1
|
Fernandez‐Sanchez J, Rodgers R, Maknojia AA, Shaikh N, Yan H, Mejia ME, Hendricks H, Jenq RR, Reddy P, Banerjee R, Schraw JM, Baldridge MT, King KY. Antibiotic-associated neutropenia is marked by the depletion of intestinal Lachnospiraceae and associated metabolites in pediatric patients. Hemasphere 2024; 8:e70038. [PMID: 39525856 PMCID: PMC11543857 DOI: 10.1002/hem3.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/27/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Prolonged antibiotic exposure causes dangerous hematologic side effects, including neutropenia, in up to 34% of patients. Murine studies established a link between the intestinal microbiota and hematopoiesis. To identify factors that predispose to neutropenia in pediatric patients, we evaluated changes in microbiota-derived metabolites and intestinal microbiota composition after prolonged courses of antibiotics. In this multi-center study, patients with infections requiring anticipated antibiotic treatment of two or more weeks were enrolled. Stool samples were obtained at the start and completion of antibiotics or at neutropenia onset (prospective arm). Some patients were enrolled in a retrospective arm in which a stool sample was collected at the time of neutropenia during antibiotic therapy and 2-4 weeks after completion of antibiotics with recovery of blood counts. We identified 10 patients who developed neutropenia on antibiotics and 29 controls matched for age, sex, race, and ethnicity. Clinical data demonstrated no association between neutropenia and the type of infection or antibiotic used; however, patients with neutropenia were admitted to the intensive care unit more often and received longer courses of antibiotics. Reduced intestinal microbiome richness and, specifically, decreased abundance of Lachnospiraceae family members correlated with neutropenia. Untargeted stool metabolomic profiling revealed several metabolites that were depleted exclusively in patients with neutropenia, including members of the urea cycle pathway, pyrimidine metabolism, and fatty acid metabolism that are known to be produced by Lachnospiraceae. Our study shows a relationship between intestinal microbiota disruption and abnormal hematopoiesis and identifies taxa and metabolites likely to contribute to microbiota-sustained hematopoiesis.
Collapse
Affiliation(s)
| | - Rachel Rodgers
- Department of Medicine, Division of Infectious DiseasesWashington University School of MedicineSt. LouisMissouriUSA
| | - Arushana A. Maknojia
- Immunology and Microbiology Program, Graduate School of Biomedical SciencesBaylor College of MedicineHoustonTexasUSA
| | - Nusrat Shaikh
- Department of Pediatrics, Center for Research AdvancementBaylor College of MedicineHoustonTexasUSA
| | - Hannah Yan
- Immunology and Microbiology Program, Graduate School of Biomedical SciencesBaylor College of MedicineHoustonTexasUSA
| | - Marlyd E. Mejia
- Immunology and Microbiology Program, Graduate School of Biomedical SciencesBaylor College of MedicineHoustonTexasUSA
| | - Hope Hendricks
- Department of Pediatrics, Division of Infectious DiseasesDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Robert R. Jenq
- Departments of Genomic Medicine and Stem Cell Transplantation Cellular TherapyMD Anderson Cancer CenterHoustonTexas
| | - Pavan Reddy
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of MedicineHoustonTexasUSA
| | - Ritu Banerjee
- Department of Pediatrics, Division of Pediatric Infectious DiseasesVanderbilt University Medical Center, Vanderbilt UniversityNashvilleTennesseeUSA
| | - Jeremy M. Schraw
- Department of Pediatrics, Division of Hematology–OncologyBaylor College of MedicineHoustonTexasUSA
- Department of Pediatrics, Center for Epidemiology and Population HealthBaylor College of MedicineHoustonTexasUSA
| | - Megan T. Baldridge
- Department of Medicine, Division of Infectious DiseasesWashington University School of MedicineSt. LouisMissouriUSA
| | - Katherine Y. King
- Immunology and Microbiology Program, Graduate School of Biomedical SciencesBaylor College of MedicineHoustonTexasUSA
- Department of Pediatrics, Division of Infectious DiseasesCenter for Cell and Gene Therapy, Baylor College of Medicine and Texas Children's HospitalHoustonTexasUSA
| |
Collapse
|
2
|
Karatepe K, Mafra de Faria B, Zhang J, Chen X, Pinto H, Fyodorov D, Sefik E, Willcockson M, Flavell R, Skoultchi A, Guo S. Linker histone regulates the myeloid versus lymphoid bifurcation of multipotent hematopoietic stem and progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613227. [PMID: 39345411 PMCID: PMC11429722 DOI: 10.1101/2024.09.16.613227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Myeloid-biased differentiation of multipotent hematopoietic stem and progenitor cells (HSPCs) occurs with aging or exhaustion. The molecular mechanism(s) responsible for this fate bias remain unclear. Here we report that linker histone regulates HSPC fate choice at the lymphoid versus myeloid bifurcation. HSPCs expressing H1.0 from a doxycycline (dox) inducible transgene favor the lymphoid fate, display strengthened nucleosome organization and reduced chromatin accessibility at genomic regions hosting key myeloid fate drivers. The transcription factor Hlf is located in one of such regions, where chromatin accessibility and gene expression is reduced in H1.0 high HSPCs. Furthermore, H1.0 protein in HSPCs decreases in an aspartyl protease dependent manner, a process enhanced in response to interferon alpha (IFNα) signaling. Aspartyl protease inhibitors preserve endogenous H1.0 levels and promote the lymphoid fate of wild type HSPCs. Thus, our work uncovers a point of intervention to mitigate myeloid skewed hematopoiesis.
Collapse
|
3
|
Quarato ER, Salama NA, Calvi LM. Interplay Between Skeletal and Hematopoietic Cells in the Bone Marrow Microenvironment in Homeostasis and Aging. Curr Osteoporos Rep 2024; 22:416-432. [PMID: 38782850 DOI: 10.1007/s11914-024-00874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE OF THE REVIEW In this review, we discuss the most recent scientific advances on the reciprocal regulatory interactions between the skeletal and hematopoietic stem cell niche, focusing on immunomodulation and its interplay with the cell's mitochondrial function, and how this impacts osteoimmune health during aging and disease. RECENT FINDINGS Osteoimmunology investigates interactions between cells that make up the skeletal stem cell niche and immune system. Much work has investigated the complexity of the bone marrow microenvironment with respect to the skeletal and hematopoietic stem cells that regulate skeletal formation and immune health respectively. It has now become clear that these cellular components cooperate to maintain homeostasis and that dysfunction in their interaction can lead to aging and disease. Having a deeper, mechanistic appreciation for osteoimmune regulation will lead to better research perspective and therapeutics with the potential to improve the aging process, skeletal and hematologic regeneration, and disease targeting.
