1
|
Akila B, Baby JN, Sakthinathan S, Khan MR, Chiu TW, George M. Fabrication of copper tungstate nanoparticles on screen printed carbon electrode: A disposable strip for the electrochemical detection of the food additive tertiary Butylhydroquinone. Food Chem 2025; 463:141340. [PMID: 39342738 DOI: 10.1016/j.foodchem.2024.141340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024]
Abstract
Food additives enhance sensory pleasure and improve marketability in food product formulations, yet their potential health risks are highly consequential. Tertiary butylhydroquinone (TBHQ), in this regard, has a controversial reputation owing to its neurotoxic effects, which include convulsions and other chronic issues. This situation underscores the need for an advanced electrochemical sensing platform. The current study advocates the utilization of copper tungstate nanoparticles to enhance the sensitivity, selectivity, and efficiency in TBHQ detection, thus addressing the challenges posed by the excessive use of additives and safeguarding the integrity of the food supply chain. Hydrothermally synthesized CuWO4 nanoparticles exhibited superior physicochemical and morphological characteristics, bringing about wide linear response ranges (0.01 to 789 μM), high selectivity, excellent anti-interference capabilities, and a low detection limit of 0.9 nM (S/N = 3). The CuWO4 modified screen printed carbon electrode (SPCE) presents promising recovery ranges in food samples, facilitating real-time monitoring and streamlining the quality assessment of food additives.
Collapse
Affiliation(s)
- Balasubramanian Akila
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Jeena N Baby
- Department of Chemistry, St. Mary's College, Sulthan Bathery, Wayanad, Kerala 673592, India
| | - Subramanian Sakthinathan
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Te-Wei Chiu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan..
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu 600086, India..
| |
Collapse
|
2
|
de Abreu CB, Gebara RC, Rocha GS, da Silva Mansano A, Assis M, Pereira TM, Virtuoso LS, Moreira AJ, Santos MA, Melão MDGG, Longo E. The effects of nickel tungstate nanoparticles (NiWO 4 NPs) on freshwater microalga Raphidocelis subcapitata (Chlorophyceae). Int Microbiol 2025:10.1007/s10123-024-00628-1. [PMID: 39779638 DOI: 10.1007/s10123-024-00628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Among the vast array of functional nanoparticles (NPs) under development, nickel tungstate (NiWO4) has gained prominence due to its potential applications as a catalyst, sensor, and in the development of supercapacitors. Consequently, new studies on the environmental impact of this material must be conducted to establish a regulatory framework for its management. This work aims to assess the effects of NiWO4 (NPs) on multiple endpoints (e.g., growth, photosynthetic activity, and morphological and biochemical levels) of the freshwater microalga Raphidocelis subcapitata (Chlorophyceae). Quantification data revealed that the fraction of dissolved Ni and free Ni2+ increased proportionally with NiWO4 NP concentrations, although these levels remained relatively low. Biological results indicated that NiWO4 NPs did not inhibit the growth of algal cells, except at 7.9 mg L-1, resulting in a 9% decrease. Morphological changes were observed in cell size and complexity, accompanied by physiological alterations, such as a reduction in chlorophyll a fluorescence (FL3-H) and signs of impaired photosynthetic activity, indicated by the effective quantum yield, quenchings, and chlorophyll a (Chl a) content. Furthermore, the rapid light curves showed that the NPs in high concentrations affected microalga ability to tolerate high light intensities, as corroborated by the significant decrease in the relative electron transport rate (rETRmax) and saturation irradiance (Ek). Based on the present study results, we emphasize the importance of applying integrative approaches in ecotoxicological studies, since each endpoint evaluated showed different sensitivity.
Collapse
Affiliation(s)
- Cínthia Bruno de Abreu
- Center for the Development of Functional Materials (CDMF), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil.
| | - Renan Castelhano Gebara
- Center for the Development of Functional Materials (CDMF), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Giseli Swerts Rocha
- Departament Enginyeria Química, Escola Tècnica Superior d'Enginyeria Química, Universitat Rovira I Virgili, Av. Països Catalans, 26. 43007, Tarragona, Spain
| | - Adrislaine da Silva Mansano
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Marcelo Assis
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir (UCV), 46001, Valencia, Spain
| | - Thalles Maranesi Pereira
- Chemistry Institute, Universidade Federal de Alfenas (UNIFAL-MG), Gabriel Monteiro da Silva, Alfenas, MG, 70037130-000, Brazil
| | - Luciano Sindra Virtuoso
- Chemistry Institute, Universidade Federal de Alfenas (UNIFAL-MG), Gabriel Monteiro da Silva, Alfenas, MG, 70037130-000, Brazil
| | - Ailton José Moreira
- Chemistry Institute, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | - Mykaelli Andrade Santos
- Department of Chemistry, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Maria da Graça Gama Melão
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Elson Longo
- Center for the Development of Functional Materials (CDMF), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
3
|
Keerthana SP, Yuvakkumar R, Ravi G, Sankar VR, Metha SA, Sagadevan S. Efficient photocatalytic degradation of organic pollutants using α-SnWO 4 with g-C 3N 4 nanocomposites for wastewater remediation. CHEMOSPHERE 2024; 368:143691. [PMID: 39510261 DOI: 10.1016/j.chemosphere.2024.143691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 08/09/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Wastewater management has become necessary in this industrialized era to meet the water needs of the world. Wastewater is one of the major crises in depletion of the environment. Photocatalysis is considered as the best way to remove pollutants. Therefore, in this study, pure and g-C3N4-SnWO4 nanocomposites were produced employing hydrothermal route. Prepared composites were studied by various techniques. SnWO4 band gap were altered by introduction of g-C3N4. The morphology was uniformly developed by the addition of g-C3N4 to the SnWO4. Evans Blue dye was employed as model pollutant. The photocatalytic action was improved by adding g-C3N4, which formed a heterojunction with SnWO4. The calculated rate constant was 0.000878, 0.0068, 0.01 and 0.0122 min-1 for EB, SnWO4-EB, 0.1 g g-C3N4-SnWO4-EB and 0.2 g g-C3N4-SnWO4-EB. The rate constant increased for 0.2 g g-C3N4-SnWO4 photocatalyst. A heterojunction appeared between g-C3N4 and SnWO4 facilitated SnWO4 for better e-/h+pair's separation and a lower recombination rate, which increased photocatalytic action of product. 0.2 g of g-C3N4-SnWO4 is a promising candidate for future wastewater degradation.
Collapse
Affiliation(s)
- S P Keerthana
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - R Yuvakkumar
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - G Ravi
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India; Department of Physics, Chandigarh University, Mohali, 140 413, Punjab, India.
| | - V Ravi Sankar
- Department of Civil Engineering, Thiagarajar College of Engineering, Madurai, 625 015, Tamil Nadu, India
| | - S Arun Metha
- Department of Electronics and Communication Engineering. Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, 522 302, India
| | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
4
|
Zhang M, Veerabhadrappa JA, Shaikh SF, Kumar A. The Intrinsic Relationship between Photoluminescence and Photocatalysis of MMoO 4/MWO 4 (M = Mg, Ca, Sr and Ba) Heterojunctions: Heterojunction Construction, Mechanism Insight and Development Tendency. MICROMACHINES 2024; 15:878. [PMID: 39064389 PMCID: PMC11279217 DOI: 10.3390/mi15070878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
The migration behavior of electron and hole pairs determines both photoluminescence and photocatalytic activity, which are two distinct properties of semiconductor materials. The photoluminescence and photocatalytic activity of semiconductor materials also exhibit strong method-dependent behavior under the influence of synthesis methods. In this review, the synthesis methods of MMoO4, MWO4 and MMoO4/MWO4 (M = Mg, Ca, Sr and Ba) heterojunction composites and their photoluminescence and photocatalytic activities are reviewed for the first time. The effects of different M ions on the photoluminescence and photocatalytic activity of MMoO4/MWO4 heterojunction composites are also reviewed. There is also a discussion about the intrinsic correlation mechanism between photoluminescence and photocatalytic activity. Different M ions result in different coordination environments in MMoO4/MWO4 heterojunction composites, which leads to different photoluminescence and photocatalytic mechanisms of different MMoO4/MWO4 heterojunction composites. This review provides theoretical reference and technical guidance for future research on MMoO4/MWO4 heterojunction composites.
