetic family with 5 members of the complete dRTA phenotype were found with distal tubule H+ secretion disorder, hypokalemia, osteoporosis, and kidney stones. A variant NM_020632.2:c.1631C > T (p.Ser544Leu) in exon 16 on an ATP6V0A4 gene associated with dRTA was detected by next generation sequencing target region capture technique and verified by Sanger sequencing, which suggested that except for one of the patients who did not receive the test, the other four patients all carried the p.S544L heterozygote. In transfected HEK293T cells, cells carrying p.S544L-mut showed early weaker ATPase activity and a slower Phi recovery rate after rapid acidification. By immunofluorescence localization, it was observed that the expression level of p.S544L-mut on the cell membrane increased and the distribution was uneven. Co-immunoprecipitation showed the a4 subunit of ATP6V0A4/p.S544L-mut could not bind to the B1 subunit, which might affect the correct assembly of V-ATPase. The present study of dRTA family suggests that the p.S544L variant may be inherited in a dominant manner.
Collapse
|
28
|
Abstract
The process of kidney stone formation is complex and still not completely understood. Supersaturation and crystallization are the main drivers for the etiopathogenesis of uric acid, xanthine and cystine stones but this physicochemical concept fails to adequately explain the formation of calcium-based nephrolithiasis, which represents the majority of kidney stones. Contemporary concepts of the pathogenesis of calcium-based nephrolithiasis focus on a nidus-associated stone formation of calcium-based nephrolithiasis on Randall's plaques or on plugs of Bellini's duct. Randall's plaques originate from the interaction of interstitial calcium supersaturation in the renal papilla, vascular and interstitial inflammatory processes and mineral deposits of calcifying nanoparticles on the basal membrane of the thin ascending branch of the loop of Henle; however, plugs of Bellini's duct are assumed to be caused by mineral deposits on the wall of the collecting ducts. Aggregation and overgrowth are influenced by the interaction of matrix proteins with calcium supersaturated urine, by an imbalance between promoters and inhibitors of stone formation in the calyceal urine. Current research has elucidated many factors contributing to stone formation by revealing novel insights into the physiology of nephron and papilla, by analyzing vascular, inflammatory and calcifying processes in the renal medulla, by examining the proteome, the microbiome, promoters and inhibitors of stone formation in the urine and by conducting the first genome-wide association studies; however, more future research is mandatory to fill the gap of knowledge and hopefully, to obtain novel prophylactic, therapeutic and metaphylactic tools beyond the current state of knowledge.
Collapse
|
29
|
Distal renal tubular acidosis: genetic causes and management. World J Pediatr 2019; 15:422-431. [PMID: 31079338 DOI: 10.1007/s12519-019-00260-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Distal renal tubular acidosis (dRTA) is a kidney tubulopathy that causes a state of normal anion gap metabolic acidosis due to impairment of urine acidification. This review aims to summarize the etiology, pathophysiology, clinical findings, diagnosis and therapeutic approach of dRTA, with emphasis on genetic causes of dRTA. DATA SOURCES Literature reviews and original research articles from databases, including PubMed and Google Scholar. Manual searching was performed to identify additional studies about dRTA. RESULTS dRTA is characterized as the dysfunction of the distal urinary acidification, leading to metabolic acidosis. In pediatric patients, the most frequent etiology of dRTA is the genetic alteration of genes responsible for the codification of distal tubule channels, whereas, in adult patients, dRTA is more commonly secondary to autoimmune diseases, use of medications and uropathies. Patients with dRTA exhibit failure to thrive and important laboratory alterations, which are used to define the diagnosis. The oral alkali and potassium supplementation can correct the biochemical defects, improve clinical manifestations and avoid nephrolithiasis and nephrocalcinosis. CONCLUSIONS dRTA is a multifactorial disease leading to several clinical manifestations. Clinical and laboratory alterations can be corrected by alkali replacement therapy.
Collapse
|
30
|
Sidler M, Mohebbi N, Hoorn EJ, Wagner CA. Gut It Out: Laxative Abuse Mimicking Distal Renal Tubular Acidosis. Kidney Blood Press Res 2019; 44:1294-1299. [PMID: 31480048 DOI: 10.1159/000501855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/01/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Distal renal tubular acidosis (dRTA) can be inherited or acquired. CASE PRESENTATION Here, we describe the case of a 45-year-old female patient with non-anion gap metabolic acidosis, hypokalemia, and alkaline urine. She had a history of rheumatoid arthritis and kidney stones and failed to acidify urine upon the fludrocortisone and furosemide test. Therefore, the diagnosis of dRTA secondary to an autoimmune disease was made. A kidney biopsy was examined for markers of acid-secretory intercalated cells. Surprisingly, no obvious difference in the relative number of acid-secretory intercalated cells or in the distribution of major proteins involved in acid secretion was found. Furthermore, increasing doses of potassium citrate failed to correct the hypokalemia and acidosis. Since these findings were rather atypical for autoimmune dRTA, alternative causes of her hypokalemia and metabolic acidosis were sought. The patient was found to chronically consume laxatives, which can also cause kidney stones and may result in a false-positive urinary acidification test. CONCLUSION Chronic laxative abuse may mimic dRTA and should therefore be considered in unexplained hypokalemia with non-anion gap metabolic acidosis.