Collapse
Affiliation(s)
- Emily R Quarato
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Noah A Salama
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Laura M Calvi
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
4
|
Eickhardt-Dalbøge CS, Nielsen HV, Fuursted K, Stensvold CR, Andersen LOB, Lilje B, Larsen MK, Kjær L, Christensen SF, Knudsen TA, Skov V, Sørensen AL, Ellervik C, Olsen LR, Christensen JJE, Nielsen XC, Hasselbalch HC, Ingham AC. JAK2V617F drives gut microbiota differences in patients with myeloproliferative neoplasms. Eur J Haematol 2024; 112:776-787. [PMID: 38226781 DOI: 10.1111/ejh.14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (MF) are myeloproliferative neoplasms (MPN). Inflammation is involved in the initiation, progression, and symptomology of the diseases. The gut microbiota impacts the immune system, infection control, and steady-state hematopoiesis. METHODS We analyzed the gut microbiota of 227 MPN patients and healthy controls (HCs) using next-generation sequencing. We expanded our previous results in PV and ET patients with additional PV, pre-MF, and MF patients which allowed us to compare MPN patients collectively, MPN sub-diagnoses, and MPN mutations (separately and combined) vs. HCs (N = 42) and compare within MPN sub-diagnoses and MPN mutation. RESULTS MPN patients had a higher observed richness (median, 245 [range, 49-659]) compared with HCs (191.5 [range, 111-300; p = .003]) and a lower relative abundance of taxa within the Firmicutes phylum; for example, Faecalibacterium (6% vs. 14%, p < .001). The microbiota of CALR-positive patients (N = 30) resembled that of HCs more than that of patients with JAK2V617F (N = 177). In JAK2V617F-positive patients, only minor differences in the gut microbiota were observed between MPN sub-diagnoses, illustrating the importance of this mutation. CONCLUSION The gut microbiota in MPN patients differs from HCs and is driven by JAK2V617F, whereas the gut microbiota in CALR patients resembles HCs more.
Collapse
Affiliation(s)
- Christina Schjellerup Eickhardt-Dalbøge
- The Regional Department of Clinical Microbiology, University Hospital of Region Zealand, Slagelse, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Henrik V Nielsen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Kurt Fuursted
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | - Lee O' Brien Andersen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Berit Lilje
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Morten Kranker Larsen
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Trine Alma Knudsen
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Christina Ellervik
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Data and Data Support, Region Zealand, Sorø, Denmark
| | - Lars Rønn Olsen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Jens Jørgen Elmer Christensen
- The Regional Department of Clinical Microbiology, University Hospital of Region Zealand, Slagelse, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Xiaohui Chen Nielsen
- The Regional Department of Clinical Microbiology, University Hospital of Region Zealand, Slagelse, Denmark
| | - Hans Carl Hasselbalch
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Cäcilia Ingham
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
5
|
Patel B, Zhou Y, Babcock RL, Ma F, Zal MA, Kumar D, Medik YB, Kahn LM, Pineda JE, Park EM, Schneider SM, Tang X, Raso MG, Jeter CR, Zal T, Clise-Dwyer K, Keyomarsi K, Giancotti FG, Colla S, Watowich SS. STAT3 protects hematopoietic stem cells by preventing activation of a deleterious autocrine type-I interferon response. Leukemia 2024; 38:1143-1155. [PMID: 38467768 PMCID: PMC11283865 DOI: 10.1038/s41375-024-02218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) maintain blood-forming and immune activity, yet intrinsic regulators of HSPCs remain elusive. STAT3 function in HSPCs has been difficult to dissect as Stat3-deficiency in the hematopoietic compartment induces systemic inflammation, which can impact HSPC activity. Here, we developed mixed bone marrow (BM) chimeric mice with inducible Stat3 deletion in 20% of the hematopoietic compartment to avoid systemic inflammation. Stat3-deficient HSPCs were significantly impaired in reconstitution ability following primary or secondary bone marrow transplantation, indicating hematopoietic stem cell (HSC) defects. Single-cell RNA sequencing of Lin-ckit+Sca1+ BM cells (LSKs) revealed aberrant activation of cell cycle, p53, and interferon (IFN) pathways in Stat3-deficient HSPCs. Stat3-deficient LSKs accumulated γH2AX and showed increased expression of DNA sensors and type-I IFN (IFN-I), while treatment with A151-ODN inhibited expression of IFN-I and IFN-responsive genes. Further, the blockade of IFN-I receptor signaling suppressed aberrant cell cycling, STAT1 activation, and nuclear p53 accumulation. Collectively, our results show that STAT3 inhibits a deleterious autocrine IFN response in HSCs to maintain long-term HSC function. These data signify the importance of ensuring therapeutic STAT3 inhibitors are targeted specifically to diseased cells to avoid off-target loss of healthy HSPCs.
