1
|
Shin SJ, Jang Y, Ahn SH, Mon SY, You JH, An HY, Sun CH, Koh Y, Chu K, Lee SK, Lee S. Clonal hematopoiesis in LGI1-antibody encephalitis. Ann Clin Transl Neurol 2024; 11:2785-2791. [PMID: 39199016 PMCID: PMC11514903 DOI: 10.1002/acn3.52192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
OBJECTIVE Leucine-rich glioma-inactivated 1 (LGI1)-antibody encephalitis (LGI1e), the major form of autoimmune encephalitis (AE) presented with memory loss and faciobrachial dystonic seizure, commonly develops in aged population. Hematologic aging is often accompanied by clonal hematopoiesis (CH), a phenomenon in which specific mutations accumulate, potentially leading to autoimmune disorders or malignancies. Our research aimed to investigate the connection between clonal hematopoiesis of indeterminate potential (CHIP) and LGI1e. METHODS Peripheral blood samples from consecutive LGI1e patients were collected and analyzed for 24 clonal CHIP using targeted gene sequencing. The results were compared to a control dataset from an ethnically matched health care cohort. Patient characteristics were analyzed based on their CHIP status. RESULTS A total of 52 LGI1e patients were enrolled for this study. Among them, three patients (5.8%) exhibited functional mutations in the ASXL1 gene, one of the CHIP-associated genes analyzed by targeted sequencing. This frequency was significantly higher compared to that of the control cohort (1%, p = 0.015). Nevertheless, the patients showed no difference in the clinical characteristics, laboratory results, and immunotherapy outcomes. INTERPRETATION LGI1e showed high frequency of ASXL1 functional mutation in the CHIP analysis, which may contribute to the underlying pathogenesis. Further research is needed to determine its direct role in the development of autoimmunity and disease progression.
Collapse
Affiliation(s)
- Soo Jean Shin
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoul03080South Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080South Korea
| | - Yoonhyuk Jang
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoul03080South Korea
| | - Soo Hyun Ahn
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoul03080South Korea
| | - Su Yee Mon
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoul03080South Korea
| | - Ji Hye You
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoul03080South Korea
| | | | | | - Youngil Koh
- NOBO Medicine Inc.Seoul04799South Korea
- Department of Internal MedicineSeoul National University HospitalSeoul03080South Korea
- Center for Precision MedicineSeoul National University HospitalSeoul03080South Korea
| | - Kon Chu
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoul03080South Korea
| | - Sang Kun Lee
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoul03080South Korea
| | - Soon‐Tae Lee
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoul03080South Korea
| |
Collapse
|
2
|
O'Reilly RL, Burke J, Harraka P, Yeh P, Howlett K, Behrouzfar K, Rewse A, Tsimiklis H, Giles GG, Bubb KJ, Nicholls SJ, Milne RL, Southey MC. Saliva-derived DNA is suitable for the detection of clonal haematopoiesis of indeterminate potential. Sci Rep 2024; 14:18917. [PMID: 39143154 PMCID: PMC11324896 DOI: 10.1038/s41598-024-69398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Clonal haematopoiesis of indeterminate potential (CHIP) has been associated with many adverse health outcomes. However, further research is required to understand the critical genes and pathways relevant to CHIP subtypes, evaluate how CHIP clones evolve with time, and further advance functional characterisation and therapeutic studies. Large epidemiological studies are well placed to address these questions but often collect saliva rather than blood from participants. Paired saliva- and blood-derived DNA samples from 94 study participants were sequenced using a targeted CHIP-gene panel. The ten genes most frequently identified to carry CHIP-associated variants were analysed. Fourteen unique variants associated with CHIP, ten in DNMT3A, two in TP53 and two in TET2, were identified with a variant allele fraction (VAF) between 0.02 and 0.2 and variant depth ≥ 5 reads. Eleven of these CHIP-associated variants were detected in both the blood- and saliva-derived DNA sample. Three variants were detected in blood with a VAF > 0.02 but fell below this threshold in the paired saliva sample (VAF 0.008-0.013). Saliva-derived DNA is suitable for detecting CHIP-associated variants. Saliva can offer a cost-effective biospecimen that could both advance CHIP research and facilitate clinical translation into settings such as risk prediction, precision prevention, and treatment monitoring.
Collapse
Affiliation(s)
- Robert L O'Reilly
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Victorian Heart Institute, Monash University, Clayton, VIC, Australia
| | - Jared Burke
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Philip Harraka
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Victorian Heart Institute, Monash University, Clayton, VIC, Australia
| | - Paul Yeh
- Monash Haematology, Clayton, VIC, Australia
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Kerryn Howlett
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Kiarash Behrouzfar
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Amanda Rewse
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Helen Tsimiklis
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Graham G Giles
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Kristen J Bubb
- Victorian Heart Institute, Monash University, Clayton, VIC, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stephen J Nicholls
- Victorian Heart Institute, Monash University, Clayton, VIC, Australia
- Victorian Heart Hospital, Clayton, VIC, Australia
| | - Roger L Milne
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia.
