1
|
Liu B, Wang J, Zhang G, Du G, Xia H, Deng W, Zhao X. Using a Flexible Fountain Pen to Directly Write Organic Semiconductor Patterns with Crystallization Regulated by the Precursor Film. SMALL METHODS 2024; 8:e2400098. [PMID: 39054724 DOI: 10.1002/smtd.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Organic semiconductor (OSC) films fabricated by meniscus-guided coating (MGC) methods are suitable for cost-effective and flexible electronics. However, achieving crystalline thin films by MGC methods is still challenging because the nucleation and crystal growth processes are influenced by the intertwined interactions among solvent evaporation, stochastic nucleation, and the fluid flow instabilities. Herein, a novel flexible fountain pen with active ink supply is designed and used to print OSCs. This direct-write method allows the flexible pen tip to contact the substrate, maintaining a robust meniscus by eliminating the gap found in conventional MGCs. An in situ optical microscopy observation system shows that the precursor film plays a critical role on the crystallization and the formation of coffee rings and dendrites. The computational fluid dynamics simulations demonstrate that the microstructure of the pen promotes extensional flows, facilitating mass transport and crystal alignment. Highly-aligned ribbon-shaped crystals of a small organic molecule (TIPS-pentacene), as well as a semiconducting polymer (N2200) with highly-ordered orientations, have been successfully printed by the flexible fountain pen. Organic field-effect transistors based on the flexible pen printed OSCs exhibit high performances and strong anisotropic mobility. In addition, the flexible fountain pen is expandable for printing multiple lines or large-area films.
Collapse
Affiliation(s)
- Bingyang Liu
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Shenzhen Jinxin Technology Co., Ltd, Shenzhen, 518108, China
| | - Jialin Wang
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Guoxin Zhang
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Gengxin Du
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Huihui Xia
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Shenzhen Jinxin Technology Co., Ltd, Shenzhen, 518108, China
| | - Weiwei Deng
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Xinyan Zhao
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
2
|
Yunus Y, Mahadzir NA, Mohamed Ansari MN, Tg Abd Aziz TH, Mohd Afdzaluddin A, Anwar H, Wang M, Ismail AG. Review of the Common Deposition Methods of Thin-Film Pentacene, Its Derivatives, and Their Performance. Polymers (Basel) 2022; 14:polym14061112. [PMID: 35335442 PMCID: PMC8950127 DOI: 10.3390/polym14061112] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 02/02/2023] Open
Abstract
Pentacene is a well-known conjugated organic molecule with high mobility and a sensitive photo response. It is widely used in electronic devices, such as in organic thin-film transistors (OTFTs), organic light-emitting diodes (OLEDs), photodetectors, and smart sensors. With the development of flexible and wearable electronics, the deposition of good-quality pentacene films in large-scale organic electronics at the industrial level has drawn more research attention. Several methods are used to deposit pentacene thin films. The thermal evaporation technique is the most frequently used method for depositing thin films, as it has low contamination rates and a well-controlled deposition rate. Solution-processable methods such as spin coating, dip coating, and inkjet printing have also been widely studied because they enable large-scale deposition and low-cost fabrication of devices. This review summarizes the deposition principles and control parameters of each deposition method for pentacene and its derivatives. Each method is discussed in terms of experimentation and theory. Based on film quality and device performance, the review also provides a comparison of each method to provide recommendations for specific device applications.
Collapse
Affiliation(s)
- Yusniza Yunus
- Institute of Microengineering & Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (Y.Y.); (N.A.M.); (T.H.T.A.A.); (A.M.A.)
| | - Nurul Adlin Mahadzir
- Institute of Microengineering & Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (Y.Y.); (N.A.M.); (T.H.T.A.A.); (A.M.A.)
| | - Mohamed Nainar Mohamed Ansari
- Institute of Power Engineering, Universiti Tenaga Nasional, Bangi 43000, Malaysia
- Correspondence: (M.N.M.A.); (A.G.I.)
| | - Tg Hasnan Tg Abd Aziz
- Institute of Microengineering & Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (Y.Y.); (N.A.M.); (T.H.T.A.A.); (A.M.A.)
| | - Atiqah Mohd Afdzaluddin
- Institute of Microengineering & Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (Y.Y.); (N.A.M.); (T.H.T.A.A.); (A.M.A.)
| | - Hafeez Anwar
- Department of Physics, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Mingqing Wang
- Institute for Materials Discovery, University College London, London WC1E 7JE, UK;
| | - Ahmad Ghadafi Ismail
- Institute of Microengineering & Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (Y.Y.); (N.A.M.); (T.H.T.A.A.); (A.M.A.)