Collapse
Affiliation(s)
- Man Zhang
- School of Electronic Engineering, Yangzhou Polytechnic College, Yangzhou 225009, China
| | | | | | - Ashok Kumar
- Chitkara Centre for Research and Development, Chitkara University, Atal Nagar 174103, India;
| |
Collapse
|
5
|
Rajput A, Nayak PK, Ghosh D, Chakraborty B. Structural and Electronic Factors behind the Electrochemical Stability of 3D-Metal Tungstates under Oxygen Evolution Reaction Conditions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28756-28770. [PMID: 38785123 DOI: 10.1021/acsami.4c07301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Transition metal tungstates (TMTs) possess a wolframite-like lattice structure and preferably form via an electrostatic interaction between a divalent transition metal cation (MII) and an oxyanion of tungsten ([WO4]2-). A unit cell of a TMT is primarily composed of two repeating units, [MO6]oh and [WO6]oh, which are held together via several M-μ2-O-W bridging links. The bond character (ionic or covalent) of this bridging unit determines the stability of the lattice and influences the electronic structure of the bulk TMT materials. Recently, TMTs have been successfully employed as an electrode material for various applications, including electrochemical water splitting. Despite the wide electrocatalytic applications of TMTs, the study of the structure-activity correlation and electronic factors responsible for in situ structural evolution to electroactive species during electrochemical reactions is still in its infancy. Herein, a series of TMTs, MIIWVIO4 (M = Mn/Fe/Co/Ni), have been prepared and employed as electrocatalysts to study the oxygen evolution reaction (OER) under alkaline conditions and to scrutinize the role of transition metals in controlling the energetics of the formation of electroactive species. Since the [WO6]oh unit is common in the TMTs considered, the variation of the central atom of the corresponding [MO6]oh unit plays an intriguing role in controlling the electronic structure and stability of the lattice under anodic potential. Under the OER conditions, a potential-dependent structural transformation of MWO4 is noticed, where MnWO4 appears to be the most labile, whereas NiWO4 is stable up to a high anodic potential of ∼1.68 V (vs RHE). Potential-dependent hydrolytic [WO4]2- dissolution to form MOx active species, traced by in situ Raman and various spectro-/microscopic analyses, can directly be related to the electronic factors of the lattice, viz., crystal field splitting energy (CFSE) of MII in [MO6]oh, formation enthalpy (ΔHf), decomposition enthalpy (ΔHd), and Madelung factor associated with the MWO4 ionic lattice. Additionally, the magnitude of the Löwdin and Bader charges on M of the M-μ2-O-W bond is directly related to the degree of ionicity or covalency in the MWO4 lattice, which indirectly influences the electronic structure and activity. The experimental results substantiated by the computational study explain the electrochemical activity of the TMTs with the help of various structural and electronic factors and bonding interactions in the lattice, which has never been realized. Therefore, the study presented here can be taken as a general guideline to correlate the reactivity to the structure of the inorganic materials.
Collapse
Affiliation(s)
- Anubha Rajput
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India
| | - Pabitra Kumar Nayak
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India
| | - Dibyajyoti Ghosh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India
| | - Biswarup Chakraborty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India
| |
Collapse
|
6
|
Subramanian K, Rathinam Y, Ganesan R, Venkatasamy RS. Investigation of g-C 3N 4/Ce 2(WO 4) 3 Nanocomposites for the Removal of Basic Dyes. ACS OMEGA 2024; 9:10110-10118. [PMID: 38463307 PMCID: PMC10918798 DOI: 10.1021/acsomega.3c06147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 03/12/2024]
Abstract
Herein, we have synthesized pristine and g-C3N4-assisted Ce2(WO4)3 via a facile hydrothermal method. The structure was confirmed with the standard JCPDS card. g-C3N4 encapsulated the crystal and reduced the size. The Raman spectra revealed the presence of Ce-O, W-O stretching and bending vibrations. Electron hole transfer facilitation and controllable recombination were altered by g-C3N4 heterojunction with cerium tungstate. Ce2(WO4)3 possessed a larger band gap. As g-C3N4 was assisted, the band gap was reduced which facilitates Ce2(WO4)3 to utilize more visible light. The prepared photocatalysts were used to investigate the model pollutant removal with visible light. The pure Janus Green B sample showed lesser efficiency, as it does not show self-degradation under light. As Ce2(WO4)3 was added, it slightly improved the efficiency as it possesses lower electron hole transfer and high recombination. Thus, g-C3N4 was composited with Ce2(WO4)3 to make heterojunctions which will enhance the photo-excited electron and hole transfer and decrease e-/h+ recombination. The rate constant values of the photocatalysts were calculated, and the system follows the first-order pseudo-kinetic model. Ciprofloxacin, a well-known antibiotic, was also used to degrade under visible light. The pure sample showed lower efficiency, and the antibiotic was reduced well with the addition of prepared photocatalysts. The modification of Ce2(WO4)3 with the optimum-level g-C3N4 facilitated electron hole charge transfer, and numerous adsorbed dye molecules on the photocatalyst surface made 0.1 g g-C3N4-Ce2(WO4)3 a plausible photocatalyst for the water remediation process.
Collapse
Affiliation(s)
| | - Yuvakkumar Rathinam
- Department of Physics, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| | - Ravi Ganesan
- Department of Physics, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
- Department of Physics, Chandigarh University, Mohali, Punjab 140 413, India
| | - Ravi Sankar Venkatasamy
- Department of Civil Engineering, Thiagarajar College of Engineering, Madurai, Tamil Nadu 625015, India
| |
Collapse
|
7
|
Norouzi A, Nezamzadeh-Ejhieh A. Synergistic photocatalytic effect of α-Fe 2O 3-ZnO binary nanocatalyst toward methylene blue: An experimental design study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123888. [PMID: 38241932 DOI: 10.1016/j.saa.2024.123888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Due to the potential ecosystem protection and management applications, searching for highly optimized semiconductor-based solar energy photocatalysts is still a significant challenge. Coupled α-Fe2O3-ZnO nanoparticles were prepared in situ and characterized by various identification techniques such as XRD, SEM-EDX, TEM, DRS, and FT-IR. Its pHpzc was about 8.1. The band gap energies of ZnO, α-Fe2O3, and the coupled α-Fe2O3-ZnO system were 3.22, 2.08, and 2.09 eV, respectively. The boosted photocatalytic activity of the coupled catalysts was designed via the RSM approach, and the optimal RSM conditions were pH 5, 25 min irradiation time, and 0.3 g/L of the α-Fe2O3-ZnO containing 75 % ZnO. The center point conditions' run included 0.5 g/L of the coupled catalyst containing 50 % ZnO, pH 7, and 22.5 min illumination time. The study on scavenger agents showed the highest role of hydroxyl radicals in MB photodegradation by the proposed catalyst.
Collapse
Affiliation(s)
- Abbas Norouzi
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran; Department of Chemistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| |
Collapse
|
8
|
Zhao B, Ma Z, Ding S, Cao Y, Du J, Zeng L, Hu Y, Zhou J, Zhang X, Bian X, Tian G. Catalytic MnWO 4 Nanorods for Chemodynamic Therapy Synergized Radiotherapy of Triple Negative Breast Cancer. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202306328] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Indexed: 01/12/2025]
Abstract
AbstractNanomedicine‐based synergy of chemodynamic therapy (CDT) and radiotherapy (RT) modulated by tumor microenvironment enables rapid tumor ablation, which holds great hope for the refractory and recurrent cancers, such as triple negative breast cancer (TNBC). The clinical translation of hafnium oxide (HfO2), commercially named as NBTXR3, has aroused new research focus on single‐component inorganic nanomedicines as clinical candidates. Herein, the single‐component MnWO4 is first reported as a new kind of Fenton‐like agent yet radiosensitizer for TNBC treatment undergoing the synergistic CDT/RT mechanism. MnWO4 nanorods are synthesized via a simple one‐pot hydrothermal method and then undergo a layer‐by‐layer PEGylation to obtain bioavailable MnWO4‐PEG (MWP). MWP‐based Fenton‐like reaction efficacy depends on reaction time, temperatures, pH values, and MWP concentrations. Mn‐triggered chemodynamic effect delays RT‐induced DNA damage repair and sorts cell cycles distribution toward radiosensitive phases, while W‐mediated radiosensitization improves the tumoral H2O2 overexpression to enhance CDT, remarkably amplifying of the intracellular oxidative stress to boost 4T1 cell apoptosis. In vitro and in vivo evaluations further demonstrate the effectiveness and biosafety of MWP‐based synergistic therapy. Considering the potential magnetic resonance and computed tomography imaging capabilities, MWP can be expected as an intelligent cancer theranostics for imaging‐guided cancer therapy in clinic in the future.