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia.
- Victorian Heart Institute, Monash University, Clayton, VIC, Australia.
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
3
|
Mack TM, Raddatz MA, Pershad Y, Nachun DC, Taylor KD, Guo X, Shuldiner AR, O'Connell JR, Kenny EE, Loos RJF, Redline S, Cade BE, Psaty BM, Bis JC, Brody JA, Silverman EK, Yun JH, Cho MH, DeMeo DL, Levy D, Johnson AD, Mathias RA, Yanek LR, Heckbert SR, Smith NL, Wiggins KL, Raffield LM, Carson AP, Rotter JI, Rich SS, Manichaikul AW, Gu CC, Chen YDI, Lee WJ, Shoemaker MB, Roden DM, Kooperberg C, Auer PL, Desai P, Blackwell TW, Smith AV, Reiner AP, Jaiswal S, Weinstock JS, Bick AG. Epigenetic and proteomic signatures associate with clonal hematopoiesis expansion rate. NATURE AGING 2024; 4:1043-1052. [PMID: 38834882 DOI: 10.1038/s43587-024-00647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP), whereby somatic mutations in hematopoietic stem cells confer a selective advantage and drive clonal expansion, not only correlates with age but also confers increased risk of morbidity and mortality. Here, we leverage genetically predicted traits to identify factors that determine CHIP clonal expansion rate. We used the passenger-approximated clonal expansion rate method to quantify the clonal expansion rate for 4,370 individuals in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) cohort and calculated polygenic risk scores for DNA methylation aging, inflammation-related measures and circulating protein levels. Clonal expansion rate was significantly associated with both genetically predicted and measured epigenetic clocks. No associations were identified with inflammation-related lab values or diseases and CHIP expansion rate overall. A proteome-wide search identified predicted circulating levels of myeloid zinc finger 1 and anti-Müllerian hormone as associated with an increased CHIP clonal expansion rate and tissue inhibitor of metalloproteinase 1 and glycine N-methyltransferase as associated with decreased CHIP clonal expansion rate. Together, our findings identify epigenetic and proteomic patterns associated with the rate of hematopoietic clonal expansion.
Collapse
Affiliation(s)
- Taralynn M Mack
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael A Raddatz
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yash Pershad
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Daniel C Nachun
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alan R Shuldiner
- Department of Medicine, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Jeffrey R O'Connell
- Department of Medicine, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute of Personalized Medicine, Mount Sinai Hospital, New York City, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susan Redline
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Brian E Cade
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeong H Yun
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel Levy
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA, USA
| | - Andrew D Johnson
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA, USA
| | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, USA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA, USA
| | - Kerri L Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Ani W Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - C Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yii-Der Ida Chen
- Medical Genetics Translational Genomics and Population Sciences (TGPS), Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - M Benjamin Shoemaker
- Division of Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dan M Roden
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Paul L Auer
- Division of Biostatistics, Institute for Health and Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Pinkal Desai
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Thomas W Blackwell
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Albert V Smith
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Joshua S Weinstock
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Alexander G Bick
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
4
|
Stankiewicz LN, Rossi FMV, Zandstra PW. Rebuilding and rebooting immunity with stem cells. Cell Stem Cell 2024; 31:597-616. [PMID: 38593798 DOI: 10.1016/j.stem.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Advances in modern medicine have enabled a rapid increase in lifespan and, consequently, have highlighted the immune system as a key driver of age-related disease. Immune regeneration therapies present exciting strategies to address age-related diseases by rebooting the host's primary lymphoid tissues or rebuilding the immune system directly via biomaterials or artificial tissue. Here, we identify important, unanswered questions regarding the safety and feasibility of these therapies. Further, we identify key design parameters that should be primary considerations guiding technology design, including timing of application, interaction with the host immune system, and functional characterization of the target patient population.
