1
|
Li G, Li T, Jiang M, Somoro RA, Sun N, Xu B. Self-Propagating Fabrication of a 3D Graphite@rGO Film Anode for High-performance Potassium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42118-42127. [PMID: 39094118 DOI: 10.1021/acsami.4c06049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Graphite, with abundant resources and low cost, is regarded as a promising anode material for potassium-ion batteries (PIBs). However, because of the large size of potassium ions, the intercalation/deintercalation of potassium between the interlayers of graphite results in its huge volume expansion, leading to poor cycling stability and rate performance. Herein, a self-propagating reduction strategy is adopted to fabricate a flexible, self-supporting 3D porous graphite@reduced graphene oxide (3D-G@rGO) composite film for PIBs. The 3D porous network can not only effectively mitigate the volume expansion in graphite but also provide numerous active sites for potassium storage as well as allow for electrolyte penetration and rapid ion migration. Therefore, compared to the pristine graphite anode, the flexible 3D-G@rGO film electrode exhibits greatly improved K-storage performance with a reversible capacity of 452.8 mAh g-1 at 0.1 C and a capacity retention rate of 80.4% after 100 cycles. It also presents excellent rate capability with a high specific capacity of 139.1 and 94.2 mAh g-1 maintained at 2 and 5 C, respectively. The proposed self-propagating reduction strategy to construct a three-dimensional self-supporting structure is a viable route to improve the structural stability and potassium storage performance of graphite anodes.
Collapse
Affiliation(s)
- Guang Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tianyu Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingchi Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Razium Ali Somoro
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ning Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bin Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Shaanxi Key Laboratory of Chemical Reaction Engineering, School of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China
| |
Collapse
|
2
|
Kaur H, Konkena B, McCrystall M, Synnatschke K, Gabbett C, Munuera J, Smith R, Jiang Y, Bekarevich R, Jones L, Nicolosi V, Coleman JN. Liquid-Phase Exfoliation of Arsenic Trisulfide (As 2S 3) Nanosheets and Their Use as Anodes in Potassium-Ion Batteries. ACS NANO 2024; 18:20213-20225. [PMID: 39038184 PMCID: PMC11308769 DOI: 10.1021/acsnano.4c03501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Here, we demonstrate the production of 2D nanosheets of arsenic disulfide (As2S3) via liquid-phase exfoliation of the naturally occurring mineral, orpiment. The resultant nanosheets had mean lateral dimensions and thicknesses of 400 and 10 nm, and had structures indistinguishable from the bulk. The nanosheets were solution mixed with carbon nanotubes and cast into nanocomposite films for use as anodes in potassium-ion batteries. These anodes exhibited outstanding electrochemical performance, demonstrating an impressive discharge capacity of 619 mAh/g at a current density of 50 mA/g. Even after 1000 cycles at 500 mA/g, the anodes retained an impressive 94% of their capacity. Quantitative analysis of the rate performance yielded a capacity at a very low rate of 838 mAh/g, about two-thirds of the theoretical capacity of As2S3 (1305 mAh/g). However, this analysis also implied As2S3 to have a very small solid-state diffusion coefficient (∼10-17 m2/s), somewhat limiting its potential for high-rate applications.
Collapse
Affiliation(s)
- Harneet Kaur
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin
2 D02 E8C0, Ireland
| | - Bharathi Konkena
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin
2 D02 E8C0, Ireland
| | - Mark McCrystall
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin
2 D02 E8C0, Ireland
| | - Kevin Synnatschke
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin
2 D02 E8C0, Ireland
| | - Cian Gabbett
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin
2 D02 E8C0, Ireland
| | - Jose Munuera
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin
2 D02 E8C0, Ireland
| | - Ross Smith
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin
2 D02 E8C0, Ireland
| | - Yumei Jiang
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin
2 D02 E8C0, Ireland
| | - Raman Bekarevich
- School
of Chemistry, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin
2 D02W9K7, Ireland
| | - Lewys Jones
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin
2 D02 E8C0, Ireland
| | - Valeria Nicolosi
- School
of Chemistry, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin
2 D02W9K7, Ireland
| | - Jonathan N Coleman
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin
2 D02 E8C0, Ireland
| |
Collapse
|
3
|
Wang X, He Z, Huo K, Liu J, Zhao Q, Wu M. Molecular structure regulation of FCCs enabling N/S co-doped hollow amorphous carbon with enlarged interlayer spacing and rich defects for superior potassium storage. J Colloid Interface Sci 2024; 662:516-526. [PMID: 38364476 DOI: 10.1016/j.jcis.2024.02.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Constructing high-performance and low-cost carbon anodes for potassium-ion batteries (PIBs) is highly desirable but faces great challenges. In this study, we present a novel approach to fabricating N/S co-doped hollow amorphous carbon (LNSHAC) for superior potassium storage through a template-assisted molecular structure regulation strategy. By tailoring a 3D crosslinked aromatics precursor from fluid catalytic cracking slurry (FCCs), the LNSHAC features a N/S co-doped hollow structure with enlarged interlayer spacing of up to 0.405 nm and rich defects. Such unique microstructure offers fast transport channels for K-ion intercalation/deintercalation and provides more active sites, leading to boosted reaction kinetics and potassium storage capacity. Consequently, the LNSHAC electrode delivers an impressive reversible capacity (466.2 mAh g-1 at 0.1 A/g), excellent rate capability (336.3 mAh g-1 at 2 A/g), and superior cyclic performance (256.9 mAh g-1 after 5000 cycles at 5 A/g with admirable retention of 76.9 %), standing out among the reported carbon-based anodes. When KFeHCF is employed as the cathode, the LNSHAC-based K-ion full cell exhibits a high reversible capacity of 176.6 mAh g-1 at 0.1 A/g and excellent cyclic stability over 200 cycles. This work will inspire the development and application of advanced carbon-based materials for potassium electrochemical energy storage.
Collapse
Affiliation(s)
- Xiaobo Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhengqiu He
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Kaixuan Huo
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Jialiang Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Qingshan Zhao
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China.
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
4
|
Yuan F, Wu Z, Zhang S, Li Z, Wang Q, Sun H, Zhang D, Wang W, Wang B. Halide-mediated endogenous ZnO domain-confined etching strategy: Realizing superior potassium storage in carbon anode. J Colloid Interface Sci 2024; 659:811-820. [PMID: 38218085 DOI: 10.1016/j.jcis.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Coupling sites of nitrogen-dopants and intrinsic carbon defects (N/DC) are highly attractive to improve potassium-storage capacity and cycling stability, yet it is hard to effectively construct them. Herein, a novel strategy is proposed to establish abundant N/DC sites in N-doped carbon (ZIF8/NaBr-1-900) by pyrolyzing the mixture of metal-organic framework (ZIF8)/sodium bromide (NaBr). Systematic investigations disclose that the introduced NaBr can promote the full conversion of Zn-N4 moieties into zinc oxide (ZnO) via a "bait and switch" mechanism. Such formed endogenous ZnO can etch the carbon matrix of the confined domains around the N dopants during pyrolysis process, and meanwhile the released N-atoms from Zn-N4 moieties can largely form edge-N. As such, these N/DC coupling sites enable the resultant carbon to have a more significant capacitive behavior related to fast K-ion migration and high structural stability, leading to 255.3 mAh/g at 2 A/g with a prolonged cycle lifespan over 2000 cycles. Moreover, the assembled K-full battery presents a high energy density of 171.2 Wh kg-1 and excellent cyclability over 5000 cycles. This NaBr-mediated endogenous ZnO domain-confined etching strategy provides a new insight into the exploration of advanced carbon anode.