Collapse
Affiliation(s)
- Bin Zhao
- College of Basic Medicine and College of Pharmacy Shanxi Medical University Jinzhong Shanxi 030619 P. R. China
- Institute of Pathology and Southwest Cancer Center The First Affiliated Hospital Third Military Medical University (Army Medical University) Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 400038 P. R. China
- Chongqing Institute of Advanced Pathology Jinfeng Laboratory Chongqing 401329 P. R. China
| | - Zhili Ma
- College of Basic Medicine and College of Pharmacy Shanxi Medical University Jinzhong Shanxi 030619 P. R. China
- Institute of Pathology and Southwest Cancer Center The First Affiliated Hospital Third Military Medical University (Army Medical University) Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 400038 P. R. China
- Chongqing Institute of Advanced Pathology Jinfeng Laboratory Chongqing 401329 P. R. China
| | - Shuaishuai Ding
- Institute of Pathology and Southwest Cancer Center The First Affiliated Hospital Third Military Medical University (Army Medical University) Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 400038 P. R. China
- Chongqing Institute of Advanced Pathology Jinfeng Laboratory Chongqing 401329 P. R. China
| | - Yuhua Cao
- Institute of Pathology and Southwest Cancer Center The First Affiliated Hospital Third Military Medical University (Army Medical University) Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 400038 P. R. China
| | - Jiangfeng Du
- College of Basic Medicine and College of Pharmacy Shanxi Medical University Jinzhong Shanxi 030619 P. R. China
| | - Lijuan Zeng
- Institute of Pathology and Southwest Cancer Center The First Affiliated Hospital Third Military Medical University (Army Medical University) Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 400038 P. R. China
| | - Yunping Hu
- Institute of Pathology and Southwest Cancer Center The First Affiliated Hospital Third Military Medical University (Army Medical University) Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 400038 P. R. China
| | - Jingrong Zhou
- Institute of Pathology and Southwest Cancer Center The First Affiliated Hospital Third Military Medical University (Army Medical University) Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 400038 P. R. China
| | - Xiao Zhang
- Institute of Pathology and Southwest Cancer Center The First Affiliated Hospital Third Military Medical University (Army Medical University) Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 400038 P. R. China
- Chongqing Institute of Advanced Pathology Jinfeng Laboratory Chongqing 401329 P. R. China
| | - Xiu‐wu Bian
- Institute of Pathology and Southwest Cancer Center The First Affiliated Hospital Third Military Medical University (Army Medical University) Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 400038 P. R. China
- Chongqing Institute of Advanced Pathology Jinfeng Laboratory Chongqing 401329 P. R. China
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center The First Affiliated Hospital Third Military Medical University (Army Medical University) Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 400038 P. R. China
- Chongqing Institute of Advanced Pathology Jinfeng Laboratory Chongqing 401329 P. R. China
| |
Collapse
|
9
|
Shenoy S, Chuaicham C, Sekar K, Sasaki K. Atomic-level investigation on significance of photoreduced Pt nanoparticles over g-C 3 N 4 /bimetallic oxide composites. CHEMSUSCHEM 2023; 16:e202300478. [PMID: 37337849 DOI: 10.1002/cssc.202300478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
Designing an effective photocatalyst for solar-to-chemical fuel conversion presents significant challenges. Herein, g-C3 N4 nanotubes/CuCo2 O4 (CN-NT-CCO) composites decorated with platinum nanoparticles (Pt NPs) were successfully synthesized by chemical and photochemical reductions. The size distribution and location of Pt NPs on the surface of CN-NT-CCO composites were directly observed by TEM. Extended X-ray absorption fine structure (EXAFS) spectra of Pt L3-edge for the above composite confirmed establishment of Pt-N bonds at an atomic distance of 2.09 Å in the photoreduced Pt-bearing composite, which was shorter than in chemically reduced Pt-bearing composites. This proved the stronger interaction of photoreduced Pt NPs with the CN-NT-CCO composite than chemical reduced one. The H2 evolution performance of the photoreduced (PR) Pt@CN-NT-CCO (2079 μmol h-1 g-1 ) was greater than that of the chemically reduced (CR) Pt@CN-NT-CCO composite (1481 μmol h-1 g-1 ). The abundance of catalytically active sites and transfer of electrons from CN-NT to the Pt NPs to participate in the hydrogen evolution are the primary reasons for the improved performance. Furthermore, electrochemical investigations and band edge locations validated the presence of a Z-scheme heterojunction at the Pt@CN-NT-CCO interface. This work offers unique perspectives on the structure and interface design at the atomic level to fabricate high-performance heterojunction photocatalysts.
Collapse
Affiliation(s)
- Sulakshana Shenoy
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka, 819-0395, Japan
| | - Chitiphon Chuaicham
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka, 819-0395, Japan
| | - Karthikeyan Sekar
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka, 819-0395, Japan
| |
Collapse
|
10
|
Li Y, Zheng J, Yan J, Liu Y, Guo M, Zhang Y, Meng C. La-doped NiWO 4 coupled with reduced graphene oxide for effective electrochemical determination of diphenylamine. Dalton Trans 2023; 52:12808-12818. [PMID: 37622242 DOI: 10.1039/d3dt02524a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Diphenylamine (DPA) is a harmful pesticide widely used to control post-harvest scald of fruits. In this study, rapid and sensitive determination of DPA was realized by the development of an effective electrochemical sensor, which was fabricated by coupling La-doped NiWO4 nanoparticles (La/NiWO4) with reduced graphene oxide (rGO), and the obtained rGO/La/NiWO4 nanocomposite was modified on glassy carbon electrodes (GCEs). The morphologies, structures and compositions were well characterized, and the effects of La doping and the introduction of rGO on the crystal structure and electrochemical performance were discussed. The incorporation of both La and rGO was found to enhance the active surface area and improve conductivity, resulting in the enhanced electrocatalytic performance of rGO/La/NiWO4/GCE, including a wide linear range (0.01-500 μM), a low detection limit (0.0058 μM) and high sensitivity (1.778 μA μM-1 cm-2). The fabricated sensor was further used for DPA detection in fresh apple extract to evaluate its practicality and demonstrated excellent recoveries ranging from 99.52 to 104.70%.
Collapse
Affiliation(s)
- Yanan Li
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, Liaoning, P. R. China.
| | - Jiqi Zheng
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, Liaoning, P. R. China.
| | - Jiaze Yan
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, Liaoning, P. R. China.
| | - Yanyan Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Ming Guo
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, Liaoning, P. R. China.
| | - Yifu Zhang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Changgong Meng
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, Liaoning, P. R. China.
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
11
|
Zhang Z, Kong F, Yuan B, Liao Y, Ren X, Hou Y. CdO decorated CdS nanorod for enhanced photocatalytic reduction of CO 2 to CO. RSC Adv 2023; 13:17362-17369. [PMID: 37304774 PMCID: PMC10251486 DOI: 10.1039/d3ra02739b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023] Open
Abstract
Solar-driven CO2 reduction into fuels and sustainable energy has attracted increasing attention around the world. However, the photoreduction efficiency remains low due to the low efficiency of separation of electron-hole pairs and high thermal stability of CO2. In this work, we prepared a CdO decorated CdS nanorod for visible light driven CO2 reduction. The introduction of CdO facilitates the photoinduced charge carrier separation and transfer and acts as an active site for adsorption and activation of CO2 molecules. Compared with pristine CdS, CdO/CdS exhibits a nearly 5-fold higher CO generation rate (1.26 mmol g-1 h-1). In situ FT-IR experiments indicated that CO2 reduction on CdO/CdS may follow a COOH* pathway. This study reports the pivotal effect of CdO on photogenerated carrier transfer in photocatalysis and on CO2 adsorption, which provides a facile way to enhance photocatalytic efficiency.