Collapse
Affiliation(s)
- Laura N Stankiewicz
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Fabio M V Rossi
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Peter W Zandstra
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
5
|
Jahn E, Saadati M, Fenaux P, Gobbi M, Roboz GJ, Bullinger L, Lutsik P, Riedel A, Plass C, Jahn N, Walter C, Holzmann K, Hao Y, Naim S, Schreck N, Krzykalla J, Benner A, Keer HN, Azab M, Döhner K, Döhner H. Clinical impact of the genomic landscape and leukemogenic trajectories in non-intensively treated elderly acute myeloid leukemia patients. Leukemia 2023; 37:2187-2196. [PMID: 37591941 PMCID: PMC10624608 DOI: 10.1038/s41375-023-01999-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/16/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
To characterize the genomic landscape and leukemogenic pathways of older, newly diagnosed, non-intensively treated patients with AML and to study the clinical implications, comprehensive genetics analyses were performed including targeted DNA sequencing of 263 genes in 604 patients treated in a prospective Phase III clinical trial. Leukemic trajectories were delineated using oncogenetic tree modeling and hierarchical clustering, and prognostic groups were derived from multivariable Cox regression models. Clonal hematopoiesis-related genes (ASXL1, TET2, SRSF2, DNMT3A) were most frequently mutated. The oncogenetic modeling algorithm produced a tree with five branches with ASXL1, DDX41, DNMT3A, TET2, and TP53 emanating from the root suggesting leukemia-initiating events which gave rise to further subbranches with distinct subclones. Unsupervised clustering mirrored the genetic groups identified by the tree model. Multivariable analysis identified FLT3 internal tandem duplications (ITD), SRSF2, and TP53 mutations as poor prognostic factors, while DDX41 mutations exerted an exceptionally favorable effect. Subsequent backwards elimination based on the Akaike information criterion delineated three genetic risk groups: DDX41 mutations (favorable-risk), DDX41wildtype/FLT3-ITDneg/TP53wildtype (intermediate-risk), and FLT3-ITD or TP53 mutations (high-risk). Our data identified distinct trajectories of leukemia development in older AML patients and provide a basis for a clinically meaningful genetic outcome stratification for patients receiving less intensive therapies.
Collapse
Affiliation(s)
- Ekaterina Jahn
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | | | | | - Marco Gobbi
- Ospedale Policlinico San Martino, Genova, Italy
| | | | - Lars Bullinger
- Department of Hematology, Oncology and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pavlo Lutsik
- Department of Oncology, Catholic University (KU) Leuven, Leuven, Belgium
| | - Anna Riedel
- Division of Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany
| | - Nikolaus Jahn
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Claudia Walter
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | | | - Yong Hao
- Astex Pharmaceuticals, Inc., Pleasanton, CA, USA
| | - Sue Naim
- Astex Pharmaceuticals, Inc., Pleasanton, CA, USA
| | - Nicholas Schreck
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Julia Krzykalla
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | | | | | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany.
| |
Collapse
|
6
|
Yu C, Sheng Y, Yu F, Ni H, Qiu A, Huang Y, Qian Z. Foxm1 haploinsufficiency drives clonal hematopoiesis and promotes a stress-related transition to hematologic malignancy in mice. J Clin Invest 2023; 133:e163911. [PMID: 37526082 PMCID: PMC10378147 DOI: 10.1172/jci163911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 06/15/2023] [Indexed: 08/02/2023] Open
Abstract
Clonal hematopoiesis plays a critical role in the initiation and development of hematologic malignancies. In patients with del(5q) myelodysplastic syndrome (MDS), the transcription factor FOXM1 is frequently downregulated in CD34+ cells. In this study, we demonstrated that Foxm1 haploinsufficiency disturbed normal hematopoiesis and conferred a competitive repopulation advantage for a short period. However, it impaired the long-term self-renewal capacity of hematopoietic stem cells, recapitulating the phenotypes of abnormal hematopoietic stem cells observed in patients with MDS. Moreover, heterozygous inactivation of Foxm1 led to an increase in DNA damage in hematopoietic stem/progenitor cells (HSPCs). Foxm1 haploinsufficiency induced hematopoietic dysplasia in a mouse model with LPS-induced chronic inflammation and accelerated AML-ETO9a-mediated leukemogenesis. We have also identified Parp1, an important enzyme that responds to various types of DNA damage, as a target of Foxm1. Foxm1 haploinsufficiency decreased the ability of HSPCs to efficiently repair DNA damage by downregulating Parp1 expression. Our findings suggest that the downregulation of the Foxm1-Parp1 molecular axis may promote clonal hematopoiesis and reduce genome stability, contributing to del(5q) MDS pathogenesis.