- Correspondence: (M.N.M.A.); (A.G.I.)
| |
Collapse
|
3
|
Chen S, Zhu L, Zhang B, Yun SN, Wang J, Yuan MS. Organic Crystal Growth: Directly from Amorphous Solid Powder to Single Crystals. Chem Asian J 2021; 16:4067-4071. [PMID: 34747569 DOI: 10.1002/asia.202101150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/01/2021] [Indexed: 11/11/2022]
Abstract
Preparation of organic crystals mainly depends on solution-deposition, sublimation, and melt-deposition techniques. Solid-state growth methods are generally not suitable for organic crystal growth due to the unprocurable mass transfer. Herein, we report two pyridine-substituted fluorenone compounds with extraordinary crystal-growth capacity, and these compounds can directly and quickly form single crystals from their amorphous solid powder by heating under antisolvent-assistance conditions. The novel experimental phenomenon and crystal growth mechanism were investigated in depth. The results indicate that multiple intermolecular hydrogen-bonding sites and planar aromatic structure (prone to π-π interactions) of these molecules dominate the mass transfer during crystal growth by providing enough energy. This discovery enhances our knowledge of solid-state methods for single-crystal growth.
Collapse
Affiliation(s)
- Siyu Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Lin Zhu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Bingwen Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Shu-Na Yun
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Jinyi Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Mao-Sen Yuan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.,State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, P.R. China
| |
Collapse
|
4
|
Im H, Yoon J, Choi J, Kim J, Baek S, Park DH, Park W, Kim S. Chaotic Organic Crystal Phosphorescent Patterns for Physical Unclonable Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102542. [PMID: 34514649 DOI: 10.1002/adma.202102542] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Since the 4th Industrial Revolution, Internet of Things based environments have been widely used in various fields ranging from mobile to medical devices. Simultaneously, information leakage and hacking risks have also increased significantly, and secure authentication and security systems are constantly required. Physical unclonable functions (PUF) are in the spotlight as an alternative. Chaotic phosphorescent patterns are developed based on an organic crystal and atomic seed heterostructure for security labels with PUFs. Phosphorescent organic crystal patterns are formed on MoS2 . They seem similar on a macroscopic scale, whereas each organic crystal exhibits highly disorder features on the microscopic scale. In image analysis, an encoding capacity as a single PUF domain achieves more than 1017 on a MoS2 small fragment with lengths of 25 µm. Therefore, security labels with phosphorescent PUFs can offer superior randomness and no-cloning codes, possibly becoming a promising security strategy for authentication processes.
Collapse
Affiliation(s)
- Healin Im
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon-Si, Gyeonggi-do, 16419, Republic of Korea
| | - Jinsik Yoon
- Institute for Wearable Convergence Electronics, Department of Electronics and Information Convergence Engineering, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Jinho Choi
- Department of Chemical Engineering, Program in Biomedical Science & Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, South Korea
| | - Jinsang Kim
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Seungho Baek
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon-Si, Gyeonggi-do, 16419, Republic of Korea
| | - Dong Hyuk Park
- Department of Chemical Engineering, Program in Biomedical Science & Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, South Korea
| | - Wook Park
- Institute for Wearable Convergence Electronics, Department of Electronics and Information Convergence Engineering, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Sunkook Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon-Si, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
5
|
Zhang C, Wang X, Qiu L. Circularly Polarized Photodetectors Based on Chiral Materials: A Review. Front Chem 2021; 9:711488. [PMID: 34568276 PMCID: PMC8455893 DOI: 10.3389/fchem.2021.711488] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Circularly polarized light (CPL) plays an important role in many photonic techniques, including tomographic scanning based on circular polarization ellipsometry, optical communication and information of spin, and quantum-based optical calculation and information processing. To fully exploit the functions of CPL in these fields, integrated photoelectric sensors capable of detecting CPL are essential. Photodetectors based on chiral materials can directly detect CPL due to their intrinsic optical activity, without the need to be coupled with polarizers and quarter-wave plates as in conventional photodetectors. This review summarizes the recent research progress in CPL photodetectors based on chiral materials. We first briefly introduce the CPL photodetectors based on different types of chiral materials and their working principles. Finally, current challenges and future opportunities in the development of CPL photodetectors are prospected.