Collapse
Affiliation(s)
- Bhakti Patel
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yifan Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rachel L Babcock
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Feiyang Ma
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - M Anna Zal
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dhiraj Kumar
- Herbert Irving Cancer Center and Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Yusra B Medik
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laura M Kahn
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Josué E Pineda
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Elizabeth M Park
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah M Schneider
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Ximing Tang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Collene R Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tomasz Zal
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Filippo G Giancotti
- Herbert Irving Cancer Center and Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Program for Innovative Microbiome and Translational Research (PRIME-TR), The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Cong X, Tan H, Lv Y, Mao K, Xin Y, Wang J, Meng X, Guan M, Wang H, Yang YG, Sun T. Impacts of cationic lipid-DNA complexes on immune cells and hematopoietic cells in vivo. Biomater Sci 2024; 12:2381-2393. [PMID: 38500446 DOI: 10.1039/d4bm00148f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The inability to systemic administration of nanoparticles, particularly cationic nanoparticles, has been a significant barrier to their clinical translation due to toxicity concerns. Understanding the in vivo behavior of cationic lipids is crucial, given their potential impact on critical biological components such as immune cells and hematopoietic stem cells (HSC). These cells are essential for maintaining the body's homeostasis, and their interaction with cationic lipids is a key factor in determining the safety and efficacy of these nanoparticles. In this study, we focused on the cytotoxic effects of cationic lipid/DNA complexes (CLN/DNA). Significantly, we observed that the most substantial cytotoxic effects, including a marked increase in numbers of long-term hematopoietic stem cells (LT-HSC), occurred 24 h post-CLN/DNA treatment in mice. Furthermore, we found that CLN/DNA-induced HSC expansion in bone marrow (BM) led to a notable decrease in the ability to reestablish blood cell production. Our study provides crucial insights into the interaction between cationic lipids and vital cellular components of the immune and hematopoietic systems.
Collapse
Affiliation(s)
- Xiuxiu Cong
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Huizhu Tan
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Yue Lv
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
- International Center of Future Science, Jilin University, Changchun, Jilin, 130015, China
| | - Yanbao Xin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Jialiang Wang
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Xiandi Meng
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Meng Guan
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, Jilin, 130061, China.
| | - Haorui Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
- International Center of Future Science, Jilin University, Changchun, Jilin, 130015, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
- International Center of Future Science, Jilin University, Changchun, Jilin, 130015, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
- International Center of Future Science, Jilin University, Changchun, Jilin, 130015, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
7
|
Wu Q, Zhang J, Kumar S, Shen S, Kincaid M, Johnson CB, Zhang YS, Turcotte R, Alt C, Ito K, Homan S, Sherman BE, Shao TY, Slaughter A, Weinhaus B, Song B, Filippi MD, Grimes HL, Lin CP, Ito K, Way SS, Kofron JM, Lucas D. Resilient anatomy and local plasticity of naive and stress haematopoiesis. Nature 2024; 627:839-846. [PMID: 38509363 PMCID: PMC10972750 DOI: 10.1038/s41586-024-07186-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/09/2024] [Indexed: 03/22/2024]
Abstract
The bone marrow adjusts blood cell production to meet physiological demands in response to insults. The spatial organization of normal and stress responses are unknown owing to the lack of methods to visualize most steps of blood production. Here we develop strategies to image multipotent haematopoiesis, erythropoiesis and lymphopoiesis in mice. We combine these with imaging of myelopoiesis1 to define the anatomy of normal and stress haematopoiesis. In the steady state, across the skeleton, single stem cells and multipotent progenitors distribute through the marrow enriched near megakaryocytes. Lineage-committed progenitors are recruited to blood vessels, where they contribute to lineage-specific microanatomical structures composed of progenitors and immature cells, which function as the production sites for each major blood lineage. This overall anatomy is resilient to insults, as it was maintained after haemorrhage, systemic bacterial infection and granulocyte colony-stimulating factor (G-CSF) treatment, and during ageing. Production sites enable haematopoietic plasticity as they differentially and selectively modulate their numbers and output in response to insults. We found that stress responses are variable across the skeleton: the tibia and the sternum respond in opposite ways to G-CSF, and the skull does not increase erythropoiesis after haemorrhage. Our studies enable in situ analyses of haematopoiesis, define the anatomy of normal and stress responses, identify discrete microanatomical production sites that confer plasticity to haematopoiesis, and uncover unprecedented heterogeneity of stress responses across the skeleton.
Collapse
Affiliation(s)
- Qingqing Wu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Jizhou Zhang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sumit Kumar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Siyu Shen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Morgan Kincaid
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Courtney B Johnson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yanan Sophia Zhang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Raphaël Turcotte
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell, Regenerative Medicine Research, Department of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Clemens Alt
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kyoko Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell, Regenerative Medicine Research, Department of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shelli Homan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bryan E Sherman
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tzu-Yu Shao
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Anastasiya Slaughter
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Benjamin Weinhaus
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Baobao Song
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Marie Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - H Leighton Grimes
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Charles P Lin
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell, Regenerative Medicine Research, Department of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sing Sing Way
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - J Matthew Kofron
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
8
|
Zhang YW, Schönberger K, Cabezas‐Wallscheid N. Bidirectional interplay between metabolism and epigenetics in hematopoietic stem cells and leukemia. EMBO J 2023; 42:e112348. [PMID: 38010205 PMCID: PMC10711668 DOI: 10.15252/embj.2022112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 11/29/2023] Open
Abstract
During the last decades, remarkable progress has been made in further understanding the complex molecular regulatory networks that maintain hematopoietic stem cell (HSC) function. Cellular and organismal metabolisms have been shown to directly instruct epigenetic alterations, and thereby dictate stem cell fate, in the bone marrow. Epigenetic regulatory enzymes are dependent on the availability of metabolites to facilitate DNA- and histone-modifying reactions. The metabolic and epigenetic features of HSCs and their downstream progenitors can be significantly altered by environmental perturbations, dietary habits, and hematological diseases. Therefore, understanding metabolic and epigenetic mechanisms that regulate healthy HSCs can contribute to the discovery of novel metabolic therapeutic targets that specifically eliminate leukemia stem cells while sparing healthy HSCs. Here, we provide an in-depth review of the metabolic and epigenetic interplay regulating hematopoietic stem cell fate. We discuss the influence of metabolic stress stimuli, as well as alterations occurring during leukemic development. Additionally, we highlight recent therapeutic advancements toward eradicating acute myeloid leukemia cells by intervening in metabolic and epigenetic pathways.