Collapse
Affiliation(s)
- Chunjie Yu
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Yue Sheng
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Department of Hematology, Second Xiangya Hospital, Changsha, Hunan, China
| | - Fang Yu
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Hongyu Ni
- Department of Pathology, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Alan Qiu
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Yong Huang
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Zhijian Qian
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Farahzadi R, Valipour B, Montazersaheb S, Fathi E. Targeting the stem cell niche micro-environment as therapeutic strategies in aging. Front Cell Dev Biol 2023; 11:1162136. [PMID: 37274742 PMCID: PMC10235764 DOI: 10.3389/fcell.2023.1162136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Adult stem cells (ASCs) reside throughout the body and support various tissue. Owing to their self-renewal capacity and differentiation potential, ASCs have the potential to be used in regenerative medicine. Their survival, quiescence, and activation are influenced by specific signals within their microenvironment or niche. In better words, the stem cell function is significantly influenced by various extrinsic signals derived from the niche. The stem cell niche is a complex and dynamic network surrounding stem cells that plays a crucial role in maintaining stemness. Studies on stem cell niche have suggested that aged niche contributes to the decline in stem cell function. Notably, functional loss of stem cells is highly associated with aging and age-related disorders. The stem cell niche is comprised of complex interactions between multiple cell types. Over the years, essential aspects of the stem cell niche have been revealed, including cell-cell contact, extracellular matrix interaction, soluble signaling factors, and biochemical and biophysical signals. Any alteration in the stem cell niche causes cell damage and affects the regenerative properties of the stem cells. A pristine stem cell niche might be essential for the proper functioning of stem cells and the maintenance of tissue homeostasis. In this regard, niche-targeted interventions may alleviate problems associated with aging in stem cell behavior. The purpose of this perspective is to discuss recent findings in the field of stem cell aging, heterogeneity of stem cell niches, and impact of age-related changes on stem cell behavior. We further focused on how the niche affects stem cells in homeostasis, aging, and the progression of malignant diseases. Finally, we detail the therapeutic strategies for tissue repair, with a particular emphasis on aging.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
8
|
Shevyrev D, Tereshchenko V, Berezina TN, Rybtsov S. Hematopoietic Stem Cells and the Immune System in Development and Aging. Int J Mol Sci 2023; 24:ijms24065862. [PMID: 36982935 PMCID: PMC10056303 DOI: 10.3390/ijms24065862] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Hematopoietic stem cells (HSCs) support haematopoiesis throughout life and give rise to the whole variety of cells of the immune system. Developing in the early embryo, passing through the precursor stage, and maturing into the first HSCs, they undergo a fairly large number of divisions while maintaining a high regenerative potential due to high repair activity. This potential is greatly reduced in adult HSCs. They go into a state of dormancy and anaerobic metabolism to maintain their stemness throughout life. However, with age, changes occur in the pool of HSCs that negatively affect haematopoiesis and the effectiveness of immunity. Niche aging and accumulation of mutations with age reduces the ability of HSCs to self-renew and changes their differentiation potential. This is accompanied by a decrease in clonal diversity and a disturbance of lymphopoiesis (decrease in the formation of naive T- and B-cells) and the predominance of myeloid haematopoiesis. Aging also affects mature cells, regardless of HSC, therefore, phagocytic activity and the intensity of the oxidative burst decrease, and the efficiency of processing and presentation of antigens by myeloid cells is impaired. Aging cells of innate and adaptive immunity produce factors that form a chronic inflammatory background. All these processes have a serious negative impact on the protective properties of the immune system, increasing inflammation, the risk of developing autoimmune, oncological, and cardiovascular diseases with age. Understanding the mechanisms of reducing the regenerative potential in a comparative analysis of embryonic and aging HSCs, the features of inflammatory aging will allow us to get closer to deciphering the programs for the development, aging, regeneration and rejuvenation of HSCs and the immune system.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, Sirius, 354340 Sochi, Russia
| | - Valeriy Tereshchenko
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, Sirius, 354340 Sochi, Russia
| | - Tatiana N Berezina
- Department of Scientific Basis of Extreme Psychology, Moscow State University of Psychology and Education, 127051 Moscow, Russia
| | - Stanislav Rybtsov
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, Sirius, 354340 Sochi, Russia
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, UK
| |
Collapse
|
9
|
Park J, An H, Lim J, Park IS, Kim MH, Kim JH, Kim SW, Koh YI, Lee EY, Cheon JH. Interplay between chronic inflammation and clonal haematopoiesis of indeterminate potential in Behçet's disease. Arthritis Res Ther 2023; 25:33. [PMID: 36864496 PMCID: PMC9979406 DOI: 10.1186/s13075-023-03014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/14/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Clonal haematopoiesis of indeterminate potential (CHIP) is a predisposition to haematological malignancy whose relationship with chronic inflammatory diseases, such as cardiovascular diseases, has been highlighted. Here, we aimed to investigate the CHIP emergence rate and its association with inflammatory markers in Behçet's disease (BD). METHODS We performed targeted next-generation sequencing to detect the presence of CHIP using peripheral blood cells from 117 BD patients and 5004 healthy controls between March 2009 and September 2021 and analysed the association between CHIP and inflammatory markers. RESULTS CHIP was detected in 13.9% of patients in the control group and 11.1% of patients in the BD group, indicating no significant intergroup difference. Among the BD patients of our cohort, five variants (DNMT3A, TET2, ASXL1, STAG2, and IDH2) were detected. DNMT3A mutations were the most common, followed by TET2 mutations. CHIP carriers with BD had a higher serum platelet count, erythrocyte sedimentation rate, and C-reactive protein level; older age; and lower serum albumin level at diagnosis than non-CHIP carriers with BD. However, the significant association between inflammatory markers and CHIP disappeared after the adjustment for various variables, including age. Moreover, CHIP was not an independent risk factor for poor clinical outcomes in patients with BD. CONCLUSIONS Although BD patients did not have higher CHIP emergence rates than the general population, older age and degree of inflammation in BD were associated with CHIP emergence.