Collapse
Affiliation(s)
- Fei Yuan
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Ziyu Wu
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Sijia Zhang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Zhaojin Li
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Qiujun Wang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Huilan Sun
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Di Zhang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China.
| | - Wei Wang
- School of Metallurgical and Ecological Engineering, University of Science and Technology, Beijing 100083, China
| | - Bo Wang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China.
| |
Collapse
|
5
|
Dai J, Yin H, Rao X, Zhang S, Shi S, Liu W. Stress-Relief Engineering in a N-Doped C-Modified Hierarchical Nanoporous Si Anode with a Microcurved Pore Wall Structure for Enhanced Lithium Storage. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38426939 DOI: 10.1021/acsami.3c16533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The commercialization of alloy-type anodes has been hindered by rapid capacity degradation due to volume fluctuations. To address this issue, stress-relief engineering is proposed for Si anodes that combines hierarchical nanoporous structures and modified layers, inspired by the phenomenon in which structures with continuous changes in curvature can reduce stress concentration. The N-doped C-modified hierarchical nanoporous Si anode with a microcurved pore wall (N-C@m-HNP Si) is prepared from inexpensive Mg-55Si alloys using a simple chemical etching and heat treatment process. When used as the anode for lithium-ion batteries, the N-C@m-HNP Si anode exhibits initial charge/discharge specific capacities of 1092.93 and 2636.32 mAh g-1 at 0.1 C (1 C = 3579 mA g-1), respectively, and a stable reversible specific capacity of 1071.84 mAh g-1 after 200 cycles. The synergy of the hierarchical porous structure with a microcurved pore wall and the N-doped C-modified layer effectively improves the electrochemical performance of N-C@m-HNP Si, and the effectiveness of stress-relief engineering is quantitatively analyzed through the theory of elastic bending of thin plates. Moreover, the formation process of Li15Si4 crystals, which causes substantial mechanical stress, is investigated using first-principles molecular dynamic simulations to reveal their tendency to occur at different scales. The results demonstrate that the hierarchical nanoporous structure helps to inhibit the transformation of amorphous LixSi into metastable Li15Si4 crystals during lithiation.
Collapse
Affiliation(s)
- Jintao Dai
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Huabing Yin
- Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Xuelan Rao
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Shichao Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Sanqiang Shi
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, Hong Kong
| | - Wenbo Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Pan L, Hu R, Zhang Y, Sha D, Cao X, Li Z, Zhao Y, Ding J, Wang Y, Sun Z. Built-In Electric Field-Driven Ultrahigh-Rate K-Ion Storage via Heterostructure Engineering of Dual Tellurides Integrated with Ti 3C 2T x MXene. NANO-MICRO LETTERS 2023; 15:225. [PMID: 37831299 PMCID: PMC10575839 DOI: 10.1007/s40820-023-01202-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/26/2023] [Indexed: 10/14/2023]
Abstract
Exploiting high-rate anode materials with fast K+ diffusion is intriguing for the development of advanced potassium-ion batteries (KIBs) but remains unrealized. Here, heterostructure engineering is proposed to construct the dual transition metal tellurides (CoTe2/ZnTe), which are anchored onto two-dimensional (2D) Ti3C2Tx MXene nanosheets. Various theoretical modeling and experimental findings reveal that heterostructure engineering can regulate the electronic structures of CoTe2/ZnTe interfaces, improving K+ diffusion and adsorption. In addition, the different work functions between CoTe2/ZnTe induce a robust built-in electric field at the CoTe2/ZnTe interface, providing a strong driving force to facilitate charge transport. Moreover, the conductive and elastic Ti3C2Tx can effectively promote electrode conductivity and alleviate the volume change of CoTe2/ZnTe heterostructures upon cycling. Owing to these merits, the resulting CoTe2/ZnTe/Ti3C2Tx (CZT) exhibit excellent rate capability (137.0 mAh g-1 at 10 A g-1) and cycling stability (175.3 mAh g-1 after 4000 cycles at 3.0 A g-1, with a high capacity retention of 89.4%). More impressively, the CZT-based full cells demonstrate high energy density (220.2 Wh kg-1) and power density (837.2 W kg-1). This work provides a general and effective strategy by integrating heterostructure engineering and 2D material nanocompositing for designing advanced high-rate anode materials for next-generation KIBs.
Collapse
Affiliation(s)
- Long Pan
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Rongxiang Hu
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Yuan Zhang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Dawei Sha
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Xin Cao
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Zhuoran Li
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Jiangxiang Ding
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, 243002, Anhui, People's Republic of China
| | - Yaping Wang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| | - ZhengMing Sun
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| |
Collapse
|
7
|
Guo YT, Yi SS. Recent Advances in the Preparation and Application of Two-Dimensional Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5798. [PMID: 37687495 PMCID: PMC10488888 DOI: 10.3390/ma16175798] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Two-dimensional nanomaterials (2D NMs), consisting of atoms or a near-atomic thickness with infinite transverse dimensions, possess unique structures, excellent physical properties, and tunable surface chemistry. They exhibit significant potential for development in the fields of sensing, renewable energy, and catalysis. This paper presents a comprehensive overview of the latest research findings on the preparation and application of 2D NMs. First, the article introduces the common synthesis methods of 2D NMs from both "top-down" and "bottom-up" perspectives, including mechanical exfoliation, ultrasonic-assisted liquid-phase exfoliation, ion intercalation, chemical vapor deposition, and hydrothermal techniques. In terms of the applications of 2D NMs, this study focuses on their potential in gas sensing, lithium-ion batteries, photodetection, electromagnetic wave absorption, photocatalysis, and electrocatalysis. Additionally, based on existing research, the article looks forward to the future development trends and possible challenges of 2D NMs. The significance of this work lies in its systematic summary of the recent advancements in the preparation methods and applications of 2D NMs.
Collapse
Affiliation(s)
| | - Sha-Sha Yi
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China;
| |
Collapse
|
8
|
Yi X, Rao AM, Zhou J, Lu B. Trimming the Degrees of Freedom via a K + Flux Rectifier for Safe and Long-Life Potassium-Ion Batteries. NANO-MICRO LETTERS 2023; 15:200. [PMID: 37596502 PMCID: PMC10439096 DOI: 10.1007/s40820-023-01178-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/21/2023] [Indexed: 08/20/2023]
Abstract
High degrees of freedom (DOF) for K+ movement in the electrolytes is desirable, because the resulting high ionic conductivity helps improve potassium-ion batteries, yet requiring support from highly free and flammable organic solvent molecules, seriously affecting battery safety. Here, we develop a K+ flux rectifier to trim K ion's DOF to 1 and improve electrochemical properties. Although the ionic conductivity is compromised in the K+ flux rectifier, the overall electrochemical performance of PIBs was improved. An oxidation stability improvement from 4.0 to 5.9 V was realized, and the formation of dendrites and the dissolution of organic cathodes were inhibited. Consequently, the K||K cells continuously cycled over 3,700 h; K||Cu cells operated stably over 800 cycles with the Coulombic efficiency exceeding 99%; and K||graphite cells exhibited high-capacity retention over 74.7% after 1,500 cycles. Moreover, the 3,4,9,10-perylenetetracarboxylic diimide organic cathodes operated for more than 2,100 cycles and reached year-scale-cycling time. We fabricated a 2.18 Ah pouch cell with no significant capacity fading observed after 100 cycles.
