1
|
Xu T, Fu J, Wang X, Lu G, Liu B. Understanding the Structure and Energy Transfer Process of Undoped Ultrathin Emitting Nanolayers Within Interface Exciplexes. Front Chem 2022; 10:887900. [PMID: 35494648 PMCID: PMC9039158 DOI: 10.3389/fchem.2022.887900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Organic light-emitting diodes (OLEDs) have great potential for display, lighting, and near-infrared (NIR) applications due to their outstanding advantages such as high efficiency, low power consumption, and flexibility. Recently, it has been found that the ultrathin emitting nanolayer technology plays a key role in OLEDs with simplified structures through the undoped fabricated process, and exciplex-forming hosts can enhance the efficiency and stability of OLEDs. However, the elementary structure and mechanism of the energy transfer process of ultrathin emitting nanolayers within interface exciplexes are still unclear. Therefore, it is imminently needed to explore the origin of ultrathin emitting nanolayers and their energy process within exciplexes. Herein, the mechanism of films growing to set ultrathin emitting nanolayers (<1 nm) and their energy transfer process within interface exciplexes are reviewed and researched. The UEML phosphorescence dye plays a key role in determining the lifetime of excitons between exciplex and non-exciplex interfaces. The exciplex between TCTA and Bphen has longer lifetime decay than the non-exciplex between TCTA and TAPC, facilitating exciton harvesting. The findings will be beneficial not only to the further development of OLEDs but also to other related organic optoelectronic technologies.
Collapse
Affiliation(s)
- Ting Xu
- Institute of Information Technology, Shenzhen Institute of Information Technology, Shenzhen, China
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, China
- *Correspondence: Ting Xu, ; Xinzhong Wang, ; Baiquan Liu,
| | - Jianhui Fu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xinzhong Wang
- Institute of Information Technology, Shenzhen Institute of Information Technology, Shenzhen, China
- *Correspondence: Ting Xu, ; Xinzhong Wang, ; Baiquan Liu,
| | - Guanhua Lu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
| | - Baiquan Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Ting Xu, ; Xinzhong Wang, ; Baiquan Liu,
| |
Collapse
|
2
|
Wankerl H, Wiesmann C, Kreiner L, Butendeich R, Luce A, Sobczyk S, Stern ML, Lang EW. Directional emission of white light via selective amplification of photon recycling and Bayesian optimization of multi-layer thin films. Sci Rep 2022; 12:5226. [PMID: 35347188 PMCID: PMC8960816 DOI: 10.1038/s41598-022-08997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
Over the last decades, light-emitting diodes (LED) have replaced common light bulbs in almost every application, from flashlights in smartphones to automotive headlights. Illuminating nightly streets requires LEDs to emit a light spectrum that is perceived as pure white by the human eye. The power associated with such a white light spectrum is not only distributed over the contributing wavelengths but also over the angles of vision. For many applications, the usable light rays are required to exit the LED in forward direction, namely under small angles to the perpendicular. In this work, we demonstrate that a specifically designed multi-layer thin film on top of a white LED increases the power of pure white light emitted in forward direction. Therefore, the deduced multi-objective optimization problem is reformulated via a real-valued physics-guided objective function that represents the hierarchical structure of our engineering problem. Variants of Bayesian optimization are employed to maximize this non-deterministic objective function based on ray tracing simulations. Eventually, the investigation of optical properties of suitable multi-layer thin films allowed to identify the mechanism behind the increased directionality of white light: angle and wavelength selective filtering causes the multi-layer thin film to play ping pong with rays of light.
Collapse
Affiliation(s)
- Heribert Wankerl
- University of Regensburg, 93053, Regensburg, Germany.
- OSRAM Opto Semiconductors GmbH, 93055, Regensburg, Germany.