Collapse
Affiliation(s)
- Yu Wei Zhang
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | | | | |
Collapse
|
9
|
Song T, Yao Y, Papoin J, Sherry B, Diamond B, Gu H, Blanc L, Zou YR. Host factor TIMP1 sustains long-lasting myeloid-biased hematopoiesis after severe infection. J Exp Med 2023; 220:e20230018. [PMID: 37851372 PMCID: PMC10585121 DOI: 10.1084/jem.20230018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/10/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
Infection is able to promote innate immunity by enhancing a long-term myeloid output even after the inciting infectious agent has been cleared. However, the mechanisms underlying such a regulation are not fully understood. Using a mouse polymicrobial peritonitis (sepsis) model, we show that severe infection leads to increased, sustained myelopoiesis after the infection is resolved. In post-infection mice, the tissue inhibitor of metalloproteinases 1 (TIMP1) is constitutively upregulated. TIMP1 antagonizes the function of ADAM10, an essential cleavage enzyme for the activation of the Notch signaling pathway, which suppresses myelopoiesis. While TIMP1 is dispensable for myelopoiesis under the steady state, increased TIMP1 enhances myelopoiesis after infection. Thus, our data establish TIMP1 as a molecular reporter of past infection in the host, sustaining hyper myelopoiesis and serving as a potential therapeutic target for modulating HSPC cell fate.
Collapse
Affiliation(s)
- Tengfei Song
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Yonghong Yao
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Julien Papoin
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Barbara Sherry
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
| | - Betty Diamond
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
| | - Hua Gu
- Laboratory of Molecular Immunology, Institut de Recherches Cliniques de Montréal, Montréal, Canada
| | - Lionel Blanc
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
| | - Yong-Rui Zou
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| |
Collapse
|
10
|
Ziogas A, Bruno M, van der Meel R, Mulder WJM, Netea MG. Trained immunity: Target for prophylaxis and therapy. Cell Host Microbe 2023; 31:1776-1791. [PMID: 37944491 DOI: 10.1016/j.chom.2023.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/27/2023] [Accepted: 10/15/2023] [Indexed: 11/12/2023]
Abstract
Trained immunity is a de facto memory for innate immune responses, leading to long-term functional reprogramming of innate immune cells. In physiological conditions, trained immunity leads to adaptive states that enhance resistance against pathogens and contributes to immunosurveillance. Dysregulated trained immunity can however lead either to defective innate immune responses in severe infections or cancer or to inflammatory and autoimmune diseases if trained immunity is inappropriately activated. Here, we review the immunological and molecular mechanisms that mediate trained immunity induction and propose that trained immunity represents an important target for prophylactic and therapeutic approaches in human diseases. On the one hand, we argue that novel approaches that induce trained immunity may enhance vaccine efficacy. On the other hand, induction of trained immunity in cancer, and inhibition of exaggerated induction of trained immunity in inflammatory disorders, are viable targets amenable for new therapeutic approaches.
Collapse
Affiliation(s)
- Athanasios Ziogas
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands.
| | - Mariolina Bruno
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Willem J M Mulder
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Fan AC, Nakauchi Y, Bai L, Azizi A, Nuno KA, Zhao F, Köhnke T, Karigane D, Cruz-Hernandez D, Reinisch A, Khatri P, Majeti R. RUNX1 loss renders hematopoietic and leukemic cells dependent on IL-3 and sensitive to JAK inhibition. J Clin Invest 2023; 133:e167053. [PMID: 37581927 PMCID: PMC10541186 DOI: 10.1172/jci167053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 08/10/2023] [Indexed: 08/17/2023] Open
Abstract
Disease-initiating mutations in the transcription factor RUNX1 occur as germline and somatic events that cause leukemias with particularly poor prognosis. However, the role of RUNX1 in leukemogenesis is not fully understood, and effective therapies for RUNX1-mutant leukemias remain elusive. Here, we used primary patient samples and a RUNX1-KO model in primary human hematopoietic cells to investigate how RUNX1 loss contributes to leukemic progression and to identify targetable vulnerabilities. Surprisingly, we found that RUNX1 loss decreased proliferative capacity and stem cell function. However, RUNX1-deficient cells selectively upregulated the IL-3 receptor. Exposure to IL-3, but not other JAK/STAT cytokines, rescued RUNX1-KO proliferative and competitive defects. Further, we demonstrated that RUNX1 loss repressed JAK/STAT signaling and rendered RUNX1-deficient cells sensitive to JAK inhibitors. Our study identifies a dependency of RUNX1-mutant leukemias on IL-3/JAK/STAT signaling, which may enable targeting of these aggressive blood cancers with existing agents.
Collapse
Affiliation(s)
- Amy C. Fan
- Immunology Graduate Program
- Institute for Stem Cell Biology and Regenerative Medicine
- Cancer Institute
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California, USA
| | - Yusuke Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine
- Cancer Institute
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California, USA
| | | | - Armon Azizi
- Institute for Stem Cell Biology and Regenerative Medicine
- Cancer Institute
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California, USA
- University of California Irvine School of Medicine, Irvine, California, USA
| | - Kevin A. Nuno
- Institute for Stem Cell Biology and Regenerative Medicine
- Cancer Institute
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California, USA
- Cancer Biology Graduate Program, Stanford University School of Medicine, Stanford, California, USA
| | - Feifei Zhao
- Institute for Stem Cell Biology and Regenerative Medicine
- Cancer Institute
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California, USA
| | - Thomas Köhnke
- Institute for Stem Cell Biology and Regenerative Medicine
- Cancer Institute
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California, USA
| | - Daiki Karigane
- Institute for Stem Cell Biology and Regenerative Medicine
- Cancer Institute
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California, USA
| | - David Cruz-Hernandez
- Institute for Stem Cell Biology and Regenerative Medicine
- Cancer Institute
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California, USA
- Medical Research Council (MRC) Molecular Haematology Unit and Oxford Centre for Haematology, University of Oxford, Oxford, United Kingdom
| | - Andreas Reinisch
- Institute for Stem Cell Biology and Regenerative Medicine
- Cancer Institute
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California, USA
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, School of Medicine, and
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California, USA
| | - Ravindra Majeti
- Institute for Stem Cell Biology and Regenerative Medicine
- Cancer Institute
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
12
|
Sun T, Li D, Huang L, Zhu X. Inflammatory abrasion of hematopoietic stem cells: a candidate clue for the post-CAR-T hematotoxicity? Front Immunol 2023; 14:1141779. [PMID: 37223096 PMCID: PMC10200893 DOI: 10.3389/fimmu.2023.1141779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/25/2023] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has shown remarkable effects in treating various hematological malignancies. However, hematotoxicity, specifically neutropenia, thrombocytopenia, and anemia, poses a serious threat to patient prognosis and remains a less focused adverse effect of CAR-T therapy. The mechanism underlying lasting or recurring late-phase hematotoxicity, long after the influence of lymphodepletion therapy and cytokine release syndrome (CRS), remains elusive. In this review, we summarize the current clinical studies on CAR-T late hematotoxicity to clarify its definition, incidence, characteristics, risk factors, and interventions. Owing to the effectiveness of transfusing hematopoietic stem cells (HSCs) in rescuing severe CAR-T late hematotoxicity and the unignorable role of inflammation in CAR-T therapy, this review also discusses possible mechanisms of the harmful influence of inflammation on HSCs, including inflammatory abrasion of the number and the function of HSCs. We also discuss chronic and acute inflammation. Cytokines, cellular immunity, and niche factors likely to be disturbed in CAR-T therapy are highlighted factors with possible contributions to post-CAR-T hematotoxicity.