Collapse
Affiliation(s)
- Marius Sidler
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Nilufar Mohebbi
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland,
| |
Collapse
|
31
|
Yuan J, Huang K, Wu W, Zhang L, Dong G. A novel homozygous deletion in ATP6V0A4 causes distal renal tubular acidosis: A case report. Medicine (Baltimore) 2019; 98:e16504. [PMID: 31348261 PMCID: PMC6709018 DOI: 10.1097/md.0000000000016504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Autosomal recessive distal renal tubular acidosis (dRTA) is a rare condition, most cases of which are caused by genetic mutations. Several loss-of-function mutations in the ATP6V0A4 gene have been recently reported. PATIENT CONCERNS A 2-month, 24-day-old Chinese girl presenting with vomiting and diarrhea. DIAGNOSIS dRTA was established by metabolic acidosis and hypokalemia. Mutational analysis of the ATP6V0A4 gene revealed a homozygous deletion of exons 13 and 14. The father was found to have a heterozygous loss of both exons, whereas the mother was normal. INTERVENTIONS Patient was treated with potassium citrate. OUTCOMES The patient has shown normal pH and potassium levels. LESSONS This is the first case of a homozygous deletion in ATP6V0A4 reported in the literature. Although the initial auditory screening was normal in this case, this patient will nevertheless undergo long-term auditory testing.
Collapse
|
32
|
Elitok S, Sidler M, Bieringer M, Mohebbi N, Schneider W, Wagner CA. A patient with chronic kidney disease, primary biliary cirrhosis and metabolic acidosis. Clin Kidney J 2019; 13:463-467. [PMID: 32699627 PMCID: PMC7367120 DOI: 10.1093/ckj/sfz059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/17/2019] [Indexed: 11/14/2022] Open
Abstract
Autoimmune disorders such as rheumatoid arthritis or Sjögren's syndrome can be associated with impaired renal acid excretion. Only few cases of patients with primary biliary cirrhosis (PBC) and distal renal tubular acidosis (dRTA) have been described. Here, we present the case of a 60-year-old woman with PBC and dRTA. Her kidney biopsy showed an absence of markers of acid-secretory Type A intercalated cells (A-ICs) and expression of aquaporin-2, a marker of principal cells, in all cells lining the collecting duct. Moreover, the serum of the patient contained antibodies directed against a subset of cells of the collecting duct. Thus, PBC-related autoantibodies may target acid-secretory A-ICs and thereby impair urinary acidification.
Collapse
Affiliation(s)
- Saban Elitok
- Department of Nephrology and Endocrinology/Diabetology, Klinikum Ernst von Bergmann, Potsdam, Germany
- Correspondence and offprint requests to: Saban Elitok; E-mail: , Carsten A. Wagner; E-mail:
| | - Marius Sidler
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Nilufar Mohebbi
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | | | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Correspondence and offprint requests to: Saban Elitok; E-mail: , Carsten A. Wagner; E-mail:
| |
Collapse
|
33
|
Lashhab R, Ullah AS, Cordat E. Renal collecting duct physiology and pathophysiology. Biochem Cell Biol 2019; 97:234-242. [DOI: 10.1139/bcb-2018-0192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Rawad Lashhab
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - A.K.M. Shahid Ullah
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Emmanuelle Cordat
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
34
|
Xu C, Li Y, Ying H, Pan Y, Shi R, Lin X, Gao L. Presence of serum autoantibodies to vacuolar H + -ATPase in patients with renal tubular acidosis. Int J Rheum Dis 2019; 22:805-814. [PMID: 30821427 DOI: 10.1111/1756-185x.13518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 12/21/2018] [Accepted: 01/27/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Concomitant presence of renal tubular acidosis (RTA) and autoimmune diseases is indicative of the potential role of immune factors in the pathogenesis of RTA. Our study aimed to detect the serum antibodies to renal tubular epithelial cells in RTA patients. METHODS We enrolled 11 RTA patients, eight primary Sjögren's syndrome (pSS) patients and eight healthy controls (HC). Serum biochemical test, urinary regular test, and 24 hours urinary protein quantification were measured using a fully automated analyzer. Immunofluorescence assay was performed to detect the antibodies to subunit B1 and subunit B2 of v-H+-ATPases (adenosine triphosphatases) in the serum of the participants. RESULTS Clinically, RTA patients showed hyperchloremia, acidosis and paradoxical alkaline urine. We detected the serum antibodies to renal tubular epithelial cells and there were 6/11 positive in RTA patients, much higher than that in the pSS group (0/8) and the HC group (0/8). Subsequently, we demonstrated that in normal renal tissue, the B1 subunit of v-H+-ATPase specifically expressed in intercalated cells, while the B2 subunit continuously expressed along the lumen of renal tubular epithelial cells. Moreover, the antibody to subunit B1/B2 of v-H+-ATPase was positive in the sera of 6 RTA patients (54%), while it was negative in both the pSS and HC group. CONCLUSIONS We detected the presence of serum autoantibodies to subunit B1 and subunit B2 of v-H+ -ATPase in RTA patients. Our findings may provide novel mechanism insights into the pathogenesis of RTA and the potential diagnostic utility of antibodies to v-H+ -ATPase in the classification of RTA.