Collapse
Affiliation(s)
- Xianhui Yi
- School of Physics and Electronics, Hunan University, Changsha, 410082, People's Republic of China
| | - Apparao M Rao
- Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, SC, 29634, USA
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha, 410082, People's Republic of China.
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
9
|
Zhang J, Cai D, Zhu L, Wang X, Tu J. Highly Stable Potassium Metal Anodes with Controllable Thickness and Area Capacity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301119. [PMID: 37093213 DOI: 10.1002/smll.202301119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Indexed: 05/03/2023]
Abstract
K metal battery is a kind of high-energy-density storage device with economic advantages. However, due to the dendrite growth and difficult processing characteristics, it is difficult to prepare stable K metal anode with thin thickness and fixed area capacity, which severely limits its development. In this work, a multi-functional 3D skeleton (rGCA) is synthesized by simple vacuum filtration and thermal reduction, and K metal anodes with controllable thickness and area capacity (K content) can be fabricated by changing the raw material mass and graphene layer spacing of rGCA. Moreover, the graphene sheet layer of rGCA can relax stress and relieve volume expansion; carbon nanotubes can serve as the fast transport channel of electrons, reducing internal impedance and local current density; Ag nanoparticles can induce the uniform nucleation and deposition of K+ . The K metal composite anodes (rGCA-K) based on the conductive skeleton can effectively suppress dendrites and exhibit excellent electrochemical performance in symmetric and full cells. The controllable fabrication process of stable K metal anode is expected to help K metal batteries move toward the stage of commercial production.
Collapse
Affiliation(s)
- Jiaheng Zhang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Dan Cai
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Liping Zhu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Xiuli Wang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jiangping Tu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
10
|
Chen G, Chen J, Zhao S, He G, Miller TS. Pseudohexagonal Nb 2O 5 Anodes for Fast-Charging Potassium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16664-16672. [PMID: 36943902 PMCID: PMC10080539 DOI: 10.1021/acsami.2c21490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
High-rate batteries will play a vital role in future energy storage systems, yet while good progress is being made in the development of high-rate lithium-ion batteries, there is less progress with post-lithium-ion chemistry. In this study, we demonstrate that pseudohexagonal Nb2O5(TT-Nb2O5) can offer a high specific capacity (179 mAh g-1 ∼ 0.3C), good lifetime, and an excellent rate performance (72 mAh g-1 at ∼15C) in potassium-ion batteries (KIBs), when it is composited with a highly conductive carbon framework; this is the first reported investigation of TT-Nb2O5 for KIBs. Specifically, multiwalled carbon nanotubes are strongly tethered to Nb2O5 via glucose-derived carbon (Nb2O5@CNT) by a one-step hydrothermal method, which results in highly conductive and porous needle-like structures. This work therefore offers a route for the scalable production of a viable KIB anode material and hence improves the feasibility of fast-charging KIBs for future applications.
Collapse
|
11
|
Wang Y, Sun S, Wu X, Liang H, Zhang W. Status and Opportunities of Zinc Ion Hybrid Capacitors: Focus on Carbon Materials, Current Collectors, and Separators. NANO-MICRO LETTERS 2023; 15:78. [PMID: 36988736 PMCID: PMC10060505 DOI: 10.1007/s40820-023-01065-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/05/2023] [Indexed: 06/10/2023]
Abstract
Zinc ion hybrid capacitors (ZIHCs), which integrate the features of the high power of supercapacitors and the high energy of zinc ion batteries, are promising competitors in future electrochemical energy storage applications. Carbon-based materials are deemed the competitive candidates for cathodes of ZIHC due to their cost-effectiveness, high electronic conductivity, chemical inertness, controllable surface states, and tunable pore architectures. In recent years, great research efforts have been devoted to further improving the energy density and cycling stability of ZIHCs. Reasonable modification and optimization of carbon-based materials offer a remedy for these challenges. In this review, the structural design, and electrochemical properties of carbon-based cathode materials with different dimensions, as well as the selection of compatible, robust current collectors and separators for ZIHCs are discussed. The challenges and prospects of ZIHCs are showcased to guide the innovative development of carbon-based cathode materials and the development of novel ZIHCs.
Collapse
Affiliation(s)
- Yanyan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, People's Republic of China
| | - Shirong Sun
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Xiaoliang Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, People's Republic of China.
| | - Hanfeng Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Wenli Zhang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, People's Republic of China.
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang, 515200, People's Republic of China.
- School of Advanced Manufacturing, Guangdong University of Technology (GDUT), Jieyang, 522000, People's Republic of China.
| |
Collapse
|
12
|
Tang LB, Li PY, Cui RD, Peng T, Wei HX, Wang ZY, Wang HY, Yan C, Mao J, Dai KH, Chen HZ, Zhang XH, Zheng JC. Adjusting Crystal Orientation to Promote Sodium-Ion Transport in V 5 S 8 @Graphene Anode Materials for High-Performance Sodium-Ion Batteries. SMALL METHODS 2023; 7:e2201387. [PMID: 36604985 DOI: 10.1002/smtd.202201387] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Sodium-ion batteries (SIBs) have inspired the potential for widespread use in energy storage owing to the advantages of abundant resources and low cost. Benefiting from the layered structure, 2D-layered materials enable fast interlayer transport of sodium ions and thus are considered promising candidates as anodes for SIBs. Herein, a strategy of adjusting crystal orientation is proposed via a solvothermal method to improve sodium-ion transport at the edge of the interlayers in 2D-layered materials. By introducing surfactants and templates, the 2D-layered V5 S8 nanosheets are controlled to align the interlayer diffusion channels vertically to the surface, which promotes the fast transport of Na+ at the edge of the interlayers as revealed by experimental methods and ab initio calculations. Benefiting from the aligned crystal orientation and rGO coating, the vertical-V5 S8 @rGO hybrid delivers a high initial discharge capacity of 350.6 mAh g-1 at a high current density of 15 A g-1 . This work provides a strategy for the structural design of 2D-layered anode materials by adjusting crystal orientation, which demonstrates the promise for applications in fast-charging alkaline-ion batteries.