Collapse
|
13
|
Willis MB, King KY. Dismantling the tumoral cloak of self-protection. PLoS Biol 2023; 21:e3002104. [PMID: 37141182 PMCID: PMC10159154 DOI: 10.1371/journal.pbio.3002104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Tumors protect themselves from immune clearance by promoting extramedullary hematopoiesis. A new study in PLOS Biology provides insights into the mechanisms underlying this process, which may hold the key to disrupting generation of the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Mara B. Willis
- Department of Pediatrics, Division of Infectious Diseases, Texas Children’s Hospital and Baylor College of Medicine, Houston, Texas, United States of America
| | - Katherine Y. King
- Department of Pediatrics, Division of Infectious Diseases, Texas Children’s Hospital and Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
14
|
Pfau LC, Glasow A, Seidel C, Patties I. Imidazolyl Ethanamide Pentandioic Acid (IEPA) as Potential Radical Scavenger during Tumor Therapy in Human Hematopoietic Stem Cells. Molecules 2023; 28:molecules28052008. [PMID: 36903253 PMCID: PMC10004037 DOI: 10.3390/molecules28052008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Radiochemotherapy-associated leuco- or thrombocytopenia is a common complication, e.g., in head and neck cancer (HNSCC) and glioblastoma (GBM) patients, often compromising treatments and outcomes. Currently, no sufficient prophylaxis for hematological toxicities is available. The antiviral compound imidazolyl ethanamide pentandioic acid (IEPA) has been shown to induce maturation and differentiation of hematopoietic stem and progenitor cells (HSPCs), resulting in reduced chemotherapy-associated cytopenia. In order for it to be a potential prophylaxis for radiochemotherapy-related hematologic toxicity in cancer patients, the tumor-protective effects of IEPA should be precluded. In this study, we investigated the combinatorial effects of IEPA with radio- and/or chemotherapy in human HNSCC and GBM tumor cell lines and HSPCs. Treatment with IEPA was followed by irradiation (IR) or chemotherapy (ChT; cisplatin, CIS; lomustine, CCNU; temozolomide, TMZ). Metabolic activity, apoptosis, proliferation, reactive oxygen species (ROS) induction, long-term survival, differentiation capacity, cytokine release, and DNA double-strand breaks (DSBs) were measured. In tumor cells, IEPA dose-dependently diminished IR-induced ROS induction but did not affect the IR-induced changes in metabolic activity, proliferation, apoptosis, or cytokine release. In addition, IEPA showed no protective effect on the long-term survival of tumor cells after radio- or chemotherapy. In HSPCs, IEPA alone slightly enhanced CFU-GEMM and CFU-GM colony counts (2/2 donors). The IR- or ChT-induced decline of early progenitors could not be reversed by IEPA. Our data indicate that IEPA is a potential candidate for the prevention of hematologic toxicity in cancer treatment without affecting therapeutic benefits.
Collapse
|
15
|
Patel B, Zhou Y, Babcock RL, Ma F, Zal MA, Kumar D, Medik YB, Kahn LM, Pineda JE, Park EM, Tang X, Raso MG, Zal T, Clise-Dwyer K, Giancotti FG, Colla S, Watowich SS. STAT3 protects HSCs from intrinsic interferon signaling and loss of long-term blood-forming activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528069. [PMID: 36798265 PMCID: PMC9934695 DOI: 10.1101/2023.02.10.528069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
STAT3 function in hematopoietic stem and progenitor cells (HSPCs) has been difficult to discern as Stat3 deficiency in the hematopoietic system induces systemic inflammation, which can impact HSPC activity. To address this, we established mixed bone marrow (BM) chimeric mice with CreER-mediated Stat3 deletion in 20% of the hematopoietic compartment. Stat3-deficient HSPCs had impaired hematopoietic activity and failed to undergo expansion in BM in contrast to Stat3-sufficient (CreER) controls. Single-cell RNA sequencing of Lin-ckit+Sca1+ BM cells revealed altered transcriptional responses in Stat3-deficient hematopoietic stem cells (HSCs) and multipotent progenitors, including intrinsic activation of cell cycle, stress response, and interferon signaling pathways. Consistent with their deregulation, Stat3-deficient Lin-ckit+Sca1+ cells accumulated γH2AX over time. Following secondary BM transplantation, Stat3-deficient HSPCs failed to reconstitute peripheral blood effectively, indicating a severe functional defect in the HSC compartment. Our results reveal essential roles for STAT3 in HSCs and suggest the potential for using targeted synthetic lethal approaches with STAT3 inhibition to remove defective or diseased HSPCs.