Collapse
Affiliation(s)
- Jihye Park
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.,Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Jiwoo Lim
- Genome Opinion Inc, Seoul, South Korea
| | - I Seul Park
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.,Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Mi Hyun Kim
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Hyung Kim
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.,Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Won Kim
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.,Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Il Koh
- Genome Opinion Inc, Seoul, South Korea.,Division of Hematology and Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Eun Young Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea.
| | - Jae Hee Cheon
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea. .,Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea. .,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
10
|
Transcriptomic profiling of calcified aortic valves in clonal hematopoiesis of indeterminate potential carriers. Sci Rep 2022; 12:20400. [PMID: 36437309 PMCID: PMC9701688 DOI: 10.1038/s41598-022-24130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is characterized by the presence of clones of mutated blood cells without overt blood diseases. In the last few years, it has emerged that CHIP is associated with atherosclerosis and coronary calcification and that it is an independent determinant of cardiovascular mortality. Recently, CHIP has been found to occur frequently in patients with calcific aortic valve disease (CAVD) and it is associated with a poor prognosis after valve replacement. We assessed the frequency of CHIP by DNA sequencing in the blood cells of 168 CAVD patients undergoing surgical aortic valve replacement or transcatheter aortic valve implantation and investigated the effect of CHIP on 12 months survival. To investigate the pathological process of CAVD in CHIP carriers, we compared by RNA-Seq the aortic valve transcriptome of patients with or without CHIP and non-calcific controls. Transcriptomics data were validated by immunohistochemistry on formalin-embedded aortic valve samples. We confirm that CHIP is common in CAVD patients and that its presence is associated with higher mortality following valve replacement. Additionally, we show, for the first time, that CHIP is often accompanied by a broad cellular and humoral immune response in the explanted aortic valve. Our results suggest that an excessive inflammatory response in CHIP patients may be related to the onset and/or progression of CAVD and point to B cells as possible new effectors of CHIP-induced inflammation.
Collapse
|
11
|
Cardiovascular Mortality Risk in Patients with Bladder Cancer: A Population-Based Study. J Cardiovasc Dev Dis 2022; 9:jcdd9080255. [PMID: 36005419 PMCID: PMC9409417 DOI: 10.3390/jcdd9080255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The purpose of this study was to evaluate the risk of cardiovascular mortality (CVM) among patients with bladder cancer (BC). Methods and Materials: Data were collected from the Surveillance, Epidemiology, and End Results (SEER) database for patients who were diagnosed with BC by pathology between 2000 and 2016. The standardized mortality rate (SMR) was calculated based on reference data from the general population. Nelson–Aalen cumulative hazard curves were used to assess the risk of experiencing CVM in BC patients. Multivariate competing risk models were performed. Results: In total, data from 237,563 BC patients were obtained from the SEER database for further analysis, of which 21,822 patients experienced CVM; the overall SMR for CVM in BC patients was 1.16 (95% CI: 1.14–1.17). Age, race, sex, year of diagnosis, histologic type, summary stage, surgery, marital status, and college education level were independent predictors of CVM in patients with BC. Conclusions: Patients with BC have a significantly increased risk of experiencing CVM compared to the general population. Pre-identification of high-risk groups and cardiovascular protection interventions are important measures to effectively improve survival in this group of patients.
Collapse
|
12
|
Nkosi D, Miller CA, Jajosky AN, Oltvai ZN. Incidental discovery of acute myeloid leukemia during liquid biopsy of a lung cancer patient. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006201. [PMID: 35732498 PMCID: PMC9235846 DOI: 10.1101/mcs.a006201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
Liquid biopsy is considered an alternative to standard next-generation sequencing (NGS) of solid tumor samples when biopsy tissue is inadequate for testing or when testing of a peripheral blood sample is preferred. A common assumption of liquid biopsies is that the NGS data obtained on circulating cell-free DNA is a high-fidelity reflection of what would be found by solid tumor testing. Here, we describe a case that challenges this widely held assumption. A patient diagnosed with lung carcinoma showed pathogenic IDH1 and TP53 mutations by liquid biopsy NGS at an outside laboratory. Subsequent in-house NGS of a metastatic lymph node fine-needle aspiration (FNA) sample revealed two pathogenic EGFR mutations. Morphologic and immunophenotypic assessment of the patient's blood sample identified acute myeloid leukemia, with in-house NGS confirming and identifying pathogenic IDH1, TP53, and BCOR mutations, respectively. This case, together with a few similar reports, demonstrates that caution is needed when interpreting liquid biopsy NGS results, especially if they are inconsistent with the presumptive diagnosis. Our case suggests that routine parallel sequencing of peripheral white blood cells would substantially increase the fidelity of the obtained liquid biopsy results.