| | | | - Laura Kreiner
- OSRAM Opto Semiconductors GmbH, 93055, Regensburg, Germany
| | | | - Alexander Luce
- OSRAM Opto Semiconductors GmbH, 93055, Regensburg, Germany
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Friedrich Alexander University Erlangen Nuremberg, 91054, Erlangen, Germany
| | - Sandra Sobczyk
- OSRAM Opto Semiconductors GmbH, 93055, Regensburg, Germany
| | | | | |
Collapse
|
3
|
Abstract
Due to the untiring efforts of scientists and researchers on oxide semiconductor materials, processes, and devices, the applications for oxide-based thin film transistors (TFTs) have been researched and promoted on a large scale. With the advantages of relatively high carrier mobility, low off-current, good process compatibility, optical transparency, low cost, and especially flexibility, oxide-based TFTs have already been adapted for not only displays (e.g., liquid crystal display (LCD), organic light emitting diode (OLED), micro-light-emitting diode (Micro-LED), virtual reality/augmented reality (VR/AR) and electronic paper displays (EPD)) but also large-area electronics, analog circuits, and digital circuits. Furthermore, as the requirement of TFT technology increases, low temperature poly-silicon and oxide (LTPO) TFTs, which combine p-type LTPS and n-type oxide TFT on the same substrate, have drawn further interest for realizing the hybrid complementary metal oxide semiconductor (CMOS) circuit. This invited review provides the current progress on applications of oxide-based TFTs. Typical device configurations of TFTs are first described. Then, the strategies to apply oxide-based TFTs for improving the display quality with different compensation technologies and obtaining higher performance integrated circuits are highlighted. Finally, an outlook for the future development of oxide-based TFTs is given.
Collapse
|
4
|
Xiao P, Yu Y, Cheng J, Chen Y, Yuan S, Chen J, Yuan J, Liu B. Advances in Perovskite Light-Emitting Diodes Possessing Improved Lifetime. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E103. [PMID: 33406749 PMCID: PMC7823701 DOI: 10.3390/nano11010103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/14/2022]
Abstract
Recently, perovskite light-emitting diodes (PeLEDs) are seeing an increasing academic and industrial interest with a potential for a broad range of technologies including display, lighting, and signaling. The maximum external quantum efficiency of PeLEDs can overtake 20% nowadays, however, the lifetime of PeLEDs is still far from the demand of practical applications. In this review, state-of-the-art concepts to improve the lifetime of PeLEDs are comprehensively summarized from the perspective of the design of perovskite emitting materials, the innovation of device engineering, the manipulation of optical effects, and the introduction of advanced encapsulations. First, the fundamental concepts determining the lifetime of PeLEDs are presented. Then, the strategies to improve the lifetime of both organic-inorganic hybrid and all-inorganic PeLEDs are highlighted. Particularly, the approaches to manage optical effects and encapsulations for the improved lifetime, which are negligibly studied in PeLEDs, are discussed based on the related concepts of organic LEDs and Cd-based quantum-dot LEDs, which is beneficial to insightfully understand the lifetime of PeLEDs. At last, the challenges and opportunities to further enhance the lifetime of PeLEDs are introduced.
Collapse
Affiliation(s)
- Peng Xiao
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan 528225, China; (P.X.); (J.C.); (Y.C.); (S.Y.); (J.C.); (J.Y.)
| | - Yicong Yu
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan 528225, China; (P.X.); (J.C.); (Y.C.); (S.Y.); (J.C.); (J.Y.)
| | - Junyang Cheng
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan 528225, China; (P.X.); (J.C.); (Y.C.); (S.Y.); (J.C.); (J.Y.)
| | - Yonglong Chen
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan 528225, China; (P.X.); (J.C.); (Y.C.); (S.Y.); (J.C.); (J.Y.)
| | - Shengjin Yuan
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan 528225, China; (P.X.); (J.C.); (Y.C.); (S.Y.); (J.C.); (J.Y.)
| | - Jianwen Chen
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan 528225, China; (P.X.); (J.C.); (Y.C.); (S.Y.); (J.C.); (J.Y.)
| | - Jian Yuan
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan 528225, China; (P.X.); (J.C.); (Y.C.); (S.Y.); (J.C.); (J.Y.)
| | - Baiquan Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
5
|
Luo D, Wang L, Qiu Y, Huang R, Liu B. Emergence of Impurity-Doped Nanocrystal Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1226. [PMID: 32599722 PMCID: PMC7353084 DOI: 10.3390/nano10061226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022]
Abstract
In recent years, impurity-doped nanocrystal light-emitting diodes (LEDs) have aroused both academic and industrial interest since they are highly promising to satisfy the increasing demand of display, lighting, and signaling technologies. Compared with undoped counterparts, impurity-doped nanocrystal LEDs have been demonstrated to possess many extraordinary characteristics including enhanced efficiency, increased luminance, reduced voltage, and prolonged stability. In this review, recent state-of-the-art concepts to achieve high-performance impurity-doped nanocrystal LEDs are summarized. Firstly, the fundamental concepts of impurity-doped nanocrystal LEDs are presented. Then, the strategies to enhance the performance of impurity-doped nanocrystal LEDs via both material design and device engineering are introduced. In particular, the emergence of three types of impurity-doped nanocrystal LEDs is comprehensively highlighted, namely impurity-doped colloidal quantum dot LEDs, impurity-doped perovskite LEDs, and impurity-doped colloidal quantum well LEDs. At last, the challenges and the opportunities to further improve the performance of impurity-doped nanocrystal LEDs are described.