Collapse
Affiliation(s)
- Bhakti Patel
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yifan Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rachel L. Babcock
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Feiyang Ma
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Malgorzata A. Zal
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dhiraj Kumar
- Herbert Irving Cancer Center and Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Yusra B. Medik
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laura M. Kahn
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Josué E. Pineda
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Elizabeth M. Park
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ximing Tang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tomasz Zal
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Filippo G. Giancotti
- Herbert Irving Cancer Center and Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie S. Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Program for Innovative Microbiome and Translational Research (PRIME-TR), The University of Texas MD Anderson Cancer Center, Houston, TX, US
| |
Collapse
|
16
|
Lenaerts A, Kucinski I, Deboutte W, Derecka M, Cauchy P, Manke T, Göttgens B, Grosschedl R. EBF1 primes B-lymphoid enhancers and limits the myeloid bias in murine multipotent progenitors. J Exp Med 2022; 219:e20212437. [PMID: 36048017 PMCID: PMC9437269 DOI: 10.1084/jem.20212437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/23/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022] Open
Abstract
Hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs) generate all cells of the blood system. Despite their multipotency, MPPs display poorly understood lineage bias. Here, we examine whether lineage-specifying transcription factors, such as the B-lineage determinant EBF1, regulate lineage preference in early progenitors. We detect low-level EBF1 expression in myeloid-biased MPP3 and lymphoid-biased MPP4 cells, coinciding with expression of the myeloid determinant C/EBPα. Hematopoietic deletion of Ebf1 results in enhanced myelopoiesis and reduced HSC repopulation capacity. Ebf1-deficient MPP3 and MPP4 cells exhibit an augmented myeloid differentiation potential and a transcriptome with an enriched C/EBPα signature. Correspondingly, EBF1 binds the Cebpa enhancer, and the deficiency and overexpression of Ebf1 in MPP3 and MPP4 cells lead to an up- and downregulation of Cebpa expression, respectively. In addition, EBF1 primes the chromatin of B-lymphoid enhancers specifically in MPP3 cells. Thus, our study implicates EBF1 in regulating myeloid/lymphoid fate bias in MPPs by constraining C/EBPα-driven myelopoiesis and priming the B-lymphoid fate.
Collapse
Affiliation(s)
- Aurelie Lenaerts
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Iwo Kucinski
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Ward Deboutte
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Marta Derecka
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Pierre Cauchy
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Manke
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Berthold Göttgens
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Rudolf Grosschedl
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
17
|
Li J, Williams MJ, Park HJ, Bastos HP, Wang X, Prins D, Wilson NK, Johnson C, Sham K, Wantoch M, Watcham S, Kinston SJ, Pask DC, Hamilton TL, Sneade R, Waller AK, Ghevaert C, Vassiliou GS, Laurenti E, Kent DG, Göttgens B, Green AR. STAT1 is essential for HSC function and maintains MHCIIhi stem cells that resist myeloablation and neoplastic expansion. Blood 2022; 140:1592-1606. [PMID: 35767701 PMCID: PMC7614316 DOI: 10.1182/blood.2021014009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/21/2022] [Indexed: 02/02/2023] Open
Abstract
Adult hematopoietic stem cells (HSCs) are predominantly quiescent and can be activated in response to acute stress such as infection or cytotoxic insults. STAT1 is a pivotal downstream mediator of interferon (IFN) signaling and is required for IFN-induced HSC proliferation, but little is known about the role of STAT1 in regulating homeostatic hematopoietic stem/progenitor cells (HSPCs). Here, we show that loss of STAT1 altered the steady state HSPC landscape, impaired HSC function in transplantation assays, delayed blood cell regeneration following myeloablation, and disrupted molecular programs that protect HSCs, including control of quiescence. Our results also reveal STAT1-dependent functional HSC heterogeneity. A previously unrecognized subset of homeostatic HSCs with elevated major histocompatibility complex class II (MHCII) expression (MHCIIhi) displayed molecular features of reduced cycling and apoptosis and was refractory to 5-fluorouracil-induced myeloablation. Conversely, MHCIIlo HSCs displayed increased megakaryocytic potential and were preferentially expanded in CALR mutant mice with thrombocytosis. Similar to mice, high MHCII expression is a feature of human HSCs residing in a deeper quiescent state. Our results therefore position STAT1 at the interface of stem cell heterogeneity and the interplay between stem cells and the adaptive immune system, areas of broad interest in the wider stem cell field.
Collapse
Affiliation(s)
- Juan Li
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Matthew J. Williams
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Hyun Jung Park
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Hugo P. Bastos
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Xiaonan Wang
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Prins
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Nicola K. Wilson
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Carys Johnson
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Kendig Sham
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Michelle Wantoch
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Sam Watcham
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Sarah J. Kinston
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Dean C. Pask
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Tina L. Hamilton
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Rachel Sneade
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Amie K. Waller
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Cedric Ghevaert
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - George S. Vassiliou
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Elisa Laurenti
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - David G. Kent
- Department of Biology, University of York, York, United Kingdom
| | - Berthold Göttgens
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Anthony R. Green
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
Fernández-García V, González-Ramos S, Martín-Sanz P, Castrillo A, Boscá L. Unraveling the interplay between iron homeostasis, ferroptosis and extramedullary hematopoiesis. Pharmacol Res 2022; 183:106386. [PMID: 35933006 DOI: 10.1016/j.phrs.2022.106386] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
Abstract
Iron participates in myriad processes necessary to sustain life. During the past decades, great efforts have been made to understand iron regulation and function in health and disease. Indeed, iron is associated with both physiological (e.g., immune cell biology and function and hematopoiesis) and pathological (e.g., inflammatory and infectious diseases, ferroptosis and ferritinophagy) processes, yet few studies have addressed the potential functional link between iron, the aforementioned processes and extramedullary hematopoiesis, despite the obvious benefits that this could bring to clinical practice. Further investigation in this direction will shape the future development of individualized treatments for iron-linked diseases and chronic inflammatory disorders, including extramedullary hematopoiesis, metabolic syndrome, cardiovascular diseases and cancer.
Collapse
Affiliation(s)
- Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain.
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain.
| |
Collapse
|
19
|
Balandrán JC, Zamora-Herrera G, Romo-Rodríguez R, Pelayo R. Emergency Hematopoiesis in the Pathobiology of COVID-19: The Dark Side of an Early Innate Protective Mechanism. J Interferon Cytokine Res 2022; 42:393-405. [PMID: 35675647 DOI: 10.1089/jir.2022.0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The recognition of pathogens to which we are constantly exposed induces the immediate replenishment of innate immune cells from the most primitive stages of their development through emergency hematopoiesis, a central mechanism contributing to early infection control. However, as with other protective mechanisms, its functional success is at risk when the excess of inducing signals accelerates immunological catastrophes. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection exhibits a clinical spectrum that ranges from completely asymptomatic states to fatal outcomes, with the amplification of inflammatory components being the critical point that determine the progress, complication, and severity of the disease. This review focuses on the most relevant findings that entail emergency hematopoiesis to SARS-CoV-2 infection response and revolutionize our understanding of the mechanisms governing the clinical prognosis of COVID-19. Of special interest are the metabolic or hyperinflammatory conditions in aging that exacerbate the phenomenon and favor the uncontrolled emergency myelopoiesis leading to the evolution of severe disease.