Collapse
Affiliation(s)
- Lin-Bo Tang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, Hunan, 410083, China
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Pei-Yao Li
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, Hunan, 410083, China
| | - Ru-de Cui
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, Hunan, 410083, China
| | - Tao Peng
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, Hunan, 410083, China
| | - Han-Xin Wei
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, Hunan, 410083, China
| | - Zhen-Yu Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, Hunan, 410083, China
| | - Hai-Yan Wang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Cheng Yan
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| | - Jing Mao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Ke-Hua Dai
- College of Chemistry, Tianjin Normal University, Tianjin, Tianjin, 300387, China
| | - He-Zhang Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China
| | - Xia-Hui Zhang
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Jun-Chao Zheng
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
13
|
Gao H, Lee J, Lu Q, Kim Y, Shin KH, Park HS, Zhang Z, Lee LYS. Highly Stable Sb/C Anode for K + and Na + Energy Storage Enabled by Pulsed Laser Ablation and Polydopamine Coating. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205681. [PMID: 36420916 DOI: 10.1002/smll.202205681] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Potassium- and sodium-ion batteries (PIBs and SIBs) have great potential as the next-generation energy application owing to the natural abundance of K and Na. Antimony (Sb) is a suitable alloying-type anode for PIBs and SIBs due to its high theoretical capacity and proper operation voltage; yet, the severe volume variation remains a challenge. Herein, a preparation of N-doped carbon-wrapped Sb nanoparticles (L-Sb/NC) using pulsed laser ablation and polydopamine coating techniques, is reported. As the anode for PIB and SIB, the L-Sb/NC delivers superior rate capabilities and excellent cycle stabilities (442.2 and 390.5 mA h g-1 after 250 cycles with the capacity decay of 0.037% and 0.038% per cycle) at the current densities of 0.5 and 1.0 A g-1 , respectively. Operando X-ray diffraction reveals the facilitated and stable potassiation and sodiation mechanisms of L-Sb/NC enabled by its optimal core-shell structure. Furthermore, the SIB full cell fabricated with L-Sb/NC and Na3 V2 (PO4 )2 F3 shows outstanding electrochemical performances, demonstrating its practical energy storage application.
Collapse
Affiliation(s)
- Hui Gao
- Department of Applied Biology and Chemical Technology, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China
| | - Jeongyeon Lee
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China
| | - Qixiao Lu
- Department of Applied Biology and Chemical Technology, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China
| | - Yoonbin Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kang Ho Shin
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ho Seok Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Zhonghua Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan, 250061, P. R. China
| | - Lawrence Yoon Suk Lee
- Department of Applied Biology and Chemical Technology, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
14
|
Molecular and Morphological Engineering of Organic Electrode Materials for Electrochemical Energy Storage. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AbstractOrganic electrode materials (OEMs) can deliver remarkable battery performance for metal-ion batteries (MIBs) due to their unique molecular versatility, high flexibility, versatile structures, sustainable organic resources, and low environmental costs. Therefore, OEMs are promising, green alternatives to the traditional inorganic electrode materials used in state-of-the-art lithium-ion batteries. Before OEMs can be widely applied, some inherent issues, such as their low intrinsic electronic conductivity, significant solubility in electrolytes, and large volume change, must be addressed. In this review, the potential roles, energy storage mechanisms, existing challenges, and possible solutions to address these challenges by using molecular and morphological engineering are thoroughly summarized and discussed. Molecular engineering, such as grafting electron-withdrawing or electron-donating functional groups, increasing various redox-active sites, extending conductive networks, and increasing the degree of polymerization, can enhance the electrochemical performance, including its specific capacity (such as the voltage output and the charge transfer number), rate capability, and cycling stability. Morphological engineering facilitates the preparation of different dimensional OEMs (including 0D, 1D, 2D, and 3D OEMs) via bottom-up and top-down methods to enhance their electron/ion diffusion kinetics and stabilize their electrode structure. In summary, molecular and morphological engineering can offer practical paths for developing advanced OEMs that can be applied in next-generation rechargeable MIBs.
Graphical abstract
Collapse
|
15
|
Dual-Carbon confinement strategy of antimony anode material enabling advanced potassium ion storage. J Colloid Interface Sci 2022; 622:738-747. [PMID: 35533487 DOI: 10.1016/j.jcis.2022.04.154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022]
Abstract
Antimony (Sb) has attracted considerable attention as an anode material for potassium ion batteries (PIBs) because of its high theoretical capacity. Nevertheless, owing to the large radius of K+, apparent volume expansion occurs during the reaction between Sb and K+, which will undermine the stability of the electrode. Accordingly, a dual-carbon confinement strategy is regarded as an effective method for handling this issue. Herein, Sb is firstly captured by mesoporous carbon sphere (MCS) to form a composite of Sb/MCS, and then reduced graphene oxide (rGO) is adopted as an outer layer to wrap the Sb/MCS to obtain the dual-carbon confinement material (Sb/MCS@rGO). Given the synergistic confinement effects of the MCS and rGO, the Sb/MCS@rGO electrode realizes an excellent rate capacity of 341.9 mAh g-1 at 1000 mA g-1 and prominent cycling stability with around 100% retention at 50 mA g-1 after 100 cycles. Besides, the discussion on galvanostatic charge-discharge test, cyclic voltammetry and ex-situ XRD illustrates the stepwise potassium storage mechanism of Sb. Benefiting from the dual-carbon confinement effects, the Sb/MCS@rGO electrode processes promising electrochemical reaction kinetics. Furthermore, the application of the Sb/MCS@rGO in full cells also demonstrates its superior rate capacity (212.3 mAh g-1 at 1000 mA g-1).
Collapse
|
16
|
Li W, Yang Z, Zuo J, Wang J, Li X. Emerging carbon-based flexible anodes for potassium-ion batteries: Progress and opportunities. Front Chem 2022; 10:1002540. [PMID: 36157035 PMCID: PMC9493046 DOI: 10.3389/fchem.2022.1002540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
In recent years, carbon-based flexible anodes for potassium-ion batteries are increasingly investigated owing to the low reduction potential and abundant reserve of K and the simple preparation process of flexible electrodes. In this review, three main problems on pristine carbon-based flexible anodes are summarized: excessive volume change, repeated SEI growth, and low affinity with K+, which thus leads to severe capacity fade, sluggish K+ diffusion dynamics, and limited active sites. In this regard, the recent progress on the various modification strategies is introduced in detail, which are categorized as heteroatom-doping, coupling with metal and chalcogenide nanoparticles, and coupling with other carbonaceous materials. It is found that the doping of heteroatoms can bring the five enhancement effects of increasing active sites, improving electrical conductivity, expediting K+ diffusion, strengthening structural stability, and enlarging interlayer spacing. The coupling of metal and chalcogenide nanoparticles can largely offset the weakness of the scarcity of K+ storage sites and the poor wettability of pristine carbon-based flexible electrodes. The alloy nanoparticles consisting of the electrochemically active and inactive metals can concurrently gain a stable structure and high capacity in comparison to mono-metal nanoparticles. The coupling of the carbonaceous materials with different characteristics can coordinate the advantages of the nanostructure from graphite carbon, the defects and vacancies from amorphous carbon, and the independent structure from support carbon. Finally, the emerging challenges and opportunities for the development of carbon-based flexible anodes are presented.