Collapse
Affiliation(s)
- Dingani Nkosi
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Caroline A Miller
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Audrey N Jajosky
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Zoltán N Oltvai
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| |
Collapse
|
13
|
Papageorgiou L, Elalamy I, Vandreden P, Gerotziafas GT. Thrombotic and Hemorrhagic Issues Associated with Myeloproliferative Neoplasms. Clin Appl Thromb Hemost 2022; 28:10760296221097969. [PMID: 35733370 PMCID: PMC9234921 DOI: 10.1177/10760296221097969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Thrombotic and hemorrhagic complications are related to a significant rate of
morbidity and mortality in patients with myeloproliferative neoplasms (MPNs),
they are therefore called “thrombohemorrhagic” syndromes. Several clinical
factors, such as age and presence of cardiovascular comorbidities are
responsible for thrombotic complications. High blood counts, platelet
alterations, presence of JAK2 mutation and possibly of other CHIP mutations such
as TET2, DNMT3A, and ASXL1, procoagulant microparticles, NETs formation,
endothelial activation and neo-angiogenesis are some of the parameters
accounting for hypercoagulability in patients with myeloproliferative neoplasms.
Bleeding complications emerge as a result of platelet exhaustion. They can be
also linked to a functional deficiency of von Willebrand factor, when platelet
counts rise above 1000G/L. The mainstay of management consists on preventing
hemostatic complications, by antiplatelet and/or anticoagulant treatment and
myelosuppressive agents in high-risk patients.Circumstances related to a high
thrombohemorrhagic risk, such as pregnancy and the perioperative period, prompt
for specific management with regards to anticoagulation and myelosuppression
treatment type. In order to apply a patient-specific treatment strategy, there
is a need for a risk score assessment tool encompassing clinical parameters and
hemostasis biomarkers.
Collapse
Affiliation(s)
- Loula Papageorgiou
- Hrombosis Center, 432215Service d'Hématologie Biologique Hôpital Tenon, Hôpitaux Universitaires de l'Est Parisien, Assistance Publique Hôpitaux de Paris, Faculté de Médecine Sorbonne Université, Paris, France.,Faculty of Medicine, Research Group "Cancer, Haemostasis and Angiogenesis", INSERM U938, Centre de Recherche Saint-Antoine, Institut Universitaire de Cancérologie, Sorbonne University, Paris, France
| | - Ismail Elalamy
- Hrombosis Center, 432215Service d'Hématologie Biologique Hôpital Tenon, Hôpitaux Universitaires de l'Est Parisien, Assistance Publique Hôpitaux de Paris, Faculté de Médecine Sorbonne Université, Paris, France.,Faculty of Medicine, Research Group "Cancer, Haemostasis and Angiogenesis", INSERM U938, Centre de Recherche Saint-Antoine, Institut Universitaire de Cancérologie, Sorbonne University, Paris, France.,The First I.M. Sechenov Moscow State Medical University, Moscow, Russia
| | - Patrick Vandreden
- Faculty of Medicine, Research Group "Cancer, Haemostasis and Angiogenesis", INSERM U938, Centre de Recherche Saint-Antoine, Institut Universitaire de Cancérologie, Sorbonne University, Paris, France.,Clinical Research Department, Diagnostica Stago, Gennevilliers, France
| | - Grigoris T Gerotziafas
- Hrombosis Center, 432215Service d'Hématologie Biologique Hôpital Tenon, Hôpitaux Universitaires de l'Est Parisien, Assistance Publique Hôpitaux de Paris, Faculté de Médecine Sorbonne Université, Paris, France.,Faculty of Medicine, Research Group "Cancer, Haemostasis and Angiogenesis", INSERM U938, Centre de Recherche Saint-Antoine, Institut Universitaire de Cancérologie, Sorbonne University, Paris, France
| |
Collapse
|
14
|
Kuek V, Hughes AM, Kotecha RS, Cheung LC. Therapeutic Targeting of the Leukaemia Microenvironment. Int J Mol Sci 2021; 22:6888. [PMID: 34206957 PMCID: PMC8267786 DOI: 10.3390/ijms22136888] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, the conduct of uniform prospective clinical trials has led to improved remission rates and survival for patients with acute myeloid leukaemia and acute lymphoblastic leukaemia. However, high-risk patients continue to have inferior outcomes, where chemoresistance and relapse are common due to the survival mechanisms utilised by leukaemic cells. One such mechanism is through hijacking of the bone marrow microenvironment, where healthy haematopoietic machinery is transformed or remodelled into a hiding ground or "sanctuary" where leukaemic cells can escape chemotherapy-induced cytotoxicity. The bone marrow microenvironment, which consists of endosteal and vascular niches, can support leukaemogenesis through intercellular "crosstalk" with niche cells, including mesenchymal stem cells, endothelial cells, osteoblasts, and osteoclasts. Here, we summarise the regulatory mechanisms associated with leukaemia-bone marrow niche interaction and provide a comprehensive review of the key therapeutics that target CXCL12/CXCR4, Notch, Wnt/b-catenin, and hypoxia-related signalling pathways within the leukaemic niches and agents involved in remodelling of niche bone and vasculature. From a therapeutic perspective, targeting these cellular interactions is an exciting novel strategy for enhancing treatment efficacy, and further clinical application has significant potential to improve the outcome of patients with leukaemia.