Collapse
Affiliation(s)
- Juan Carlos Balandrán
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Gabriela Zamora-Herrera
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Rubí Romo-Rodríguez
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Rosana Pelayo
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico
| |
Collapse
|
20
|
Hematopoietic Progenitors and the Bone Marrow Niche Shape the Inflammatory Response and Contribute to Chronic Disease. Int J Mol Sci 2022; 23:ijms23042234. [PMID: 35216355 PMCID: PMC8879433 DOI: 10.3390/ijms23042234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
It is now well understood that the bone marrow (BM) compartment can sense systemic inflammatory signals and adapt through increased proliferation and lineage skewing. These coordinated and dynamic alterations in responding hematopoietic stem and progenitor cells (HSPCs), as well as in cells of the bone marrow niche, are increasingly viewed as key contributors to the inflammatory response. Growth factors, cytokines, metabolites, microbial products, and other signals can cause dysregulation across the entire hematopoietic hierarchy, leading to lineage-skewing and even long-term functional adaptations in bone marrow progenitor cells. These alterations may play a central role in the chronicity of disease as well as the links between many common chronic disorders. The possible existence of a form of “memory” in bone marrow progenitor cells is thought to contribute to innate immune responses via the generation of trained immunity (also called innate immune memory). These findings highlight how hematopoietic progenitors dynamically adapt to meet the demand for innate immune cells and how this adaptive response may be beneficial or detrimental depending on the context. In this review, we will discuss the role of bone marrow progenitor cells and their microenvironment in shaping the scope and scale of the immune response in health and disease.
Collapse
|
21
|
Cinat D, Coppes RP, Barazzuol L. DNA Damage-Induced Inflammatory Microenvironment and Adult Stem Cell Response. Front Cell Dev Biol 2021; 9:729136. [PMID: 34692684 PMCID: PMC8531638 DOI: 10.3389/fcell.2021.729136] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
Adult stem cells ensure tissue homeostasis and regeneration after injury. Due to their longevity and functional requirements, throughout their life stem cells are subject to a significant amount of DNA damage. Genotoxic stress has recently been shown to trigger a cascade of cell- and non-cell autonomous inflammatory signaling pathways, leading to the release of pro-inflammatory factors and an increase in the amount of infiltrating immune cells. In this review, we discuss recent evidence of how DNA damage by affecting the microenvironment of stem cells present in adult tissues and neoplasms can affect their maintenance and long-term function. We first focus on the importance of self-DNA sensing in immunity activation, inflammation and secretion of pro-inflammatory factors mediated by activation of the cGAS-STING pathway, the ZBP1 pathogen sensor, the AIM2 and NLRP3 inflammasomes. Alongside cytosolic DNA, the emerging roles of cytosolic double-stranded RNA and mitochondrial DNA are discussed. The DNA damage response can also initiate mechanisms to limit division of damaged stem/progenitor cells by inducing a permanent state of cell cycle arrest, known as senescence. Persistent DNA damage triggers senescent cells to secrete senescence-associated secretory phenotype (SASP) factors, which can act as strong immune modulators. Altogether these DNA damage-mediated immunomodulatory responses have been shown to affect the homeostasis of tissue-specific stem cells leading to degenerative conditions. Conversely, the release of specific cytokines can also positively impact tissue-specific stem cell plasticity and regeneration in addition to enhancing the activity of cancer stem cells thereby driving tumor progression. Further mechanistic understanding of the DNA damage-induced immunomodulatory response on the stem cell microenvironment might shed light on age-related diseases and cancer, and potentially inform novel treatment strategies.
Collapse
Affiliation(s)
- Davide Cinat
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert P Coppes
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
22
|
Paul KC, Binder AM, Horvath S, Kusters C, Yan Q, Rosario ID, Yu Y, Bronstein J, Ritz B. Accelerated hematopoietic mitotic aging measured by DNA methylation, blood cell lineage, and Parkinson's disease. BMC Genomics 2021; 22:696. [PMID: 34565328 PMCID: PMC8474781 DOI: 10.1186/s12864-021-08009-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Aging and inflammation are important components of Parkinson's disease (PD) pathogenesis and both are associated with changes in hematopoiesis and blood cell composition. DNA methylation (DNAm) presents a mechanism to investigate inflammation, aging, and hematopoiesis in PD, using epigenetic mitotic aging and aging clocks. Here, we aimed to define the influence of blood cell lineage on epigenetic mitotic age and then investigate mitotic age acceleration with PD, while considering epigenetic age acceleration biomarkers. RESULTS We estimated epigenetic mitotic age using the "epiTOC" epigenetic mitotic clock in 10 different blood cell populations and in a population-based study of PD with whole-blood. Within subject analysis of the flow-sorted purified blood cell types DNAm showed a clear separation of epigenetic mitotic age by cell lineage, with the mitotic age significantly lower in myeloid versus lymphoid cells (p = 2.1e-11). PD status was strongly associated with accelerated epigenetic mitotic aging (AccelEpiTOC) after controlling for cell composition (OR = 2.11, 95 % CI = 1.56, 2.86, p = 1.6e-6). AccelEpiTOC was also positively correlated with extrinsic epigenetic age acceleration, a DNAm aging biomarker related to immune system aging (with cell composition adjustment: R = 0.27, p = 6.5e-14), and both were independently associated with PD. Among PD patients, AccelEpiTOC measured at baseline was also associated with longitudinal motor and cognitive symptom decline. CONCLUSIONS The current study presents a first look at epigenetic mitotic aging in PD and our findings suggest accelerated hematopoietic cell mitosis, possibly reflecting immune pathway imbalances, in early PD that may also be related to motor and cognitive progression.