Collapse
Affiliation(s)
- Dongxiang Luo
- Institute of Semiconductors, South China Normal University, Guangzhou 510631, China;
| | - Lin Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore;
| | - Ying Qiu
- Guangdong R&D Center for Technological Economy, Guangzhou 510000, China
| | - Runda Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China;
| | - Baiquan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
6
|
Luo D, Chen Q, Qiu Y, Zhang M, Liu B. Device Engineering for All-Inorganic Perovskite Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1007. [PMID: 31336905 PMCID: PMC6669542 DOI: 10.3390/nano9071007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 01/12/2023]
Abstract
Recently, all-inorganic perovskite light-emitting diodes (PeLEDs) have attracted both academic and industrial interest thanks to their outstanding properties, such as high efficiency, bright luminance, excellent color purity, low cost and potentially good operational stability. Apart from the design and treatment of all-inorganic emitters, the device engineering is another significant factor to guarantee the high performance. In this review, we have summarized the state-of-the-art concepts for device engineering in all-inorganic PeLEDs, where the charge injection, transport, balance and leakage play a critical role in the performance. First, we have described the fundamental concepts of all-inorganic PeLEDs. Then, we have introduced the enhancement of device engineering in all-inorganic PeLEDs. Particularly, we have comprehensively highlighted the emergence of all-inorganic PeLEDs, strategies to improve the hole injection, approaches to enhance the electron injection, schemes to increase the charge balance and methods to decrease the charge leakage. Finally, we have clarified the issues and ways to further enhance the performance of all-inorganic PeLEDs.
Collapse
Affiliation(s)
- Dongxiang Luo
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Qizan Chen
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Qiu
- Guangdong R&D Center for Technological Economy, Guangzhou 510000, China.
| | - Menglong Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Institute of Semiconductors, South China Normal University, Guangzhou 510000, China
| | - Baiquan Liu
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
- LUMINOUS! Centre of Excellent for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
7
|
Synthetic Routes to Silsesquioxane-Based Systems as Photoactive Materials and Their Precursors. Polymers (Basel) 2019; 11:polym11030504. [PMID: 30960488 PMCID: PMC6473884 DOI: 10.3390/polym11030504] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 11/24/2022] Open
Abstract
Over the past two decades, organic optoelectronic materials have been considered very promising. The attractiveness of this group of compounds, regardless of their undisputable application potential, lies in the possibility of their use in the construction of organic–inorganic hybrid materials. This class of frameworks also considers nanostructural polyhedral oligomeric silsesquioxanes (POSSs) with “organic coronae” and precisely defined organic architectures between dispersed rigid silica cores. A significant number of papers on the design and development of POSS-based organic optoelectronic as well as photoluminescent (PL) materials have been published recently. In view of the scientific literature abounding with numerous examples of their application (i.e., as OLEDs), the aim of this review is to present efficient synthetic pathways leading to the formation of nanocomposite materials based on silsesquioxane systems that contain organic chromophores of complex nature. A summary of stoichiometric and predominantly catalytic methods for these silsesquioxane-based systems to be applied in the construction of photoactive materials or their precursors is given.
Collapse
|
8
|
Research Progress on Flexible Oxide-Based Thin Film Transistors. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9040773] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oxide semiconductors have drawn much attention in recent years due to their outstanding electrical performance, such as relatively high carrier mobility, good uniformity, low process temperature, optical transparency, low cost and especially flexibility. Flexible oxide-based thin film transistors (TFTs) are one of the hottest research topics for next-generation displays, radiofrequency identification (RFID) tags, sensors, and integrated circuits in the wearable field. The carrier transport mechanism of oxide semiconductor materials and typical device configurations of TFTs are firstly described in this invited review. Then, we describe the research progress on flexible oxide-based TFTs, including representative TFTs fabricated on different kinds of flexible substrates, the mechanical stress effect on TFTs and optimized methods to reduce this effect. Finally, an outlook for the future development of oxide-based TFTs is given.