Collapse
Affiliation(s)
- Wenbin Li
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi’an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi’an University of Technology, Xi’an, China
- Key Laboratory of Advanced Batteries Materials for Electric Vehicles of China Petroleum and Chemical Industry Federation, Xi’an University of Technology, Xi’an, China
| | - Zihao Yang
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi’an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi’an University of Technology, Xi’an, China
- Key Laboratory of Advanced Batteries Materials for Electric Vehicles of China Petroleum and Chemical Industry Federation, Xi’an University of Technology, Xi’an, China
| | - Jiaxuan Zuo
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi’an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi’an University of Technology, Xi’an, China
- Key Laboratory of Advanced Batteries Materials for Electric Vehicles of China Petroleum and Chemical Industry Federation, Xi’an University of Technology, Xi’an, China
| | - Jingjing Wang
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi’an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi’an University of Technology, Xi’an, China
- Key Laboratory of Advanced Batteries Materials for Electric Vehicles of China Petroleum and Chemical Industry Federation, Xi’an University of Technology, Xi’an, China
| | - Xifei Li
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi’an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi’an University of Technology, Xi’an, China
- Key Laboratory of Advanced Batteries Materials for Electric Vehicles of China Petroleum and Chemical Industry Federation, Xi’an University of Technology, Xi’an, China
- *Correspondence: Xifei Li,
| |
Collapse
|
17
|
Li W, Wang C, Lu X. Conducting polymers-derived fascinating electrocatalysts for advanced hydrogen and oxygen electrocatalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Gao C, Zhang X, Zhan J, Cai B. Engineering of aerogel‐based electrocatalysts for oxygen evolution reaction. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Cunyuan Gao
- School of Chemistry and Chemical Engineering Shandong University Jinan China
| | - Xin Zhang
- School of Chemistry and Chemical Engineering Shandong University Jinan China
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering Shandong University Jinan China
| | - Bin Cai
- School of Chemistry and Chemical Engineering Shandong University Jinan China
| |
Collapse
|
19
|
Xu YG, Liu J, Kong LB. Synthesis of highly crumpled carbon-graphene composite for adsorption-controlled potassium-ion anode materials. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Yan Y, Xiong D, Tian B, Zhang L, Zhu YF, Peng J, Chen SW, Xiao Y, Chou SL. Expanding the ReS 2 Interlayer Promises High-Performance Potassium-Ion Storage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28873-28881. [PMID: 35714059 DOI: 10.1021/acsami.2c05485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Improving the electrochemical kinetics and the intrinsic poor conductivity of transition metal dichalcogenide (TMD) electrodes is meaningful for developing next-generation energy storage systems. As one of the most promising TMD anode materials, ReS2 shows attractive performance in potassium-ion batteries (PIBs). To overcome the poor kinetic ion diffusion and limited cycling stability of the ReS2-based electrode, herein, the interlayer distance expanding strategy was employed, and reduced graphene oxide (rGO) was introduced into ReS2. Few-layered ReS2 nanosheets were grown on the surface of the rGO with expanded interlayer distance. The prepared ReS2 nanosheets show an expanded distance (∼0.77 nm). The synthesized EI-ReS2@rGO composites were used in PIBs as anode materials. The K-ion storage mechanism of the ReS2-based anode was investigated by in situ X-ray diffraction (XRD) technology, which shows the intercalation and conversion types. The EI-ReS2@rGO nanocomposites show high specific capacities of 432.5, 316.5, and 241 mAh g-1 under 0.05, 0.2, and 1.0 A g-1 current densities and exhibit excellent reversibility at 1.0 A g-1. Overall, this strategy, which finely tunes the local chemistry and orbital hybridization for high-performance PIBs, will open up a new field for other materials.
Collapse
Affiliation(s)
- Yaping Yan
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Dongbin Xiong
- Institute of Advanced Materials, Hubei Normal University, Huangshi 415000, China
| | - Bingbing Tian
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Lifu Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Yan-Fang Zhu
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Jian Peng
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Shao-Wei Chen
- Hangzhou Oxygen Plant Group Co., LTD, Hangzhou, Zhejiang 310000, China
| | - Yao Xiao
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shu-Lei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
21
|
Ultra-Thin Wrinkled Carbon Sheet as an Anode Material of High-Power-Density Potassium-Ion Batteries. Molecules 2022; 27:molecules27092973. [PMID: 35566322 PMCID: PMC9099802 DOI: 10.3390/molecules27092973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
Although K+ is readily inserted into graphite, the volume expansion of graphite of up to 60% upon the formation of KC8, together with its slow diffusion kinetics, prevent graphite from being used as an anode for potassium-ion batteries (PIBs). Soft carbon with low crystallinity and an incompact carbon structure can overcome these shortcomings of graphite. Here, ultra-thin two-dimensional (2D) wrinkled soft carbon sheets (USCs) are demonstrated to have high specific capacity, excellent rate capability, and outstanding reversibility. The wrinkles themselves prevent the dense stacking of micron-sized sheets and provide sufficient space to accommodate the volume change of USCs during the insertion/extraction of K+. The ultra-thin property reduces strain during the formation of K-C compounds, and further maintains structural stability. The wrinkles and heteroatoms also introduce abundant edge defects that can provide more active sites and shorten the K+ migration distance, improving reaction kinetics. The optimized USC20-1 electrode exhibits a reversible capacity of 151 mAh g-1 even at 6400 mA g-1, and excellent cyclic stability up to 2500 cycles at 1000 mA g-1. Such comprehensive electrochemical performance will accelerate the adoption of PIBs in electrical energy applications.
Collapse
|
22
|
Tang Z, Wang H, Wu PF, Zhou SY, Huang YC, Zhang R, Sun D, Tang YG, Wang HY. Electrode-Electrolyte Interfacial Chemistry Modulation for Ultra-High Rate Sodium-Ion Batteries. Angew Chem Int Ed Engl 2022; 61:e202200475. [PMID: 35199431 DOI: 10.1002/anie.202200475] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 02/01/2023]
Abstract
Sodium-ion batteries capable of operating at rate and temperature extremes are highly desirable, but elusive due to the dynamics and thermodynamics limitations. Herein, a strategy of electrode-electrolyte interfacial chemistry modulation is proposed. The commercial hard carbon demonstrates superior rate performance with 212 mAh g-1 at an ultra-high current density of 5 A g-1 in the electrolyte with weak ion solvation/desolvation, which is much higher than those in common electrolytes (nearly no capacity in carbonate-based electrolytes). Even at -20 °C, a high capacity of 175 mAh g-1 (74 % of its room-temperature capacity) can be maintained at 2 A g-1 . Such an electrode retains 90 % of its initial capacity after 1000 cycles. As proven, weak ion solvation/desolvation of tetrahydrofuran greatly facilitates fast-ion diffusion at the SEI/electrolyte interface and homogeneous SEI with well-distributed NaF and organic components ensures fast Na+ diffusion through the SEI layer and a stable interface.