Collapse
Affiliation(s)
- Kimberly C Paul
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| | - Alexandra M Binder
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Cynthia Kusters
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Qi Yan
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Irish Del Rosario
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Yu Yu
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Jeff Bronstein
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Beate Ritz
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| |
Collapse
|
23
|
Opportunities and Challenges in Stem Cell Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1341:143-175. [PMID: 33748933 DOI: 10.1007/5584_2021_624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Studying aging, as a physiological process that can cause various pathological phenotypes, has attracted lots of attention due to its increasing burden and prevalence. Therefore, understanding its mechanism to find novel therapeutic alternatives for age-related disorders such as neurodegenerative and cardiovascular diseases is essential. Stem cell senescence plays an important role in aging. In the context of the underlying pathways, mitochondrial dysfunction, epigenetic and genetic alterations, and other mechanisms have been studied and as a consequence, several rejuvenation strategies targeting these mechanisms like pharmaceutical interventions, genetic modification, and cellular reprogramming have been proposed. On the other hand, since stem cells have great potential for disease modeling, they have been useful for representing aging and its associated disorders. Accordingly, the main mechanisms of senescence in stem cells and promising ways of rejuvenation, along with some examples of stem cell models for aging are introduced and discussed. This review aims to prepare a comprehensive summary of the findings by focusing on the most recent ones to shine a light on this area of research.
Collapse
|
24
|
Trowbridge JJ, Starczynowski DT. Innate immune pathways and inflammation in hematopoietic aging, clonal hematopoiesis, and MDS. J Exp Med 2021; 218:212382. [PMID: 34129017 PMCID: PMC8210621 DOI: 10.1084/jem.20201544] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
With a growing aged population, there is an imminent need to develop new therapeutic strategies to ameliorate disorders of hematopoietic aging, including clonal hematopoiesis and myelodysplastic syndrome (MDS). Cell-intrinsic dysregulation of innate immune- and inflammatory-related pathways as well as systemic inflammation have been implicated in hematopoietic defects associated with aging, clonal hematopoiesis, and MDS. Here, we review and discuss the role of dysregulated innate immune and inflammatory signaling that contribute to the competitive advantage and clonal dominance of preleukemic and MDS-derived hematopoietic cells. We also propose how emerging concepts will further reveal critical biology and novel therapeutic opportunities.
Collapse
Affiliation(s)
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.,Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
25
|
Broxmeyer HE, Liu Y, Kapur R, Orschell CM, Aljoufi A, Ropa JP, Trinh T, Burns S, Capitano ML. Fate of Hematopoiesis During Aging. What Do We Really Know, and What are its Implications? Stem Cell Rev Rep 2020; 16:1020-1048. [PMID: 33145673 PMCID: PMC7609374 DOI: 10.1007/s12015-020-10065-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
There is an ongoing shift in demographics such that older persons will outnumber young persons in the coming years, and with it age-associated tissue attrition and increased diseases and disorders. There has been increased information on the association of the aging process with dysregulation of hematopoietic stem (HSC) and progenitor (HPC) cells, and hematopoiesis. This review provides an extensive up-to date summary on the literature of aged hematopoiesis and HSCs placed in context of potential artifacts of the collection and processing procedure, that may not be totally representative of the status of HSCs in their in vivo bone marrow microenvironment, and what the implications of this are for understanding aged hematopoiesis. This review covers a number of interactive areas, many of which have not been adequately explored. There are still many unknowns and mechanistic insights to be elucidated to better understand effects of aging on the hematopoietic system, efforts that will take multidisciplinary approaches, and that could lead to means to ameliorate at least some of the dysregulation of HSCs and HPCs associated with the aging process. Graphical Abstract.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA.
| | - Yan Liu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christie M Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arafat Aljoufi
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - James P Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - Thao Trinh
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - Sarah Burns
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maegan L Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA.
| |
Collapse
|
26
|
Chen J, Matatall KA, Feng X, Hormaechea-Agulla D, Maharjan M, Young N, King KY. Dnmt3a-null hematopoietic stem and progenitor cells expand after busulfan treatment. Exp Hematol 2020; 91:39-45.e2. [PMID: 32961298 DOI: 10.1016/j.exphem.2020.09.192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/08/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
Mutations in the gene encoding DNA methyltransferase 3A (DNMT3A) comprise the majority of mutations found in clonal hematopoiesis (CH), an age-related condition that was recently found to affect outcomes in patients undergoing hematopoietic stem cell transplant (HSCT). Recent studies have indicated that patients with CH have worse prognoses after HSCT, suggesting stress imposed by HSCT preconditioning agents may impact hematopoietic stem cell (HSC) dynamics in transplant recipients. In this study, we used a competitive transplantation mouse model to investigate how treatment with the common preconditioning agents 5-fluorouracil (5-FU) and busulfan (BU) affect the prevalence of Dnmt3a-/- HSCs and progenitor cells in competition with wild-type cells. We found that, though sufficient to deplete peripheral blood counts, 5-FU preconditioning did not significantly alter the frequency of Dnmt3a-null hematopoietic stem and progenitor cells (HSPCs) in mosaic mice. In contrast, mice treated with BU had a sevenfold decline in total bone marrow cells and an increase in Dnmt3a-null HSPCs that was detectable in peripheral blood. Indeed, even though all mosaic mice had a starting engraftment of ∼10%-40%, 85%-100% of HSPCs were Dnmt3a-null in four of seven mice after BU treatment, indicating these cells expand dramatically during recovery. Overall, these results suggest that individual preconditioning regimens have different effects on the expansion of Dnmt3a-mutant cells in patients with pre-existing CH. Thus, the presence of CH-associated mutants should be evaluated prior to selecting preconditioning regimens for HSCT.
Collapse
Affiliation(s)
- Jichun Chen
- Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Katie A Matatall
- Section of Infectious Diseases, Department of Pediatrics, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Xingmin Feng
- Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Daniel Hormaechea-Agulla
- Section of Infectious Diseases, Department of Pediatrics, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Mukesh Maharjan
- Section of Infectious Diseases, Department of Pediatrics, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Neal Young
- Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Katherine Y King
- Section of Infectious Diseases, Department of Pediatrics, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX.
| |
Collapse
|