Collapse
Affiliation(s)
- Chao Xu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, China.,Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, China
| | - Yanping Li
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Medical Ultrasound, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Ying
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, China.,Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, China
| | - Yan Pan
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Medical Ultrasound, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Ranran Shi
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, China.,Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, China
| | - Xiaoyan Lin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Ling Gao
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, China.,Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
35
|
Watanabe T. Improving outcomes for patients with distal renal tubular acidosis: recent advances and challenges ahead. PEDIATRIC HEALTH MEDICINE AND THERAPEUTICS 2018; 9:181-190. [PMID: 30588151 PMCID: PMC6296208 DOI: 10.2147/phmt.s174459] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Primary distal renal tubular acidosis (dRTA) is a rare genetic disorder caused by impaired distal acidification due to a failure of type A intercalated cells (A-ICs) in the collecting tubule. dRTA is characterized by persistent hyperchloremia, a normal plasma anion gap, and the inability to maximally lower urinary pH in the presence of systemic metabolic acidosis. Common clinical features of dRTA include vomiting, failure to thrive, polyuria, hypercalciuria, hypocitraturia, nephrocalcinosis, nephrolithiasis, growth delay, and rickets. Mutations in genes encoding three distinct transport proteins in A-ICs have been identified as causes of dRTA, including the B1/ATP6V1B1 and a4/ATP6V0A4 subunits of the vacuolar-type H+-ATPase (H+-ATPase) and the chloride–bicarbonate exchanger AE1/SLC4A1. Homozygous or compound heterozygous mutations in ATP6V1B1 and ATP6V0A4 lead to autosomal recessive (AR) dRTA. dRTA caused by SLC4A1 mutations can occur with either autosomal dominant or AR transmission. Red blood cell abnormalities have been associated with AR dRTA due to SLC4A1 mutations, including hereditary spherocytosis, Southeast Asia ovalocytosis, and others. Some patients with dRTA exhibit atypical clinical features, including transient and reversible proximal tubular dysfunction and hyperammonemia. Incomplete dRTA presents with inadequate urinary acidification, but without spontaneous metabolic acidosis and recurrent urinary stones. Heterozygous mutations in the AE1 or H+-ATPase genes have recently been reported in patients with incomplete dRTA. Early and sufficient doses of alkali treatment are needed for patients with dRTA. Normalized serum bicarbonate, urinary calcium excretion, urinary low-molecular-weight protein levels, and growth rate are good markers of adherence to and/or efficacy of treatment. The prognosis of dRTA is generally good in patients with appropriate treatment. However, recent studies showed an increased frequency of chronic kidney disease (CKD) in patients with dRTA during long-term follow-up. The precise pathogenic mechanisms of CKD in patients with dRTA are unknown.