Collapse
Affiliation(s)
- Zheng Tang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R China
| | - Hong Wang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R China
| | - Peng-Fei Wu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R China
| | - Si-Yu Zhou
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R China
| | - Yuan-Cheng Huang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R China
| | - Rui Zhang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R China
| | - Dan Sun
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R China
| | - You-Gen Tang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R China
| | - Hai-Yan Wang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R China
| |
Collapse
|
23
|
Tong Y, Wu Y, Liu Z, Yin Y, Sun Y, Li H. Fabricating multi-porous carbon anode with remarkable initial coulombic efficiency and enhanced rate capability for sodium-ion batteries. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Tang Z, Wang H, Wu P, Zhou S, Huang Y, Zhang R, Sun D, Tang Y, Wang H. Electrode–Electrolyte Interfacial Chemistry Modulation for Ultra‐High Rate Sodium‐Ion Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zheng Tang
- Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R China
| | - Hong Wang
- Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R China
| | - Peng‐Fei Wu
- Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R China
| | - Si‐Yu Zhou
- Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R China
| | - Yuan‐Cheng Huang
- Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R China
| | - Rui Zhang
- Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R China
| | - Dan Sun
- Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R China
| | - You‐Gen Tang
- Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R China
| | - Hai‐Yan Wang
- Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R China
| |
Collapse
|
25
|
Zulueta YA, Nguyen MT, Pham-Ho MP. Strontium stannate as an alternative anode for Na- and K-Ion batteries: A theoretical study. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS 2022; 162:110505. [DOI: 10.1016/j.jpcs.2021.110505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
|
26
|
Khan N, Han G, Mazari SA. Carbon nanotubes-based anode materials for potassium ion batteries: A review. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Xiong Q, He H, Zhang M. Design of Flexible Films Based on Kinked Carbon Nanofibers for High Rate and Stable Potassium-Ion Storage. NANO-MICRO LETTERS 2022; 14:47. [PMID: 35064841 PMCID: PMC8783942 DOI: 10.1007/s40820-022-00791-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/23/2021] [Indexed: 05/02/2023]
Abstract
With the emergence of wearable electronics, flexible energy storage materials have been extensively studied in recent years. However, most studies focus on improving the electrochemical properties, ignoring the flexible mechanism and structure design for flexible electrode materials with high rate capacities and long-time stability. In this study, porous, kinked, and entangled network structures are designed for highly flexible fiber films. Based on theoretical analysis and finite element simulation, the bending degree of the porous structure (30% porosity) increased by 192% at the micro-level. An appropriate increase in kinking degree at the meso-level and contact points in entanglement network at the macro-level are beneficial for the flexibility of fiber films. Therefore, a porous and entangled network of sulfur-/nitrogen-co-doped kinked carbon nanofibers (S/N-KCNFs) is synthesized. The nanofiber films synthesized from melamine as nitrogen sources and segmented vulcanization exhibited a porous, kinked, and entangled network structure, and the stretching degree increased several times. The flexible S/N-KCNFs anode delivered a higher rate performance of 270 mAh g-1 at a current density of 2000 mA g-1 and a higher capacity retention rate of 93.3% after 2000 cycles. Moreover, the foldable pouch cell assembled by potassium-ion hybrid supercapacitor operated safely at large-angle bending and showed long-time stability of 88% capacity retention after 4000 cycles. This study provides a new idea and strategy for the flexible structure design of high-performance potassium-ion storage materials.
Collapse
Affiliation(s)
- Qiaotian Xiong
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics & Devices, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, People's Republic of China
| | - Hongcheng He
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics & Devices, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, People's Republic of China
| | - Ming Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics & Devices, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, People's Republic of China.
- Semiconductor Technology and Application Innovation Institute of Changsha, Changsha, 410012, People's Republic of China.
| |
Collapse
|
28
|
Sun Y, Zheng J, Tong Y, Wu Y, Liu X, Niu L, Li H. Construction of three-dimensional nitrogen doped porous carbon flake electrodes for advanced potassium-ion hybrid capacitors. J Colloid Interface Sci 2022; 606:1940-1949. [PMID: 34695761 DOI: 10.1016/j.jcis.2021.09.143] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
It is of great significance to develop a new kind of green and environmentally friendly potassium ion energy storage device, with stable structures and large specific capacity. In this manuscript, a facile and robust way is reported to construct nitrogen doped porous carbon flake (NPCF) through NaCl template and pyrolysis method. 3D porous structures can be formed and interconnected NPCF are used as potassium ion batteries (PIBs) anode. High content of pyridinic N/pyrrolic N and enlarged interlayer distance of NPCF are obtained. Specifically, the anode delivers a high reversible capacity of 326.3 mAh g-1 at the current density of 50 mA g-1, and shows up outstanding cycle stability and represents long cycle life of 10,000 cycles at a current density of 5000 mA g-1. Moreover, the cyclic voltammetry kinetic analysis shows that the main capacitive process plays a leading role in the potassium storage mechanism. Consequently, equipped with activate carbon (AC) as cathode and NPCF as anode, the assembled potassium ion hybrid capacitors (PIHCs) achieve an energy density of 65.8 Wh kg-1 at 100 mA g-1, and maintains 30 Wh kg-1 even at a high current density of 5000 mA g-1.
Collapse
Affiliation(s)
- Yingjuan Sun
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jiefeng Zheng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Yong Tong
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Yuanji Wu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Xi Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Li Niu
- Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongyan Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
29
|
Li J, Wu Y, Qin Y, Liu M, Chen G, Hu L, Gu W, Zhu C. AgCu@CuO aerogels with peroxidase-like activities and photoelectric responses for sensitive biosensing. Chem Commun (Camb) 2021; 57:13788-13791. [PMID: 34870654 DOI: 10.1039/d1cc06177a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Photoelectrochemical (PEC) enzymatic biosensors integrate the excellent selectivity of enzymes and high sensitivity of PEC bioanalysis, but the drawbacks such as high cost, poor stability, and tedious immobilization of natural enzymes on photoelectrodes severely suppress their applications. AgCu@CuO aerogel-based photoelectrode materials with both remarkable enzyme-like activities and outstanding photoelectric properties were innovatively designed and synthesized to evaluate the activity of xanthine oxidase with a wide linear detection range and a low limit of detection.
Collapse
Affiliation(s)
- Jinli Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China. .,School of Electronic and Information Engineering, Jingchu University of Technology, Jingmen, 448000, P. R. China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Ying Qin
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Mingwang Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Guojuan Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Liuyong Hu
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
30
|
Yang SH, Lee YJ, Kang H, Park SK, Kang YC. Carbon-Coated Three-Dimensional MXene/Iron Selenide Ball with Core-Shell Structure for High-Performance Potassium-Ion Batteries. NANO-MICRO LETTERS 2021; 14:17. [PMID: 34870769 PMCID: PMC8648910 DOI: 10.1007/s40820-021-00741-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/27/2021] [Indexed: 05/13/2023]
Abstract
Two-dimensional (2D) MXenes are promising as electrode materials for energy storage, owing to their high electronic conductivity and low diffusion barrier. Unfortunately, similar to most 2D materials, MXene nanosheets easily restack during the electrode preparation, which degrades the electrochemical performance of MXene-based materials. A novel synthetic strategy is proposed for converting MXene into restacking-inhibited three-dimensional (3D) balls coated with iron selenides and carbon. This strategy involves the preparation of Fe2O3@carbon/MXene microspheres via a facile ultrasonic spray pyrolysis and subsequent selenization process. Such 3D structuring effectively prevents interlayer restacking, increases the surface area, and accelerates ion transport, while maintaining the attractive properties of MXene. Furthermore, combining iron selenides and carbon with 3D MXene balls offers many more sites for ion storage and enhances the structural robustness of the composite balls. The resultant 3D structured microspheres exhibit a high reversible capacity of 410 mAh g-1 after 200 cycles at 0.1 A g-1 in potassium-ion batteries, corresponding to the capacity retention of 97% as calculated based on 100 cycles. Even at a high current density of 5.0 A g-1, the composite exhibits a discharge capacity of 169 mAh g-1.