Collapse
Affiliation(s)
- Vincent Kuek
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Anastasia M. Hughes
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Rishi S. Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
15
|
Yung Y, Lee E, Chu HT, Yip PK, Gill H. Targeting Abnormal Hematopoietic Stem Cells in Chronic Myeloid Leukemia and Philadelphia Chromosome-Negative Classical Myeloproliferative Neoplasms. Int J Mol Sci 2021; 22:ijms22020659. [PMID: 33440869 PMCID: PMC7827471 DOI: 10.3390/ijms22020659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/02/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are unique hematopoietic stem cell disorders sharing mutations that constitutively activate the signal-transduction pathways involved in haematopoiesis. They are characterized by stem cell-derived clonal myeloproliferation. The key MPNs comprise chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). CML is defined by the presence of the Philadelphia (Ph) chromosome and BCR-ABL1 fusion gene. Despite effective cytoreductive agents and targeted therapy, complete CML/MPN stem cell eradication is rarely achieved. In this review article, we discuss the novel agents and combination therapy that can potentially abnormal hematopoietic stem cells in CML and MPNs and the CML/MPN stem cell-sustaining bone marrow microenvironment.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Autophagy
- Biomarkers, Tumor
- Cell Survival/drug effects
- Cell Transformation, Neoplastic/genetics
- Combined Modality Therapy
- Disease Susceptibility
- Genetic Predisposition to Disease
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Molecular Targeted Therapy
- Myeloproliferative Disorders/etiology
- Myeloproliferative Disorders/pathology
- Myeloproliferative Disorders/therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Philadelphia Chromosome
- Signal Transduction/drug effects
- Stem Cell Niche
- Tumor Microenvironment
Collapse
Affiliation(s)
| | | | | | | | - Harinder Gill
- Correspondence: ; Tel.: +852-2255-4542; Fax: +852-2816-2863
| |
Collapse
|
16
|
Abstract
Cardiovascular diseases and cancer are major causes of mortality in industrialized societies. They share common risk factors (e.g., genetics, lifestyle, age, infection, toxins, and pollution) and might also mutually promote the onset of the respective other disease. Cancer can affect cardiac function directly while antitumor therapies may have acute- and/or late-onset cardiotoxic effects. Recent studies suggest that heart failure might promote tumorigenesis and tumor progression. In both cancer and cardiovascular diseases, genetic predisposition is implicated in the disease onset and development. In this regard, genetic variants classically associated with cardiomyopathies increase the risk for toxic side effects on the cardiovascular system. Genetic variants associated with increased cancer risk are frequent in patients with peripartum cardiomyopathy complicated by cancer, pointing to a common genetic predisposition for both diseases. Common risk factors, cardiotoxic antitumor treatment, genetic variants (associated with cardiomyopathies and/or cancer), and increased cardiac stress lead us to propose the "multi-hit hypothesis" linking cancer and cardiovascular diseases. In the present review, we summarize the current knowledge on potential connecting factors between cancer and cardiovascular diseases with a major focus on the role of genetic predisposition and its implication for individual therapeutic strategies and risk assessment in the novel field of oncocardiology.