Collapse
Affiliation(s)
- Can Zhang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, China
| | - Xiaohong Wang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, China
- Anhui Key Laboratory of Advanced Functional Materials and Devices, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, China
- Anhui Key Laboratory of Advanced Functional Materials and Devices, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
- Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei, China
| |
Collapse
|
6
|
Sun XQ, Qin GY, Lin PP, Wang J, Fan JX, Li HY, Ren AM, Guo JF. Theoretical investigations on the charge transport properties of anthracene derivatives with aryl substituents at the 2,6-position-thermally stable "herringbone" stacking motifs. Phys Chem Chem Phys 2021; 23:12679-12691. [PMID: 34036996 DOI: 10.1039/d1cp00178g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
High-performance organic semiconductor materials based on the small aromatic anthracene-core and its derivatives develop comparatively slowly due to the lack of a profound understanding of the influence of chemical modifications on their charge-transfer properties. Herein, the electronic properties and the charge transport characteristics of several typical anthracene-based derivatives with aryl groups substituted at the 2,6-site are systematically investigated by multi-scale simulation methods including Molecular Dynamics (MD) simulation and the full quantum nuclear tunneling model in the framework of density functional theory (DFT). To elucidate the origin of different charge transport properties of these anthracene-based materials, analysis of the molecular stacking and noncovalent intermolecular interaction caused by different substituents was carried out. The results indicate that the electron and hole injection capabilities and the air oxidation stability of the anthracene derivatives are greatly improved when the size of the aryl substituent increases. In addition, the incorporation of 2,6-site aryl substituents can inhibit the stretching vibration of the anthracene-core during charge transport, and allow molecular packing along the long axis (a-axis of DPA and BDBFAnt, and c-axis of dNaAnt) with almost no slippage, and the main transport channels remain unchanged, exhibiting more isotropic 2D transport properties. It should be emphasized that the edge-to-face dimers with smallest dihedral angles are closest to the thermally stable dimer model, with relatively larger π-orbital distributions in transmission channels (dimer 1, 2) and the largest spatial overlap, resulting in the largest hole transfer integral in DPA (Vh1/h2 = 57 meV). Although the analysis of the thermal disorder effect shows a phonon scattering effect, the maximum hole mobility of the DPA molecule is still as high as 1.5 cm2 V-1 s-1.
Collapse
Affiliation(s)
- Xiao-Qi Sun
- School of Physics, Northeast Normal University, Changchun, 130024, China
| | - Gui-Ya Qin
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, P. R. China
| | - Pan-Pan Lin
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, P. R. China
| | - Jin Wang
- School of Physics, Northeast Normal University, Changchun, 130024, China
| | - Jian-Xun Fan
- College of Chemistry and Materials Science, Weinan Normal University, Weinan 714000, China
| | - Hui-Yuan Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, P. R. China
| | - Ai-Min Ren
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, P. R. China
| | - Jing-Fu Guo
- School of Physics, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
7
|
Organic Semiconductor Micro/Nanocrystals for Laser Applications. Molecules 2021; 26:molecules26040958. [PMID: 33670286 PMCID: PMC7918292 DOI: 10.3390/molecules26040958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 11/16/2022] Open
Abstract
Organic semiconductor micro/nanocrystals (OSMCs) have attracted great attention due to their numerous advantages such us free grain boundaries, minimal defects and traps, molecular diversity, low cost, flexibility and solution processability. Due to all these characteristics, they are strong candidates for the next generation of electronic and optoelectronic devices. In this review, we present a comprehensive overview of these OSMCs, discussing molecular packing, the methods to control crystallization and their applications to the area of organic solid-state lasers. Special emphasis is given to OSMC lasers which self-assemble into geometrically defined optical resonators owing to their attractive prospects for tuning/control of light emission properties through geometrical resonator design. The most recent developments together with novel strategies for light emission tuning and effective light extraction are presented.
Collapse
|
8
|
Wang H, Fontein F, Li J, Huang L, Jiang L, Fuchs H, Wang W, Wang Y, Chi L. Lithographical Fabrication of Organic Single-Crystal Arrays by Area-Selective Growth and Solvent Vapor Annealing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48854-48860. [PMID: 32981323 DOI: 10.1021/acsami.0c14349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Miniaturized organic single-crystal arrays that are addressed by reading-out circuits are crucial for high performance and high-level integration organic electronics. Here, we report a lithography compatible strategy to fabricate organic single-crystal arrays via area-selective growth and solvent vapor annealing (SVA). The organic semiconducting molecules can first selectively grow on photographically patterned drain-source electrodes, forming ordered amorphous aggregates that can further be converted to discrete single-crystal arrays by SVA. This strategy can be applied to self-align the microsized organic single crystals on predesigned locations. With this method, suppression of cross-talk among devices, organic field-effect transistors, and basic logic gate arrays with reading-out electrodes are further demonstrated.