Collapse
Affiliation(s)
- Zhe Zhang
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology Zhuhai 519040 Guangdong China
- Faculty of Comprehensive Health Industry, Zhuhai College of Science and Technology Zhuhai 519040 Guangdong China
| | - Fanhao Kong
- School of Chemistry, Dalian University of Technology Dalian 116024 Liaoning China
| | - Bizhen Yuan
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology Zhuhai 519040 Guangdong China
- Faculty of Comprehensive Health Industry, Zhuhai College of Science and Technology Zhuhai 519040 Guangdong China
| | - Yinnian Liao
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology Zhuhai 519040 Guangdong China
- Faculty of Comprehensive Health Industry, Zhuhai College of Science and Technology Zhuhai 519040 Guangdong China
| | - Xiue Ren
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology Zhuhai 519040 Guangdong China
- Faculty of Comprehensive Health Industry, Zhuhai College of Science and Technology Zhuhai 519040 Guangdong China
| | - Yu Hou
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology Zhuhai 519040 Guangdong China
- Faculty of Comprehensive Health Industry, Zhuhai College of Science and Technology Zhuhai 519040 Guangdong China
| |
Collapse
|
12
|
Parasuraman B, Kandasamy B, Murugan I, Alsalhi MS, Asemi N, Thangavelu P, Perumal S. Designing the heterostructured FeWO 4/FeS 2 nanocomposites for an enhanced photocatalytic organic dye degradation. CHEMOSPHERE 2023; 334:138979. [PMID: 37236279 DOI: 10.1016/j.chemosphere.2023.138979] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
The present study, reports a facile approach for the synthesis of FeWO4/FeS2 nanocomposites were demonstrated through hydrothermal method. The surface morphology, crystalline structure, chemical composition, optical properties of the prepared samples was analysed by different various technique. The result observed analysis indicates that, the formation of heterojunction by 2:1 wt.% of FeWO4/FeS2 nanohybrid has the lowest recombination rate of electron-hole pairs and the least electron transfer resistance. Due to its the broad absorption spectral range and preferable energy band gap, the (2:1) FeWO4/FeS2 nanohybrid photocatalyst exhibits an excellent ability to remove MB dye when exposed to UV-Vis. Light irradiation. Its photocatalytic activity of (2:1) FeWO4/FeS2 nanohybrid is higher than other as prepared samples due to its synergistic effects, enhanced light absorption and high charge carrier separation. Radical trapping experimental result implies that the photo-generated free electrons and hydroxyl radials are essential to degrade the MB dye. Furthermore, a possible future mechanism for FeWO4/FeS2 nanocomposites photocatalytic activity was discussed. Moreover, the recyclability analysis demonstrated that the FeWO4/FeS2 nanocomposites can be recycled multiple times. The enhanced photocatalytic activity of 2:1 FeWO4/FeS2 nanocomposites is promising for the further application of visible light driven photocatalyst in wastewater treatment.
Collapse
Affiliation(s)
- Balaji Parasuraman
- Smart Materials Laboratory, Department of Physics, Periyar University, Salem, Tamil Nadu, 636011, India
| | | | - Indrani Murugan
- Department of Chemistry, Sri GVG Visalakshi College for Women, Udumalpet, Tamil Nadu, 642128, India
| | - Mohamad S Alsalhi
- Department of Physics Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Nassar Asemi
- Department of Physics Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Pazhanivel Thangavelu
- Smart Materials Laboratory, Department of Physics, Periyar University, Salem, Tamil Nadu, 636011, India.
| | - Sakthivel Perumal
- Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
13
|
Skjærvø SL, Anker AS, Wied MC, Kjær ETS, Juelsholt M, Christiansen TL, Ø Jensen KM. Atomic structural changes in the formation of transition metal tungstates: the role of polyoxometalate structures in material crystallization. Chem Sci 2023; 14:4806-4816. [PMID: 37181762 PMCID: PMC10171188 DOI: 10.1039/d3sc00426k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Material nucleation processes are poorly understood; nevertheless, an atomistic understanding of material formation would aid in the design of material synthesis methods. Here, we apply in situ X-ray total scattering experiments with pair distribution function (PDF) analysis to study the hydrothermal synthesis of wolframite-type MWO4 (M : Mn, Fe, Co, Ni). The data obtained allow the mapping of the material formation pathway in detail. We first show that upon mixing of the aqueous precursors, a crystalline precursor containing [W8O27]6- clusters forms for the MnWO4 synthesis, while amorphous pastes form for the FeWO4, CoWO4 and NiWO4 syntheses. The structure of the amorphous precursors was studied in detail with PDF analysis. Using database structure mining and an automated modelling strategy by applying machine learning, we show that the amorphous precursor structure can be described through polyoxometalate chemistry. A skewed sandwich cluster containing Keggin fragments describes the PDF of the precursor structure well, and the analysis shows that the precursor for FeWO4 is more ordered than that of CoWO4 and NiWO4. Upon heating, the crystalline MnWO4 precursor quickly converts directly to crystalline MnWO4, while the amorphous precursors transform into a disordered intermediate phase before the crystalline tungstates appear. Our data show that the more disordered the precursor is, the longer the reaction time required to form crystalline products, and disorder in the precursor phase appears to be a barrier for crystallization. More generally, we see that polyoxometalate chemistry is useful when describing the initial wet-chemical formation of mixed metal oxides.
Collapse
Affiliation(s)
- Susanne Linn Skjærvø
- Department of Chemistry and Nano-Science Center, University of Copenhagen 2100 Copenhagen Ø Denmark
| | - Andy S Anker
- Department of Chemistry and Nano-Science Center, University of Copenhagen 2100 Copenhagen Ø Denmark
| | - Magnus C Wied
- Department of Chemistry and Nano-Science Center, University of Copenhagen 2100 Copenhagen Ø Denmark
| | - Emil T S Kjær
- Department of Chemistry and Nano-Science Center, University of Copenhagen 2100 Copenhagen Ø Denmark
| | - Mikkel Juelsholt
- Department of Chemistry and Nano-Science Center, University of Copenhagen 2100 Copenhagen Ø Denmark
| | | | - Kirsten M Ø Jensen
- Department of Chemistry and Nano-Science Center, University of Copenhagen 2100 Copenhagen Ø Denmark
| |
Collapse
|
14
|
Iqbal S, Liu J, Ma H, Liu W, Zuo S, Yu Y. Fabrication of TiO2/Fe2O3/g-C3N4 Ternary Photocatalyst via a Low-Temperature Calcination and Solvothermal Route and its visible light Assisted Photocatalytic Properties. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
15
|
Transition metal tungstates AWO4 (A2+ = Fe, Co, Ni, and Cu) thin films and their photoelectrochemical behavior as photoanode for photocatalytic applications. J APPL ELECTROCHEM 2023. [DOI: 10.1007/s10800-023-01851-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Faka V, Griniezaki M, Kiriakidis G, Grilla E, Mantzavinos D, Mao S, Shen S, Frontistis Z, Binas V. Solar light induced photocatalytic degradation of sulfamethoxazole by ZnWO4/CNNs nanocomposites. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
Selvasundarasekar SS, Bijoy TK, Kumaravel S, Karmakar A, Madhu R, Bera K, Nagappan S, Dhandapani HN, Mersal GAM, Ibrahim MM, Sarkar D, Yusuf SM, Lee SC, Kundu S. Effective Formation of a Mn-ZIF-67 Nanofibrous Network via Electrospinning: An Active Electrocatalyst for OER in Alkaline Medium. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46581-46594. [PMID: 36194123 DOI: 10.1021/acsami.2c12643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Finding the active center in a bimetallic zeolite imidazolate framework (ZIF) is highly crucial for the electrocatalytic oxygen evolution reaction (OER). In the present study, we constructed a bimetallic ZIF system with cobalt and manganese metal ions and subjected it to an electrospinning technique for feasible fiber formation. The obtained nanofibers delivered a lower overpotential value of 302 mV at a benchmarking current density of 10 mA cm-2 in an electrocatalytic OER study under alkaline conditions. The obtained Tafel slope and charge-transfer resistance values were 125 mV dec-1 and 4 Ω, respectively. The kinetics of the reaction is mainly attributed from the ratio of metals (Co and Mn) present in the catalyst. Jahn-Teller distortion reveals that the electrocatalytic active center on the Mn-incorporated ZIF-67 nanofibers (Mn-ZIF-67-NFs) was found to be Mn3+ along with the Mn2+ and Co2+ ions on the octahedral and tetrahedral sites, respectively, where Co2+ ions tend to suppress the distortion, which is well supported by density functional theory analysis, molecular orbital study, and magnetic studies.