Collapse
|
9
|
Luo D, Chen Q, Liu B, Qiu Y. Emergence of Flexible White Organic Light-Emitting Diodes. Polymers (Basel) 2019; 11:E384. [PMID: 30960368 PMCID: PMC6419156 DOI: 10.3390/polym11020384] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 11/17/2022] Open
Abstract
Flexible white organic light-emitting diodes (FWOLEDs) have considerable potential to meet the rapidly growing requirements of display and lighting commercialization. To achieve high-performance FWOLEDs, (i) the selection of effective flexible substrates, (ii) the use of transparent conducting electrodes, (iii) the introduction of efficient device architectures, and iv) the exploitation of advanced outcoupling techniques are necessary. In this review, recent state-of-the-art strategies to develop FWOLEDs have been summarized. Firstly, the fundamental concepts of FWOLEDs have been described. Then, the primary approaches to realize FWOLEDs have been introduced. Particularly, the effects of flexible substrates, conducting electrodes, device architectures, and outcoupling techniques in FWOLEDs have been comprehensively highlighted. Finally, issues and ways to further enhance the performance of FWOLEDs have been briefly clarified.
Collapse
Affiliation(s)
- Dongxiang Luo
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Qizan Chen
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Baiquan Liu
- LUMINOUS! Centre of Excellent for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore.
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Ying Qiu
- Guangdong R&D Center for Technological Economy, Guangzhou 510000, China.
| |
Collapse
|
10
|
Xiao P, Huang J, Yu Y, Liu B. Recent Developments in Tandem White Organic Light-Emitting Diodes. Molecules 2019; 24:E151. [PMID: 30609748 PMCID: PMC6337303 DOI: 10.3390/molecules24010151] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/24/2018] [Accepted: 12/25/2018] [Indexed: 12/20/2022] Open
Abstract
Tandem white organic light-emitting diodes (WOLEDs) are promising for the lighting and displays field since their current efficiency, external quantum efficiency and lifetime can be strikingly enhanced compared with single-unit devices. In this invited review, we have firstly described fundamental concepts of tandem device architectures and their use in WOLEDs. Then, we have summarized the state-of-the-art strategies to achieve high-performance tandem WOLEDs in recent years. Specifically, we have highlighted the developments in the four types of tandem WOLEDs (i.e., tandem fluorescent WOLEDs, tandem phosphorescent WOLEDs, tandem thermally activated delayed fluorescent WOLEDs, and tandem hybrid WOLEDs). Furthermore, we have introduced doping-free tandem WOLEDs. In the end, we have given an outlook for the future development of tandem WOLEDs.
Collapse
Affiliation(s)
- Peng Xiao
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China.
| | - Junhua Huang
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China.
| | - Yicong Yu
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China.
| | - Baiquan Liu
- LUMINOUS! Centre of Excellent for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore.
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
11
|
Luo D, Xiao P, Liu B. Doping-Free White Organic Light-Emitting Diodes. CHEM REC 2018; 19:1596-1610. [PMID: 30548958 DOI: 10.1002/tcr.201800147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/28/2018] [Indexed: 11/11/2022]
Abstract
Doping-free white organic light-emitting diodes (WOLEDs) have great potential to the next-generation solid-state lighting and displays due to the excellent properties, such as high efficiency, bright luminance, low power consumption, simplified structure and low cost. In this account, our recent developments on doping-free WOLEDs have been summarized. Firstly, fundamental concepts of doping-free WOLEDs have been described. Then, the effective strategies to develop doping-free WOLEDs have been presented. Particularly, the manipulation of charges and excitons distribution in different kinds of doping-free WOLEDs have been highlighted, including doping-free fluorescent/phosphorescent hybrid WOLEDs, doping-free thermally activated delayed fluorescent WOLEDs and doping-free phosphorescent WOLEDs. In the end, an outlook for the future development of doping-free WOLEDs have been clarified.
Collapse
Affiliation(s)
- Dongxiang Luo
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Peng Xiao
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, 528000, China
| | - Baiquan Liu
- LUMINOUS!, Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore.,Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
12
|
Recent Advances of Exciplex-Based White Organic Light-Emitting Diodes. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8091449] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recently, exciplexes have been actively investigated in white organic light-emitting diodes (WOLEDs), since they can be effectively functioned as (i) fluorescent or thermally activated delayed fluorescent (TADF) emitters; (ii) the hosts of fluorescent, phosphorescent and TADF dopants. By virtue of the unique advantages of exciplexes, high-performance exciplex-based WOLEDs can be achieved. In this invited review, we have firstly described fundamental concepts of exciplexes and their use in organic light-emitting diodes (OLEDs). Then, we have concluded the primary strategies to develop exciplex-based WOLEDs. Specifically, we have emphasized the representative WOLEDs using exciplex emitters or hosts. In the end, we have given an outlook for the future development of exciplex-based WOLEDs.