Collapse
Affiliation(s)
- Hong Wang
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Universität Münster, Münster 48149, Germany
- School of Materials and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 135 Xingang Xi Road, Guangzhou 510275, Guangdong, P. R. China
| | - Florian Fontein
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Universität Münster, Münster 48149, Germany
| | - Jianping Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Lizhen Huang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Lin Jiang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Harald Fuchs
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Universität Münster, Münster 48149, Germany
| | - Wenchong Wang
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Universität Münster, Münster 48149, Germany
| | - Yandong Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Lifeng Chi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
9
|
Li M, Bin H, Jiao X, Wienk MM, Yan H, Janssen RAJ. Controlling the Microstructure of Conjugated Polymers in High-Mobility Monolayer Transistors via the Dissolution Temperature. Angew Chem Int Ed Engl 2020; 59:846-852. [PMID: 31709705 PMCID: PMC6973252 DOI: 10.1002/anie.201911311] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/13/2019] [Indexed: 11/08/2022]
Abstract
It remains a challenge to precisely tailor the morphology of polymer monolayers to control charge transport. Herein, the effect of the dissolution temperature (Tdis ) is investigated as a powerful strategy for morphology control. Low Tdis values cause extended polymer aggregation in solution and induce larger nanofibrils in a monolayer network with more pronounced π-π stacking. The field-effect mobility of the corresponding monolayer transistors is significantly enhanced by a factor of four compared to devices obtained from high Tdis with a value approaching 1 cm2 V-1 s-1 . Besides that, the solution kinetics reveal a higher growth rate of aggregates at low Tdis , and filtration experiments further confirm that the dependence of the fibril width in monolayers on Tdis is consistent with the aggregate size in solution. The generalizability of the Tdis effect on polymer aggregation is demonstrated using three other conjugated polymer systems. These results open new avenues for the precise control of polymer aggregation for high-mobility monolayer transistors.
Collapse
Affiliation(s)
- Mengmeng Li
- Key Laboratory of Microelectronic Devices and Integrated TechnologyInstitute of MicroelectronicsChinese Academy of SciencesBeijing100029China
- Molecular Materials and NanosystemsInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
- Dutch Institute For Fundamental Energy ResearchDe Zaale 205612AJEindhovenThe Netherlands
| | - Haijun Bin
- Molecular Materials and NanosystemsInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - Xuechen Jiao
- Australian Synchrotron, ANSTO800 Blackburn RoadClaytonVictoria3168Australia
- Department of Materials Science and EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
| | - Martijn M. Wienk
- Molecular Materials and NanosystemsInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - He Yan
- Department of Chemistry and Energy InstituteThe Hong Kong University of Science and TechnologyClear Water BayHong KongHong Kong
| | - René A. J. Janssen
- Molecular Materials and NanosystemsInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
- Dutch Institute For Fundamental Energy ResearchDe Zaale 205612AJEindhovenThe Netherlands
| |
Collapse
|
10
|
Li M, Bin H, Jiao X, Wienk MM, Yan H, Janssen RAJ. Controlling the Microstructure of Conjugated Polymers in High‐Mobility Monolayer Transistors via the Dissolution Temperature. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mengmeng Li
- Key Laboratory of Microelectronic Devices and Integrated TechnologyInstitute of MicroelectronicsChinese Academy of Sciences Beijing 100029 China
- Molecular Materials and NanosystemsInstitute for Complex Molecular SystemsEindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven The Netherlands
- Dutch Institute For Fundamental Energy Research De Zaale 20 5612 AJ Eindhoven The Netherlands
| | - Haijun Bin
- Molecular Materials and NanosystemsInstitute for Complex Molecular SystemsEindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven The Netherlands
| | - Xuechen Jiao
- Australian Synchrotron, ANSTO 800 Blackburn Road Clayton Victoria 3168 Australia
- Department of Materials Science and EngineeringMonash University Wellington Road Clayton Victoria 3800 Australia
| | - Martijn M. Wienk
- Molecular Materials and NanosystemsInstitute for Complex Molecular SystemsEindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven The Netherlands
| | - He Yan
- Department of Chemistry and Energy InstituteThe Hong Kong University of Science and Technology Clear Water Bay Hong Kong Hong Kong
| | - René A. J. Janssen
- Molecular Materials and NanosystemsInstitute for Complex Molecular SystemsEindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven The Netherlands
- Dutch Institute For Fundamental Energy Research De Zaale 20 5612 AJ Eindhoven The Netherlands
| |
Collapse
|