Collapse
Affiliation(s)
- Sam Sankar Selvasundarasekar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi630003, Tamil Nadu, India
| | - T K Bijoy
- Indo-Korea Science and Technology Center (IKST), Jakkur, Bengaluru560065, India
| | - Sangeetha Kumaravel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi630003, Tamil Nadu, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi630003, Tamil Nadu, India
| | - Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi630003, Tamil Nadu, India
| | - Krishnendu Bera
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi630003, Tamil Nadu, India
| | - Sreenivasan Nagappan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi630003, Tamil Nadu, India
| | - Hariharan N Dhandapani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi630003, Tamil Nadu, India
| | - Gaber A M Mersal
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Mohamed M Ibrahim
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Debashish Sarkar
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai400085, India
| | - Seikh Mohammad Yusuf
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai400085, India
| | - Seung-Cheol Lee
- Indo-Korea Science and Technology Center (IKST), Jakkur, Bengaluru560065, India
- Electronic Materials Research Center, KIST, Seoul136-791, South Korea
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi630003, Tamil Nadu, India
| |
Collapse
|
18
|
Mishra S, Choudhary R, Parida S. Structural, dielectric, electrical and optical properties of a double perovskite: BaNaFeWO6 for some device applications. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Confined cobalt oxide embedded into hierarchical bismuth tungstate in S-scheme micro-heterojunction for enhanced air purification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Asha S, Bakri M, El Manna C, Sasi Florence S, Sarojini V, Hentry C, Bindhu MR. Enhanced bacterial inhibition and photocatalyzed degradation of industrial contaminants by polyethylene glycol capped PbWO 4 nanoparticles. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2116374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- S. Asha
- Department of Physics, St. Jude’s College, Thoothoor, Affiliated to Manonmaniam Sundaranar University, Tirunelveli, India
| | - Marwah Bakri
- Department of Biology, Jazan University, Jizan, Saudi Arabia
| | | | | | - V. Sarojini
- Department of Physics, Lekshmipuram College of Arts and Science, Neyyoor, India
| | - C. Hentry
- Department of Physics, St. Jude’s College, Thoothoor, Affiliated to Manonmaniam Sundaranar University, Tirunelveli, India
| | - M. R. Bindhu
- Department of Physics, Sree Devi Kumari Women’s College, Kuzhithurai, India
| |
Collapse
|
21
|
Ahmed AI, Kospa DA, Gamal S, Samra SE, Salah AA, El-Hakam SA, Awad Ibrahim A. Fast and simple fabrication of reduced graphene oxide-zinc tungstate nanocomposite with enhanced photoresponse properties as a highly efficient indirect sunlight driven photocatalyst and antibacterial agent. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
Yusuf M, Hira SA, Park KH. Light-Harvesting Novel Hierarchical Porous Cu 9S 5-MnWO 4 Hybrid Structures in Photocatalytic Oxidative Homocoupling of Alkynes and Amines. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15529-15540. [PMID: 35325540 DOI: 10.1021/acsami.2c00279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The discovery of light-harvesting materials for use in photocatalytic organic reactions has recently attracted attention, indicating the potential for utilizing renewable energy sources. A hybrid semiconductor (SC)-SC structure, Cu9S5-MnWO4, was synthesized using a simple, efficient method. The novel hierarchical porous Cu9S5-MnWO4 hybrid structures were then applied in the photocatalysis of oxidative homocoupling of alkynes and amines. The design of a heterogeneous catalyst based on a porous, SC-SC hybrid structure and low-cost Cu should generate interest in the fabrication and modification of photocatalysts for a wide range of applications.
Collapse
Affiliation(s)
- Mohammad Yusuf
- Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Shamim Ahmed Hira
- Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Kang Hyun Park
- Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
23
|
Keerthana SP, Yuvakkumar R, Senthil Kumar P, Ravi G, Hong SI, Velauthapillai D. Investigation of PEG directed Sb 2WO 6 for dyes removal from wastewater. CHEMOSPHERE 2022; 291:132677. [PMID: 34715096 DOI: 10.1016/j.chemosphere.2021.132677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/27/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Pristine and polyethylene glycol assisted antimony tungstate (Sb2WO6) was developed via hydrothermal route. The pristine and surfactant assisted Sb2WO6 were further exemplified to reveal the properties of the samples. The bandgap calculated for Sb2WO6, 5 ml PEG- Sb2WO6, 10 ml PEG- Sb2WO6 was 2.78 eV, 2.66 eV and 2.21 eV. The 10 ml PEG assisted sample exhibited narrow bandgap. The Fourier transform infrared spectroscopy (FTIR) spectra of the samples showed metal vibrations and stretching of the water molecules adsorbed. The Raman spectra showed the vibrational modes present in Sb2WO6. The morphology was analyzed employing transmission electron microscope (TEM) for all samples. Pristine Sb2WO6 showed growth of nanorods with higher dimensions with high agglomeration. 5 ml PEG- Sb2WO6 showed the growth of nanorods with lesser agglomeration. 10 ml PEG assisted Sb2WO6 exhibited distinct growth of nanorods with no agglomeration on the surface. The elemental composition was examined employing X-ray Photoelectron Spectroscopy. Prepared product photocatalytic behaviour was tested employing Rhodamine B dye degrading. Different catalyst loading were investigated for degrading the toxic pollutants. 0.2 g 10 ml PEG-Sb2WO6 showed 81% efficiency on degrading the toxic pollutant from wastewater. The OH radicals are accountable for photocatalytic behaviour of prepared photocatalyst. The 10 ml PEG-Sb2WO6 has the good reusability behavior and stable properties after three cycles. The prepared 10 ml PEG- Sb2WO6 photocatalyst will be the potential candidate for the remediation of the water treatment.
Collapse
Affiliation(s)
- S P Keerthana
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - R Yuvakkumar
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - G Ravi
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - S I Hong
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, South Korea
| | - Dhayalan Velauthapillai
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, 5063, Norway
| |
Collapse
|
24
|
Jadoun S, Yáñez J, Mansilla HD, Riaz U, Chauhan NPS. Conducting polymers/zinc oxide-based photocatalysts for environmental remediation: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:2063-2083. [PMID: 35221834 PMCID: PMC8857745 DOI: 10.1007/s10311-022-01398-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/17/2022] [Indexed: 05/03/2023]
Abstract
The accessibility to clean water is essential for humans, yet nearly 250 million people die yearly due to contamination by cholera, dysentery, arsenicosis, hepatitis A, polio, typhoid fever, schistosomiasis, malaria, and lead poisoning, according to the World Health Organization. Therefore, advanced materials and techniques are needed to remove contaminants. Here, we review nanohybrids combining conducting polymers and zinc oxide for the photocatalytic purification of waters, with focus on in situ polymerization, template synthesis, sol-gel method, and mixing of semiconductors. Advantages include less corrosion of zinc oxide, less charge recombination and more visible light absorption, up to 53%.