Collapse
|
13
|
Xiao P, Huang J, Yan D, Luo D, Yuan J, Liu B, Liang D. Emergence of Nanoplatelet Light-Emitting Diodes. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1376. [PMID: 30096754 PMCID: PMC6119858 DOI: 10.3390/ma11081376] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/19/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022]
Abstract
Since 2014, nanoplatelet light-emitting diodes (NPL-LEDs) have been emerged as a new kind of LEDs. At first, NPL-LEDs are mainly realized by CdSe based NPLs. Since 2016, hybrid organic-inorganic perovskite NPLs are found to be effective to develop NPL-LEDs. In 2017, all-inorganic perovskite NPLs are also demonstrated for NPL-LEDs. Therefore, the development of NPL-LEDs is flourishing. In this review, the fundamental concepts of NPL-LEDs are first introduced, then the main approaches to realize NPL-LEDs are summarized and the recent progress of representative NPL-LEDs is highlighted, finally the challenges and opportunities for NPL-LEDs are presented.
Collapse
Affiliation(s)
- Peng Xiao
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China.
| | - Junhua Huang
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China.
| | - Dong Yan
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China.
| | - Dongxiang Luo
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jian Yuan
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China.
| | - Baiquan Liu
- LUMINOUS, Center of Excellent for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore.
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Dong Liang
- LUMINOUS, Center of Excellent for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
14
|
Hou R, Zhao B, Xia Y, Li D. Organic Fluorescent Compounds that Display Efficient Aggregation-Induced Emission Enhancement and Intramolecular Charge Transfer. Molecules 2018; 23:E1446. [PMID: 29903987 PMCID: PMC6100197 DOI: 10.3390/molecules23061446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 11/17/2022] Open
Abstract
A series of symmetric sulfone-linked organic fluorescent compounds (1a⁻c) was synthesized and characterized. V-shaped 1a⁻c were designed as aggregate of intramolecular charge transfer (ICT) and aggregation-induced emission enhancement (AIEE) processes. The 1a⁻c emitted intense blue violet lights in normal solvents. A large red shift of the emission wavelength and dramatic decrease of emission efficiency occurred with increasing solvent polarity. The 1a⁻c will function well as electron transport and blue light-emitting materials through theoretical calculations.
Collapse
Affiliation(s)
- Ruibin Hou
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China.
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| | - Baohua Zhao
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China.
| | - Yan Xia
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China.
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| | - Dongfeng Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China.
| |
Collapse
|
15
|
Emergence of White Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8020299] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Zhang L, Li XL, Luo D, Xiao P, Xiao W, Song Y, Ang Q, Liu B. Strategies to Achieve High-Performance White Organic Light-Emitting Diodes. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1378. [PMID: 29194426 PMCID: PMC5744313 DOI: 10.3390/ma10121378] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 01/09/2023]
Abstract
As one of the most promising technologies for next-generation lighting and displays, white organic light-emitting diodes (WOLEDs) have received enormous worldwide interest due to their outstanding properties, including high efficiency, bright luminance, wide viewing angle, fast switching, lower power consumption, ultralight and ultrathin characteristics, and flexibility. In this invited review, the main parameters which are used to characterize the performance of WOLEDs are introduced. Subsequently, the state-of-the-art strategies to achieve high-performance WOLEDs in recent years are summarized. Specifically, the manipulation of charges and excitons distribution in the four types of WOLEDs (fluorescent WOLEDs, phosphorescent WOLEDs, thermally activated delayed fluorescent WOLEDs, and fluorescent/phosphorescent hybrid WOLEDs) are comprehensively highlighted. Moreover, doping-free WOLEDs are described. Finally, issues and ways to further enhance the performance of WOLEDs are briefly clarified.
Collapse
Affiliation(s)
| | - Xiang-Long Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Dongxiang Luo
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Peng Xiao
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China.
| | | | | | - Qinshu Ang
- Shunde Polytechnic, Foshan 528300, China.
| | - Baiquan Liu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|