Collapse
Affiliation(s)
- Su Hyun Yang
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, 136-713, Republic of Korea
| | - Yun Jae Lee
- Department of Advanced Materials Engineering, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, 136-713, Republic of Korea
| | - Seung-Keun Park
- Department of Advanced Materials Engineering, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, 136-713, Republic of Korea.
| |
Collapse
|
31
|
Liu X, Tong Y, Wu Y, Zheng J, Sun Y, Li H. In-Depth Mechanism Understanding for Potassium-Ion Batteries by Electroanalytical Methods and Advanced In Situ Characterization Techniques. SMALL METHODS 2021; 5:e2101130. [PMID: 34928006 DOI: 10.1002/smtd.202101130] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 06/14/2023]
Abstract
The advancement of potassium ion batteries (PIBs) stimulated by the dearth of lithium resources is accelerating. Major progresses on the electrochemical properties are based on the optimization of electrode materials, electrolytes, and other components. More significantly, the prerequisites for optimizing these key compositions are in-depth and comprehensive exploration of electrochemical reaction processes, including the evolution of morphology and structure, phase transition, interface behaviors, and K+ movement, etc. As a result, the obtained K+ storage mechanism via analyzing aforementioned reaction processes sheds light on furthering practical application of PIBs. Typical electrochemical analysis methods are capable of obtaining physical and chemical characteristics. The advent of in situ electrochemical measurements enables dynamic observation and monitoring, thereby gaining extensive insights into the intricate mechanism of capacity degradation and interface kinetics. By coupling with these powerful electrochemical characterization techniques, inspiring works in PIBs will burgeon into wide realms of energy storage fields. In this review, some typical electroanalytical tests and in situ hyphenated measurements are described with the main concentration on how these techniques play a role in investigating the potassium storage mechanism for PIBs and achieving encouraging results.
Collapse
Affiliation(s)
- Xi Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Yong Tong
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Yuanji Wu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Jiefeng Zheng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Yingjuan Sun
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Hongyan Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
32
|
Wu Y, Zheng J, Tong Y, Liu X, Sun Y, Niu L, Li H. Carbon Hollow Tube-Confined Sb/Sb 2S 3 Nanorod Fragments as Highly Stable Anodes for Potassium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51066-51077. [PMID: 34670363 DOI: 10.1021/acsami.1c16267] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Potassium-ion batteries (PIBs) have attracted widespread attention in recent years due to their potential advantages such as low cost and high energy density. However, the large radius of K+ and the low potassium storage capacity of some electrode materials limit their development. Antimony (Sb)-based materials are considered to be promising anode materials for PIBs in view of their high K storage capacity and low potassiation potential. Nonetheless, the huge volume variation caused by potassiation/depotassiation often leads to their failure. Previous works have proved that carbon coating and nanostructure design are important means to alleviate the volume effect. Herein, the carbon-coating technology and nanostructure design were combined to prepare a Sb-based nanomaterial with Sb/Sb2S3 hybrid nanorod fragments confined in a carbon hollow tube (Sb/Sb2S3@CHT). Such a nanostructure is beneficial to alleviate the volume change of the Sb/Sb2S3 hybrids while facilitating the kinetics of the electrochemical reaction. As a consequence, the Sb/Sb2S3@CHT anode electrode exhibits high rate performance and outstanding cycle stability characterized by retaining a high specific capacity of 400.9 mA h g-1 after cycling for 200 cycles at 200 mA g-1.
Collapse
Affiliation(s)
- Yuanji Wu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jiefeng Zheng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Yong Tong
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Xi Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Yingjuan Sun
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou University, Guangzhou 510006, China
| | - Hongyan Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| |
Collapse
|
33
|
Cao B, Liu H, Zhang X, Zhang P, Zhu Q, Du H, Wang L, Zhang R, Xu B. MOF-Derived ZnS Nanodots/Ti 3C 2T x MXene Hybrids Boosting Superior Lithium Storage Performance. NANO-MICRO LETTERS 2021; 13:202. [PMID: 34568995 PMCID: PMC8473522 DOI: 10.1007/s40820-021-00728-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 05/28/2023]
Abstract
ZnS has great potentials as an anode for lithium storage because of its high theoretical capacity and resource abundance; however, the large volume expansion accompanied with structural collapse and low conductivity of ZnS cause severe capacity fading and inferior rate capability during lithium storage. Herein, 0D-2D ZnS nanodots/Ti3C2Tx MXene hybrids are prepared by anchoring ZnS nanodots on Ti3C2Tx MXene nanosheets through coordination modulation between MXene and MOF precursor (ZIF-8) followed with sulfidation. The MXene substrate coupled with the ZnS nanodots can synergistically accommodate volume variation of ZnS over charge-discharge to realize stable cyclability. As revealed by XPS characterizations and DFT calculations, the strong interfacial interaction between ZnS nanodots and MXene nanosheets can boost fast electron/lithium-ion transfer to achieve excellent electrochemical activity and kinetics for lithium storage. Thereby, the as-prepared ZnS nanodots/MXene hybrid exhibits a high capacity of 726.8 mAh g-1 at 30 mA g-1, superior cyclic stability (462.8 mAh g-1 after 1000 cycles at 0.5 A g-1), and excellent rate performance. The present results provide new insights into the understanding of the lithium storage mechanism of ZnS and the revealing of the effects of interfacial interaction on lithium storage performance enhancement.
Collapse
Affiliation(s)
- Bin Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Huan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China.
| | - Xin Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Peng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Qizhen Zhu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Huiling Du
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China
| | - Lianli Wang
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China
| | - Rupeng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Bin Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
34
|
Lu X, Pan X, Fang Z, Zhang D, Xu S, Wang L, Liu Q, Shao G, Fu D, Teng J, Yang W. High-Performance Potassium-Ion Batteries with Robust Stability Based on N/S-Codoped Hollow Carbon Nanocubes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41619-41627. [PMID: 34431652 DOI: 10.1021/acsami.1c10655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Currently, a big challenge for the practical use of potassium-ion batteries (PIBs) is their intrinsically poor cycling stability, due to the relatively large radius of K+ and sluggish kinetics for intercalation/deintercalation. Here we report the scalable fabrication of N/S-codoped hollow carbon nanocubes (NSHCCs), which have the potential as an electrode for advanced PIBs with robust stability. Their discharge and charge specific capacities are ∼560 mA h g-1 and 310 mA h g-1 at a current density of 50 mA g-1, respectively. Meanwhile, they exhibit 100% specific capacity retention after 620 cycles over 9 months at a low current density of 50 mA g-1, which is state-of-the-art among carbon materials. Moreover, they demonstrate nearly no sacrifice in specific capacities with 99.9% retention after 3000 cycles over 4 months under a high current density of 1000 mA g-1, superior to most carbon analogues for potassium storage previously reported. The improved electrochemical performance of NSHCC can be mainly attributed to the unique hollow carbon nanocubes with incorporated N and S dopants, which can expand the carbon layer spacing, facilitate K+ adsorption, and relieve the volume change during the intercalation/deintercalation of K+ ions.