Collapse
Affiliation(s)
- Tobias J Pfeffer
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Stefan Pietzsch
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Denise Hilfiker-Kleiner
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
17
|
Kim M, Lee SP, Kwak S, Yang S, Kim YJ, Andreini D, Al-Mallah MH, Budoff MJ, Cademartiri F, Chinnaiyan K, Choi JH, Conte E, Marques H, de Araújo Gonçalves P, Gottlieb I, Hadamitzky M, Leipsic JA, Maffei E, Pontone G, Raff GL, Shin S, Lee BK, Chun EJ, Sung JM, Lee SE, Berman DS, Lin FY, Virmani R, Samady H, Stone PH, Narula J, Bax JJ, Shaw LJ, Min JK, Chang HJ. Impact of age on coronary artery plaque progression and clinical outcome: A PARADIGM substudy. J Cardiovasc Comput Tomogr 2020; 15:232-239. [PMID: 33032975 DOI: 10.1016/j.jcct.2020.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/26/2020] [Accepted: 09/28/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND The association of age with coronary plaque dynamics is not well characterized by coronary computed tomography angiography (CCTA). METHODS From a multinational registry of patients who underwent serial CCTA, 1153 subjects (61 ± 5 years old, 61.1% male) were analyzed. Annualized volume changes of total, fibrous, fibrofatty, necrotic core, and dense calcification plaque components of the whole heart were compared by age quartile groups. Clinical events, a composite of all-cause death, acute coronary syndrome, and any revascularization after 30 days of the initial CCTA, were also analyzed. Random forest analysis was used to define the relative importance of age on plaque progression. RESULTS With a 3.3-years' median interval between the two CCTA, the median annual volume changes of total plaque in each age quartile group was 7.8, 10.5, 10.8, and 12.1 mm3/year and for dense calcification, 2.5, 4.6, 5.4, and 7.1 mm3/year, both of which demonstrated a tendency to increase by age (p-for-trend = 0.001 and < 0.001, respectively). However, this tendency was not observed in any other plaque components. The annual volume changes of total plaque and dense calcification were also significantly different in the propensity score-matched lowest age quartile group versus the other age groups as was the composite clinical event (log-rank p = 0.003). In random forest analysis, age had comparable importance in the total plaque volume progression as other traditional factors. CONCLUSIONS The rate of whole-heart plaque progression and dense calcification increases depending on age. Age is a significant factor in plaque growth, the importance of which is comparable to other traditional risk factors. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifiers: NCT02803411.
Collapse
Affiliation(s)
- Minkwan Kim
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, South Korea; Division of Cardiology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, Gyeonggi-do, South Korea
| | - Seung-Pyo Lee
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, South Korea.
| | - Soongu Kwak
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, South Korea
| | - Seokhun Yang
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, South Korea
| | - Yong-Jin Kim
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, South Korea
| | | | - Mouaz H Al-Mallah
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Matthew J Budoff
- Department of Medicine, Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | | | | | | | | | - Hugo Marques
- UNICA, Unit of Cardiovascular Imaging, Hospital da Luz, Lisboa, Portugal
| | | | - Ilan Gottlieb
- Department of Radiology, Casa de Saude São Jose, Rio de Janeiro, Brazil
| | - Martin Hadamitzky
- Department of Radiology and Nuclear Medicine, German Heart Center Munich, Munich, Germany
| | - Jonathon A Leipsic
- Department of Medicine and Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Erica Maffei
- Department of Radiology, Area Vasta 1/ASUR Marche, Urbino, Italy
| | | | - Gilbert L Raff
- Department of Cardiology, William Beaumont Hospital, Royal Oak, MI, USA
| | - Sanghoon Shin
- Division of Cardiology, Department of Internal Medicine, Ewha Woman's University Seoul Hospital, Seoul, South Korea
| | - Byoung Kwon Lee
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Ju Chun
- Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ji Min Sung
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea; Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | - Sang-Eun Lee
- Division of Cardiology, Department of Internal Medicine, Ewha Woman's University Seoul Hospital, Seoul, South Korea; Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | - Daniel S Berman
- Department of Imaging and Medicine, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Fay Y Lin
- Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Renu Virmani
- Department of Pathology, CVPath Institute, Gaithersburg, MD, USA
| | - Habib Samady
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Peter H Stone
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jagat Narula
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, Zena and Michael A. Wiener Cardiovascular Institute, and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, New York, NY, USA
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Leslee J Shaw
- Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - James K Min
- Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Hyuk-Jae Chang
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea; Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| |
Collapse
|
18
|
Balistreri CR, Garagnani P, Madonna R, Vaiserman A, Melino G. Developmental programming of adult haematopoiesis system. Ageing Res Rev 2019; 54:100918. [PMID: 31226498 DOI: 10.1016/j.arr.2019.100918] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/15/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022]
Abstract
The Barker hypothesis of 'foetal origin of adult diseases' has led to emphasize the concept of 'developmental programming', based on the crucial role of epigenetic factors. Accordingly, it has been demonstrated that parental adversity (before conception and during pregnancy) and foetal factors (i.e., hypoxia, malnutrition and placental insufficiency) permanently modify the physiological systems of the progeny, predisposing them to premature ageing and chronic disease during adulthood. Thus, an altered functionality of the endocrine, immune, nervous and cardiovascular systems is observed in the progeny. However, it remains to be understood whether the haematopoietic system itself also represents a portrait of foetal programming. Here, we provide evidence, reporting and discussing related theories, and results of studies described in the literature. In addition, we have outlined our opinions and suggest how it is possible to intervene to correct foetal mal-programming. Some pro-health interventions and recommendations are proposed, with the hope of guarantee the health of future generations and trying to combat the continuous increase in age-related diseases in human populations.
Collapse
|