11
|
Xu X, Deng W, Zhang X, Huang L, Wang W, Jia R, Wu D, Zhang X, Jie J, Lee ST. Dual-Band, High-Performance Phototransistors from Hybrid Perovskite and Organic Crystal Array for Secure Communication Applications. ACS NANO 2019; 13:5910-5919. [PMID: 31067403 DOI: 10.1021/acsnano.9b01734] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
High-performance phototransistors made from organic semiconductor single crystals (OSSCs) have attracted much attention due to the high responsivity and solution-processing capability of OSSCs. However, OSSC-based phototransistors capable of dual-band spectral response remain a difficult challenge to achieve because organic semiconductors usually possess only narrow single-band absorption. Here, we report the fabrication of high-performance, dual-band phototransistors from a hybrid structure of a 2,7-dioctyl[1]benzothieno[3,2- b][1]benzothiophene (C8-BTBT) single-crystal array coated with CH3NH3PbI3 nanoparticles (NPs) synthesized by a simple, one-step solution method. In contrast to C8-BTBT and CH3NH3PbI3 NPs with respective absorption in the ultraviolet (UV) and visible (vis) region, their hybrid structure shows broad absorption covering the entire UV-vis range. The hybrid-based phototransistors exhibit an ultrahigh responsivity of >1.72 × 104 A/W in the 252-780 nm region, which represents the best performance for solution-processing, broadband photodetectors. Moreover, integrated phototransistor circuitries from the hybrid CH3NH3PbI3 NPs/C8-BTBT single-crystal array show applications for high-security communication.
Collapse
Affiliation(s)
- Xiuzhen Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215000 , People's Republic of China
| | - Wei Deng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215000 , People's Republic of China
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215000 , People's Republic of China
| | - Liming Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215000 , People's Republic of China
| | - Wei Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215000 , People's Republic of China
| | - Ruofei Jia
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215000 , People's Republic of China
| | - Di Wu
- School of Physics and Engineering and Key Laboratory of Material Physics, Ministry of Education , Zhengzhou University , Zhengzhou , Henan 450052 , People's Republic of China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215000 , People's Republic of China
| | - Jiansheng Jie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215000 , People's Republic of China
| | - Shuit-Tong Lee
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215000 , People's Republic of China
| |
Collapse
|
12
|
Formation of oriented luminescent organic thin films on modified polymer substrate. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-00969-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Chen Y, Wu X, Chu Y, Zhou J, Zhou B, Huang J. Hybrid Field-Effect Transistors and Photodetectors Based on Organic Semiconductor and CsPbI 3 Perovskite Nanorods Bilayer Structure. NANO-MICRO LETTERS 2018; 10:57. [PMID: 30393705 PMCID: PMC6199102 DOI: 10.1007/s40820-018-0210-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/28/2018] [Indexed: 05/29/2023]
Abstract
The outstanding performances of nanostructured all-inorganic CsPbX3 (X = I, Br, Cl) perovskites in optoelectronic applications can be attributed to their unique combination of a suitable bandgap, high absorption coefficient, and long carrier lifetime, which are desirable for photodetectors. However, the photosensing performances of the CsPbI3 nanomaterials are limited by their low charge-transport efficiency. In this study, a phototransistor with a bilayer structure of an organic semiconductor layer of 2,7-dioctyl [1] benzothieno[3,2-b] [1] benzothiophene and CsPbI3 nanorod layer was fabricated. The high-quality CsPbI3 nanorod layer obtained using a simple dip-coating method provided decent transistor performance of the hybrid transistor device. The perovskite layer efficiently absorbs light, while the organic semiconductor layer acts as a transport channel for injected photogenerated carriers and provides gate modulation. The hybrid phototransistor exhibits high performance owing to the synergistic function of the photogating effect and field effect in the transistor, with a photoresponsivity as high as 4300 A W-1, ultra-high photosensitivity of 2.2 × 106, and excellent stability over 1 month. This study provides a strategy to combine the advantages of perovskite nanorods and organic semiconductors in fabrication of high-performance photodetectors.
Collapse
Affiliation(s)
- Yantao Chen
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Xiaohan Wu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Yingli Chu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Jiachen Zhou
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Bilei Zhou
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Jia Huang
- Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai, 201804, People's Republic of China.
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China.
| |
Collapse
|