Collapse
Affiliation(s)
- Xianlu Lu
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Institute of Materials, Ningbo University of Technology, Ningbo City, 315211, P. R. China
| | - Xuenan Pan
- Institute of Materials, Ningbo University of Technology, Ningbo City, 315211, P. R. China
| | - Zhi Fang
- Institute of Materials, Ningbo University of Technology, Ningbo City, 315211, P. R. China
| | - Dongdong Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Institute of Materials, Ningbo University of Technology, Ningbo City, 315211, P. R. China
| | - Shang Xu
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Institute of Materials, Ningbo University of Technology, Ningbo City, 315211, P. R. China
| | - Lin Wang
- Institute of Materials, Ningbo University of Technology, Ningbo City, 315211, P. R. China
| | - Qiao Liu
- Institute of Materials, Ningbo University of Technology, Ningbo City, 315211, P. R. China
| | - Gang Shao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Dingfa Fu
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jie Teng
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Weiyou Yang
- Institute of Materials, Ningbo University of Technology, Ningbo City, 315211, P. R. China
| |
Collapse
|
35
|
Zheng J, Wu Y, Tong Y, Liu X, Sun Y, Li H, Niu L. High Capacity and Fast Kinetics of Potassium-Ion Batteries Boosted by Nitrogen-Doped Mesoporous Carbon Spheres. NANO-MICRO LETTERS 2021; 13:174. [PMID: 34389917 PMCID: PMC8363726 DOI: 10.1007/s40820-021-00706-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/25/2021] [Indexed: 05/06/2023]
Abstract
In view of rich potassium resources and their working potential, potassium-ion batteries (PIBs) are deemed as next generation rechargeable batteries. Owing to carbon materials with the preponderance of durability and economic price, they are widely employed in PIBs anode materials. Currently, porosity design and heteroatom doping as efficacious improvement strategies have been applied to the structural design of carbon materials to improve their electrochemical performances. Herein, nitrogen-doped mesoporous carbon spheres (MCS) are synthesized by a facile hard template method. The MCS demonstrate larger interlayer spacing in a short range, high specific surface area, abundant mesoporous structures and active sites, enhancing K-ion migration and diffusion. Furthermore, we screen out the pyrolysis temperature of 900 °C and the pore diameter of 7 nm as optimized conditions for MCS to improve performances. In detail, the optimized MCS-7-900 electrode achieves high rate capacity (107.9 mAh g-1 at 5000 mA g-1) and stably brings about 3600 cycles at 1000 mA g-1. According to electrochemical kinetic analysis, the capacitive-controlled effects play dominant roles in total storage mechanism. Additionally, the full-cell equipped MCS-7-900 as anode is successfully constructed to evaluate the practicality of MCS.
Collapse
Affiliation(s)
- Jiefeng Zheng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Yuanji Wu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Yong Tong
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Xi Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Yingjuan Sun
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Hongyan Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Li Niu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
36
|
Sadan MK, Kim H, Kim C, Cho GB, Cho KK, Ahn JH, Ahn HJ. Ultrahigh-rate nickel monosulfide anodes for sodium/potassium-ion storage. NANOSCALE 2021; 13:10447-10454. [PMID: 34076016 DOI: 10.1039/d1nr02133h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transition-metal sulfides have been extensively studied as anode materials for use in sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) due to their multi-electron reactions, high rate performance, and abundant available resources. However, the practical capacities of metal sulfides remain low due to conductivity issues, volume expansion, and the use of traditional carbonate electrolytes. To overcome these drawbacks, ether electrolytes can be combined with nanoparticle-based metal sulfide anodes. Herein, a nanoparticle-based nickel monosulfide (NiS) anode with high rate performance in the ether electrolytes of SIBs/PIBs was prepared by heating a mixture of nickel nanoparticles with sulfur. In SIBs, the NiS anode capacity was 286 mA h g-1 at a high current density of 100 A g-1, and excellent cycling performance was observed at 25 A g-1 with a capacity of 468 mA h g-1 after 1000 cycles. Moreover, a full-cell containing a Na3V2(PO4) cathode demonstrated a rate performance of 65 mA h g-1 at a high current density of 100 A g-1. In PIBs, the NiS electrode capacity was 642 and 37 mA h g-1 at 0.5 and 100 A g-1, respectively. Hence, the synthesised NiS nanoparticles possessed excellent storage capability, regardless of the alkali-ion type, suggesting their potential use as robust NiS anodes for advanced battery systems.
Collapse
Affiliation(s)
- Milan K Sadan
- Research Institute for Green Energy Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Huihun Kim
- Research Institute for Green Energy Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Changhyeon Kim
- Research Institute for Green Energy Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gyu-Bong Cho
- Department of Materials Engineering and Convergence Technology, RIGET, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Kwon-Koo Cho
- Department of Materials Engineering and Convergence Technology, RIGET, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Jou-Hyeon Ahn
- Department of Materials Engineering and Convergence Technology, RIGET, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Hyo-Jun Ahn
- Department of Materials Engineering and Convergence Technology, RIGET, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
37
|
Niu P, Wang P, Xu Y, Li Z, Wei L, Yao G, Wang J, Zheng F. Tuning the electronic conductivity of porous nitrogen-doped carbon nanofibers with graphene for high-performance potassium-ion storage. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00664a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the designed graphene/porous nitrogen-doped carbon nanofibers, graphene can improve the electronic conductivity of the composite materials, and a large amount of mesopores provided much more exposed N-doped active sites for adsorbing K+.
Collapse
Affiliation(s)
- Ping Niu
- Institutes of Physical Science and Information Technology and Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education
- Anhui University
- Hefei
- China
- Anhui Graphene Engineering Laboratory
| | - Peisan Wang
- School of Biomedical Engineering
- Anhui Medical University
- Hefei
- China
| | - Yang Xu
- Institutes of Physical Science and Information Technology and Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education
- Anhui University
- Hefei
- China
- Anhui Graphene Engineering Laboratory
| | - Zhiqiang Li
- Institutes of Physical Science and Information Technology and Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education
- Anhui University
- Hefei
- China
- Anhui Graphene Engineering Laboratory
| | - Lingzhi Wei
- Institutes of Physical Science and Information Technology and Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education
- Anhui University
- Hefei
- China
- Anhui Graphene Engineering Laboratory
| | - Ge Yao
- Institutes of Physical Science and Information Technology and Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education
- Anhui University
- Hefei
- China
- Anhui Graphene Engineering Laboratory
| | - Junzhong Wang
- Institutes of Physical Science and Information Technology and Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education
- Anhui University
- Hefei
- China
- Anhui Graphene Engineering Laboratory
| | - Fangcai Zheng
- Institutes of Physical Science and Information Technology and Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education
- Anhui University
- Hefei
- China
- Anhui Graphene Engineering Laboratory
| |
Collapse
|