Collapse
Affiliation(s)
- Toru Watanabe
- Department of Pediatrics, Niigata City General Hospital, Niigata City 950-1197, Japan,
| |
Collapse
|
36
|
Gambaro G, Zaza G, Citterio F, Naticchia A, Ferraro PM. Living kidney donation from people at risk of nephrolithiasis, with a focus on the genetic forms. Urolithiasis 2018; 47:115-123. [PMID: 30470867 DOI: 10.1007/s00240-018-1092-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/08/2018] [Indexed: 02/03/2023]
Abstract
Deciding whether to accept a donor with nephrolithiasis is a multifaceted task because of the challenge of finding enough suitable donors while at the same time ensuring the safety of both donors and recipients. Until not long ago, donors with a history of renal stones or with stones emerging during screening on imaging were not considered ideal, but recent guidelines have adopted less stringent criteria for potential donors at risk of stones. This review goes through the problems that need to be approached to arrive at a wise clinical decision, balancing the safety of donors and recipients with the need to expand the organ pool. The risk of declining renal function and worsening stone formation is examined. Documents (consensus statements, guidelines, etc.) on this issue released by the most important medical societies and organizations are discussed and compared. Specific problems of living kidney donation associated with certain systemic (chronic hypercalcemia due to CYP24A1 gene mutations, primary hyperoxaluria, APRT deficiency) and renal (medullary sponge kidney, cystinuria, distal renal tubular acidosis, Dent's disease, Bartter syndrome, familial hypomagnesemia with hypercalciuria and nephrocalcinosis) Mendelian disorders that cause nephrolithiasis are also addressed.
Collapse
Affiliation(s)
- Giovanni Gambaro
- UOC Nefrologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy. .,Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy. .,Università Cattolica del Sacro Cuore, Via G. Moscati 31, 00168, Rome, Italy.
| | - G Zaza
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - F Citterio
- UOSA Trapianto di rene, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Via G. Moscati 31, 00168, Rome, Italy
| | - A Naticchia
- UOC Nefrologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Via G. Moscati 31, 00168, Rome, Italy
| | - P M Ferraro
- UOC Nefrologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Via G. Moscati 31, 00168, Rome, Italy
| |
Collapse
|
37
|
Nephrolithiasis secondary to inherited defects in the thick ascending loop of henle and connecting tubules. Urolithiasis 2018; 47:43-56. [PMID: 30460527 DOI: 10.1007/s00240-018-1097-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022]
Abstract
Twin and genealogy studies suggest a strong genetic component of nephrolithiasis. Likewise, urinary traits associated with renal stone formation were found to be highly heritable, even after adjustment for demographic, anthropometric and dietary covariates. Recent high-throughput sequencing projects of phenotypically well-defined cohorts of stone formers and large genome-wide association studies led to the discovery of many new genes associated with kidney stones. The spectrum ranges from infrequent but highly penetrant variants (mutations) causing mendelian forms of nephrolithiasis (monogenic traits) to common but phenotypically mild variants associated with nephrolithiasis (polygenic traits). About two-thirds of the genes currently known to be associated with nephrolithiasis code for membrane proteins or enzymes involved in renal tubular transport. The thick ascending limb of Henle and connecting tubules are of paramount importance for renal water and electrolyte handling, urinary concentration and maintenance of acid-base homeostasis. In most instances, pathogenic variants in genes involved in thick ascending limb of Henle and connecting tubule function result in phenotypically severe disease, frequently accompanied by nephrocalcinosis with progressive CKD and to a variable degree by nephrolithiasis. The aim of this article is to review the current knowledge on kidney stone disease associated with inherited defects in the thick ascending loop of Henle and the connecting tubules. We also highlight recent advances in the field of kidney stone genetics that have implications beyond rare disease, offering new insights into the most common type of kidney stone disease, i.e., idiopathic calcium stone disease.
Collapse
|
38
|
Parker MD. Mouse models of SLC4-linked disorders of HCO 3--transporter dysfunction. Am J Physiol Cell Physiol 2018; 314:C569-C588. [PMID: 29384695 DOI: 10.1152/ajpcell.00301.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The SLC4 family Cl-/[Formula: see text] cotransporters (NBCe1, NBCe2, NBCn1, and NBCn2) contribute to a variety of vital physiological processes including pH regulation and epithelial fluid secretion. Accordingly, their dysfunction can have devastating effects. Disorders such as epilepsy, hemolytic anemia, glaucoma, hearing loss, osteopetrosis, and renal tubular acidosis are all genetically linked to SLC4-family gene loci. This review summarizes how studies of Slc4-modified mice have enhanced our understanding of the etiology of SLC4-linked pathologies and the interpretation of genetic linkage studies. The review also surveys the novel disease signs exhibited by Slc4-modified mice which could either be considered to presage their description in humans, or to highlight interspecific differences. Finally, novel Slc4-modified mouse models are proposed, the study of which may further our understanding of the basis and treatment of SLC4-linked disorders of [Formula: see text]-transporter dysfunction.
Collapse
Affiliation(s)
- Mark D Parker
- Department of Physiology and Biophysics, The State University of New York: The University at Buffalo , Buffalo, New York.,Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo: The State University of New York , Buffalo, New York.,State University of New York Eye Institutes, University at Buffalo: The State University of New York , Buffalo, New York
| |
Collapse
|