Collapse
Affiliation(s)
- Sapana Jadoun
- Facultad de Ciencias Químicas, Departamento de Química Analítica e Inorgánica, Universidad de Concepción, 4070371 Edmundo Larenas 129, Concepción, Chile
- Department of Chemistry, Materials Research Laboratory, Jamia Millia Islamia, New Delhi, 110025 India
| | - Jorge Yáñez
- Facultad de Ciencias Químicas, Departamento de Química Analítica e Inorgánica, Universidad de Concepción, 4070371 Edmundo Larenas 129, Concepción, Chile
| | - Héctor D. Mansilla
- Facultad de Ciencias Químicas, Departamento de Química Orgánica, Universidad de Concepción, 4070371 Edmundo Larenas 129, Concepción, Chile
| | - Ufana Riaz
- Department of Chemistry, Materials Research Laboratory, Jamia Millia Islamia, New Delhi, 110025 India
| | | |
Collapse
|
25
|
Yao Y, He J, Ma L, Wang J, Peng L, Zhu X, Li K, Qu M. Self-supported Co 9S 8-Ni 3S 2-CNTs/NF electrode with superwetting multistage micro-nano structure for efficient bifunctional overall water splitting. J Colloid Interface Sci 2022; 616:287-297. [PMID: 35219194 DOI: 10.1016/j.jcis.2022.02.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022]
Abstract
Electrochemical water splitting for hydrogen production using cost-effective and high-efficiency electrocatalysts in alkaline electrolytes is of great significance for solving energy crisis and environmental pollution. Herein, we reported a superhydrophilic and underwater superaerophobic multistage layered micro-nano structure ofCo9S8-Ni3S2-CNTs/NF on nickel foam (NF) prepared by a simple one-step hydrothermal procedure. Particularly, the multistage layered micro-nano structure makes the electrode superhydrophilic and superaerophobic, which can facilitate the exposure of active sites, accelerate the tansfer of electrolyte and the release of gas bubbles. Consequently, the rough electrode demonstrated excellent catalytic performance in alkaline condition, which only need a low overpotential 127 mV for oxygen evolution reaction (OER) and 243 mV for hydrogen evolution reaction (HER) at 10 mA cm-2 and can keep a long durability for 10 h at 10 mA cm-2. In addition, the production of hydrogen in an electrolytic water device with Co9S8-Ni3S2-CNTs/NF as bifunctional electrode prowered by the electricity derived from solar and wind energy in laboratory condition was artificially simulated. This work represents a perspective in improving the electrocatalytic performance of water splitting by structure and wettability regulation and opens a new avenue for clean energy generation.
Collapse
Affiliation(s)
- Yali Yao
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jinmei He
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Lili Ma
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jiaxin Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Lei Peng
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Xuedan Zhu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Kanshe Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Mengnan Qu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
| |
Collapse
|
26
|
Ndebele N, Mgidlana S, nyokong T. Electrochemical Detection of Nitrite Using an Asymmetrically Substituted Cobalt Phthalocyanine Conjugated to Metal Tungstate Nanoparticles. ELECTROANAL 2022. [DOI: 10.1002/elan.202100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Baues S, Vocke H, Harms L, Rücker KK, Wark M, Wittstock G. Combinatorial Screening of Cu-W Oxide-Based Photoanodes for Photoelectrochemical Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6590-6603. [PMID: 35076196 DOI: 10.1021/acsami.1c20837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal oxide libraries for photoanodes for the oxygen evolution reaction (OER) were generated by printing a metal salt solution in an array layout, followed by calcination to yield 22 ternary metal oxide systems. The libraries included a ternary metal cation system based on CuWO4 with one out of eight transition or posttransition metal ions Cr, Mn, Fe, Co, Ni, Zn, Bi, and Ga in different overall atomic ratios. The photocatalyst libraries were screened by scanning photoelectrochemical microscopy for the highest anodic photocurrents. Array elements that showed promising performance were printed in another set of eight libraries with smaller increments of overall composition. Improved performance with respect to CuWO4 was found for Ga, Co, and Ni as the third element. A comparison of the most active composition of those arrays within one library showed the highest activity for Cu48Ga3W49Ox. Printing spots of identical composition (Cu48Ga3W49Ox, Cu44Ni9W47Ox, and Cu44Co9W47Ox) over a larger area facilitated further characterization by X-ray photoelectron spectroscopy ultraviolet photoelectron spectroscopy (UPS), X-ray diffraction, scanning electron microscopy, chopped light voltammetry, and scanning electrochemical microscopy for the OER. High and stable steady-state photocurrents were generated in a photoelectrochemical cell for all three electrodes even at a low constant bias voltage. The best overall photoanode composition Cu48Ga3W49Ox showed currents that were 36 times higher than the currents of the binary Cu50W50Ox system. Significant n-doping was found by UPS valence band spectra for Ga-containing materials.
Collapse
Affiliation(s)
- Svenja Baues
- Carl von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, 26111 Oldenburg, Germany
| | - Heinrich Vocke
- Carl von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, 26111 Oldenburg, Germany
| | - Lena Harms
- Carl von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, 26111 Oldenburg, Germany
| | - Konstantin K Rücker
- Carl von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, 26111 Oldenburg, Germany
| | - Michael Wark
- Carl von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, 26111 Oldenburg, Germany
| | - Gunther Wittstock
- Carl von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, 26111 Oldenburg, Germany
| |
Collapse
|
28
|
Koutavarapu R, Reddy CV, Syed K, Reddy KR, Saleh TA, Lee DY, Shim J, Aminabhavi TM. Novel Z-scheme binary zinc tungsten oxide/nickel ferrite nanohybrids for photocatalytic reduction of chromium (Cr (VI)), photoelectrochemical water splitting and degradation of toxic organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127044. [PMID: 34523469 DOI: 10.1016/j.jhazmat.2021.127044] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
A simple hydrothermal approach was demonstrated for synthesizing a coupled NiFe2O4-ZnWO4 nanocomposite, wherein one-dimensional ZnWO4 nanorods were inserted into two-dimensional NiFe2O4 nanoplates. Herein, we evaluated the photocatalytic removal of Cr(VI), and degradation of tetracycline (TC) and methylene blue (MB) by the nanocomposite, as well as its ability to split water. The ZnWO4 nanorods enriched the synergistic interactions, upgraded the solar light fascination proficiency, and demonstrated outstanding detachment and migration of the photogenerated charges, as confirmed by a transient photocurrent study and electrochemical impedance spectroscopy measurements. Compared to pristine NiFe2O4 and ZnWO4, the NiFe2O4-ZnWO4 nanocomposite exhibited a higher Cr(VI) reduction (93.5%) and removal of TC (97.9%) and MB (99.6%). Radical trapping results suggested that hydroxyl and superoxide species are dominant reactive species, thereby facilitating the Z-scheme mechanism. Furthermore, a probable photocatalytic mechanism was projected based on the experimental results. The photoelectrochemical analysis confirmed that NiFe2O4-ZnWO4 exhibited minor charge-transfer resistance and large photocurrents. We propose a novel and efficient approach for designing a coupled heterostructured nanocomposites with a significant solar light ability for ecological conservation and water splitting.
Collapse
Affiliation(s)
- Ravindranadh Koutavarapu
- Department of Robotics and Intelligent Machine Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Ch Venkata Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea.
| | - Kamaluddin Syed
- Department of Mechanical Engineering, Vignan's Institute of Information Technology, Visakhapatnam 530049, Andhra Pradesh, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia.
| | - Tawfik A Saleh
- Chemistry Department, King Fahd University of Petroleum & Minerals, B.O. Box: 346, Dhahran 31261, Saudi Arabia
| | - Dong-Yeon Lee
- Department of Robotics and Intelligent Machine Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea.
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580031, India.
| |
Collapse
|
29
|
Cao S, Zhou Y, Wang R, Jiao W. Enhanced Photocatalytic Activity by Pt Confined within N-Doped Carbon on TiO2 Inner Surface. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Songtao Cao
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, P.R. China
| | - Yu Zhou
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, P.R. China
| | - Ruixin Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, P.R. China
| | - Weizhou Jiao
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, P.R. China
| |
Collapse
|
30
|
Karuppusamy N, Mariyappan V, Chen SM, Ramachandran R. A novel electrochemical sensor for the detection of enrofloxacin based on a 3D flower-like metal tungstate-incorporated reduced graphene oxide nanocomposite. NANOSCALE 2022; 14:1250-1263. [PMID: 34994758 DOI: 10.1039/d1nr06343j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent times, metal tungstates have received a lot of attention in various research fields. Accordingly, the CaWO4/RGO (CW/RGO) nanocomposite was prepared by a facile hydrothermal method. The electrocatalytic performance of the hydrothermally prepared CW/RGO nanocomposite was used for the electrochemical detection of the antibiotic medicine enrofloxacin (ENF). The electrocatalytic oxidation performance of ENF was examined by cyclic voltammetry (CV) and amperometry (AMP) techniques. The CV results showed the lowest anodic peak potential and the enhanced anodic peak current response compared to the other modified electrodes. Mainly, our newly proposed sensor exhibited excellent electrochemical performance with the lowest limit of detection (LOD) of 0.021 μM, and a significant linear range of 0.001-115 μM. Additionally, our proposed sensor exhibited good selectivity, great long-term stability, and excellent reproducibility. Then, our proposed sensor was successfully applied to detect the amount of ENF in a milk sample and river water, which exhibited good satisfactory results.
Collapse
Affiliation(s)
- Naveen Karuppusamy
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Vinitha Mariyappan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Rasu Ramachandran
- Department of Chemistry, The Madura College, Vidya Nagar, Madurai 625 011, Tamil Nadu, India
| |
Collapse
|
31
|
Xiong J, Zeng HY, Peng JF, Xu S, Yang ZL. Insight into the enhanced photocatalytic activity mechanism of the Ag 3VO 4/CoWO 4 p–n heterostructure under visible light. CrystEngComm 2022. [DOI: 10.1039/d2ce00524g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Ag3VO4/CoWO4 p–n heterostructure was designed and prepared by an in situ growth method. The physicochemical properties were characterized by multiple techniques, and the photocatalytic performances in Cr(vi) reduction and TC degradation were also evaluated under visible-light irradiation.
Collapse
Affiliation(s)
- Jie Xiong
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Hong-Yan Zeng
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Jin-Feng Peng
- School of Mechanical Engineering, College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Sheng Xu
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Zhuo-Lin Yang
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| |
Collapse
|
32
|
Liu N, Li X, Wang Y, Zhu B, Tian Y, Lang J, Yang J. Photocatalyst prepared by NiCo2O4/CNQDs modified carbon fabric heterojunctions enhanced visible-light-driven photocatalytic degradation of Methyl Orange. CrystEngComm 2022. [DOI: 10.1039/d2ce00183g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As this point, A novel photocatalyst was reported by us, cobalt nickel tetroxide (NiCo2O4)/g-C3N4 quantum dots (CNQDs) heterojunctions on carbon cloth (CC). NiCo2O4 nanosheets and NiCo2O4/CNQDs were grown on carbon...
Collapse
|
33
|
Liu Z, Yuan C, Hao W, Lu Z, Zhang J, Ruan W, Ma B, Jiang W, Teng F. In-situ conversion of Bi2O2CO3 to Bi2O2CO3/Fe2O3/BiOCl, Fe2O3/BiOCl heterojunctions and boosted photodegradation activity. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Guo B, Gu Y. Preparation of an Excellent Z‐type SrWO
4
@Bi
2
WO
6
Heterojunction Photocatalyst and Its Photocatalytic Performance under Simulated Sunlight. ChemistrySelect 2021. [DOI: 10.1002/slct.202102213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bobo Guo
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals Lanzhou University of Technology Lanzhou 730050 China
- Key Laboratory of Nonferrous Metal Alloy and Processing Ministry of Education Lanzhou University of Technology Lanzhou 730050 China
| | - Yufen Gu
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals Lanzhou University of Technology Lanzhou 730050 China
- Key Laboratory of Nonferrous Metal Alloy and Processing Ministry of Education Lanzhou University of Technology Lanzhou 730050 China
| |
Collapse
|
35
|
Asha S, Hentry C, Bindhu MR, Al-Mohaimeed AM, AbdelGawwad MR, Elshikh MS. Improved photocatalytic activity for degradation of textile dyeing waste water and thiazine dyes using PbWO 4 nanoparticles synthesized by co-precipitation method. ENVIRONMENTAL RESEARCH 2021; 200:111721. [PMID: 34293312 DOI: 10.1016/j.envres.2021.111721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
The coloured dyes released from the textile industrial effluents into water resources cause non-aesthetic pollution and aquatic life toxicity. Thus textile waste water treatment has been studied globally for many years. Photocatalytic properties of lead tungstate (PbWO4) nanoparticles (NPs) were analyzed for thiazine dyes and textile waste water under ultraviolet light conditions. XRD result showed the tetragonal scheelite structure of PbWO4 NPs. The crystallinity of the sample was confirmed from the SAED and XRD pattern. The existence of stretch vibration of Pb-O and O-W-O confirmed from FTIR results. EDAX displays optical absorption signals of Pb, W and O, and confirm the formation of PbWO4. Optical studies reveal that the band gap of the obtained nanoparticles increases with respect to their bulk counterparts that may be attributed to reduction in particle size. TEM images of PbWO4 powder consists of hexagonal particles and relatively uniform and smooth surface rod shaped prism-like structures. The photocatalytic activity of the prepared nanoparticles was analyzed through the degradation of textile waste water under UV light irradiation. The photocatalytic reaction rate constant was found to be 0.014/min. The small sized PbWO4 particles can adsorb more OH groups and oxidatively degrade the pollutants in the textile waste water.
Collapse
Affiliation(s)
- S Asha
- Research Scholar (Reg.no: 19213012132010), Department of Physics, St.Jude's College, Thoothoor, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, 627012, Tamilnadu, India
| | - C Hentry
- Department of Physics, St.Jude's College, Thoothoor, 629176, Tamilnadu, India
| | - M R Bindhu
- Department of Physics, Sree Devi Kumari Women's College, Kuzhithurai, 629163, Tamilnadu, India.
| | - Amal M Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Mohamed Ragab AbdelGawwad
- Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, 71210, Sarajevo, Bosnia and Herzegovina
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
36
|
Hammouche J, Daoudi K, Columbus S, Ziad R, Ramachandran K, Gaidi M. Structural and morphological optimization of Ni doped ZnO decorated silicon nanowires for photocatalytic degradation of methylene blue. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Cheng W, Zhang Q, Xue Y, Wang Y, Zhou X, Li Z, Li Q. Facile synthesis of alginate‐based calcium tungstate composite: A thermally stable blue emitting phosphor. J Appl Polym Sci 2021. [DOI: 10.1002/app.50631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wen Cheng
- College of Chemistry and Chemical Engineering Qingdao University Qingdao China
| | - Qing Zhang
- College of Chemistry and Chemical Engineering Qingdao University Qingdao China
| | - Yun Xue
- College of Chemistry and Chemical Engineering Qingdao University Qingdao China
| | - Yanwei Wang
- College of Chemistry and Chemical Engineering Qingdao University Qingdao China
| | - Xiaodong Zhou
- College of Chemistry and Chemical Engineering Qingdao University Qingdao China
| | - Zichao Li
- Institute of Biomedical Engineering, College of Life Sciences Qingdao University Qingdao China
- State Key Laboratory of Bio‐Fibers and Eco‐Textiles Qingdao University Qingdao China
| | - Qun Li
- College of Chemistry and Chemical Engineering Qingdao University Qingdao China
- State Key Laboratory of Bio‐Fibers and Eco‐Textiles Qingdao University Qingdao China
- Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles Qingdao University Qingdao China
| |
Collapse
|
38
|
Jiang L, Xie Y, He F, Ling Y, Zhao J, Ye H, Li S, Wang J, Hou Y. Facile synthesis of GO as middle carrier modified flower-like BiOBr and C3N4 nanosheets for simultaneous treatment of chromium(VI) and tetracycline. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Efficient photocatalysis performance and recyclability of MoO3/BiVO4 heterostructure under visible light. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01929-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
Recent advances in bismuth vanadate-based photocatalysts for photoelectrochemical water splitting. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.065] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Babu B, Koutavarapu R, Shim J, Kim J, Yoo K. Enhanced solar-light-driven photocatalytic and photoelectrochemical properties of zinc tungsten oxide nanorods anchored on bismuth tungsten oxide nanoflakes. CHEMOSPHERE 2021; 268:129346. [PMID: 33360940 DOI: 10.1016/j.chemosphere.2020.129346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
At present, sustainable water supply and energy generation are the most important challenges faced by humankind globally. Thus, it is crucial to progress ecological techniques for sustainable removal of organic pollutants from wastewater and generation of hydrogen as an alternative to fossil fuels. In this study, zinc tungsten oxide (ZnWO4) nanorods, bismuth tungsten oxide (Bi2WO6) nanoflakes, and Bi2WO6/ZnWO4 (BO-ZO) nanocomposites were prepared via a simple hydrothermal approach. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, diffuse reflectance spectroscopy, and electrochemical analyses were conducted to confirm the formation of the BO-ZO heterostructure. The structural and morphological analyses revealed that the ZnWO4 nanorods were moderately dispersed on the Bi2WO6 nanoflakes. The bandgap tuning of BO-ZO nanocomposite confirmed the establishment of the heterostructure with band bending properties. The BO-ZO nanocomposite could degrade 99.52% of methylene blue (MB) within 60 min upon solar-light illumination. The photoelectrochemical (PEC) measurement results showed that the BO-ZO nanocomposite showed low charge-transfer resistance and high photocurrent response with good stability. The BO-ZO photoanode showed a low charge-transfer resistance of 35.33 Ω and high photocurrent density of 0.1779 mA/cm2 in comparison with Ag/AgCl in a 0.1 M Na2SO3 electrolyte under solar-light illumination. The MB photocatalytic degradation and PEC water oxidation mechanisms of the nanocomposite were investigated.
Collapse
Affiliation(s)
- Bathula Babu
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| | | | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Jonghoon Kim
- Department of Electrical Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Kisoo Yoo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| |
Collapse
|
42
|
Mgidlana S, Nwahara N, Nyokong T. Photocatalytic desulfurization of dibenzothiophene using methoxy substituted asymmetrical zinc(II) phthalocyanines conjugated to metal tungstate nanomaterials. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Abdelbasir SM, Elseman AM, Harraz FA, Ahmed YMZ, El-Sheikh SM, Rashad MM. Superior UV-light photocatalysts of nano-crystalline (Ni or Co) FeWO 4: structure, optical characterization and synthesis by a microemulsion method. NEW J CHEM 2021. [DOI: 10.1039/d0nj05431c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new NiFeWO4 photocatalyst showing super photocatalytic activity for MB degradation under UV after 60 min due to photoexcited electrons.
Collapse
Affiliation(s)
| | | | - Farid A. Harraz
- Central Metallurgical Research & Development Institute (CMRDI)
- Cairo
- Egypt
| | - Yasser M. Z. Ahmed
- Central Metallurgical Research & Development Institute (CMRDI)
- Cairo
- Egypt
| | - Said M. El-Sheikh
- Central Metallurgical Research & Development Institute (CMRDI)
- Cairo
- Egypt
| | - Mohamed M. Rashad
- Central Metallurgical Research & Development Institute (CMRDI)
- Cairo
- Egypt
| |
Collapse
|
44
|
Rani E, Talebi P, Cao W, Huttula M, Singh H. Harnessing photo/electro-catalytic activity via nano-junctions in ternary nanocomposites for clean energy. NANOSCALE 2020; 12:23461-23479. [PMID: 33211053 DOI: 10.1039/d0nr05782g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Though solar energy availability is predicted for centuries, the diurnal and asymmetrical nature of the sun across the globe presents significant challenges in terms of harvesting sunlight. Photo/electro-catalysis, currently believed to be the bottleneck, promises a potential solution to these challenges along with a green and sustainable environment. This review aims to provide the current highlights on the application of inorganic-semiconductor-based ternary nanocomposites for H2 production and pollutant removal. Various engineering strategies employing integration of 2D materials, 1D nanorods, and/or 0D nanoparticles with inorganic semiconductors to create multiple nano-junctions have been developed for the excellent photocatalytic activity. Following a succinct description of the latest progress in photocatalysts, a discussion on the importance of ternary electrocatalysts in the field of next-generation supercapacitors has been included. Finally, the authors' perspectives are considered briefly, including future developments and critical technical challenges in the ever-growing field of photo/electro-catalysis.
Collapse
Affiliation(s)
- Ekta Rani
- Nano and Molecular Systems Research Unit, University of Oulu, FIN-90014, Finland.
| | | | | | | | | |
Collapse
|
45
|
Chowdhury AP, Shambharkar BH. Fabrication and characterization of BiOBr-SnWO4 heterojunction nanocomposites with boosted photodegradation capability. CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
46
|
Alhaddad M, Shawky A. CuS assembled rGO heterojunctions for superior photooxidation of atrazine under visible light. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114377] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Zhang W, Mohamed AR, Ong W. Z‐Schema‐Photokatalysesysteme für die Kohlendioxidreduktion: Wo stehen wir heute? Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914925] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wenhao Zhang
- School of Energy and Chemical Engineering Xiamen University Malaysia Selangor Darul Ehsan 43900 Malaysia
| | - Abdul Rahman Mohamed
- Low Carbon Economy (LCE) Research Group School of Chemical Engineering Universiti Sains Malaysia Nibong Tebal 14300 Pulau Pinang Malaysia
| | - Wee‐Jun Ong
- School of Energy and Chemical Engineering Xiamen University Malaysia Selangor Darul Ehsan 43900 Malaysia
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
48
|
Zhang W, Mohamed AR, Ong W. Z‐Scheme Photocatalytic Systems for Carbon Dioxide Reduction: Where Are We Now? Angew Chem Int Ed Engl 2020; 59:22894-22915. [DOI: 10.1002/anie.201914925] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Wenhao Zhang
- School of Energy and Chemical Engineering Xiamen University Malaysia Selangor Darul Ehsan 43900 Malaysia
| | - Abdul Rahman Mohamed
- Low Carbon Economy (LCE) Research Group School of Chemical Engineering Universiti Sains Malaysia Nibong Tebal 14300 Pulau Pinang Malaysia
| | - Wee‐Jun Ong
- School of Energy and Chemical Engineering Xiamen University Malaysia Selangor Darul Ehsan 43900 Malaysia
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
49
|
Yang J, Fu M, Tan M, Tian Y, Sun X, Huang H. Photocatalytic Reduction of Cr(VI) on a 3.0% Au/Sr 0.70Ce 0.20WO 4 Photocatalyst. ACS OMEGA 2020; 5:26755-26762. [PMID: 33111002 PMCID: PMC7581225 DOI: 10.1021/acsomega.0c03743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Herein, a 3.0%-Au/Sr0.70Ce0.20WO4 sample was prepared for the photocatalytic reduction of the Cr2O7 2- ion. The photocatalyst was characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and ultraviolet-visible diffuse reflectance spectra. The Sr0.70Ce0.20WO4 sample presented a photocatalytic reduction activity that is better than those of the Ce-doped sample and the intrinsic sample. Thereafter, different metal elements, Cu, Ag, Au, and Pt, were used as cocatalysts, which were loaded on the Sr0.70Ce0.20WO4 sample. The 3.0%-Au/Sr0.70Ce0.20WO4 photocatalyst showed optimal photocatalytic reduction activity in a 8 vol % methanol solution (pH = 7) under visible light irradiation. The kinetic constant of the optimal one is 0.0039 min-1, which is 1.86 times that of the Sr0.70Ce0.20WO4 sample. The photocatalyst is stable enough after a 24 h photocatalytic experiment.
Collapse
Affiliation(s)
- Jia Yang
- Chongqing Key Laboratory
of Inorganic Special Functional Materials, College of Chemistry and
Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| | - Mingyan Fu
- Chongqing Key Laboratory
of Inorganic Special Functional Materials, College of Chemistry and
Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| | - Mingdan Tan
- Chongqing Key Laboratory
of Inorganic Special Functional Materials, College of Chemistry and
Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| | - Yanling Tian
- Chongqing Key Laboratory
of Inorganic Special Functional Materials, College of Chemistry and
Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| | - Xiaorui Sun
- Chongqing Key Laboratory
of Inorganic Special Functional Materials, College of Chemistry and
Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| | - Huisheng Huang
- Chongqing Key Laboratory
of Inorganic Special Functional Materials, College of Chemistry and
Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| |
Collapse
|
50
|
Feng H, Xi Y, Huang Q. A novel p-n Mn 0.2Cd 0.8S/NiWO 4 heterojunction for highly efficient photocatalytic H 2 production. Dalton Trans 2020; 49:12242-12248. [PMID: 32821890 DOI: 10.1039/d0dt02265a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Constructing a p-n heterojunction has been regarded as an effective way to restrain charge recombination and boost photocatalytic H2 production activity. Herein, a novel Mn0.2Cd0.8S/NiWO4 composite was fabricated by a hydrothermal process and which exhibited enhanced H2 production activity and excellent photostability. Particularly, the composite with 30 wt% of NiWO4 achieved the optimal H2 production rate of 17.76 mmol g-1 h-1, which was 2.9 times higher than that of Mn0.2Cd0.8S. The increased H2 production property was mainly due to the p-n heterojunction between Mn0.2Cd0.8S and NiWO4, which provided an efficient path for charge transfer and inhibited the photocorrosion of Mn0.2Cd0.8S. This work can offer technical support for the design and development of p-n heterojunctions that can be applied for photocatalytic H2 production.
Collapse
Affiliation(s)
- Haoqiang Feng
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P. R. China.
| | | | | |
Collapse
|