1
|
Garayzade R, Leicht J, Eckardt N, Koscielny S, Mayer TE. Preoperative Embolization of Glomus Tumors: Role, Effectiveness, and Complications. J Clin Med 2024; 13:5905. [PMID: 39407965 PMCID: PMC11477335 DOI: 10.3390/jcm13195905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Purpose: Paragangliomas represent a surgical challenge due to their hypervascularization. The preoperative selective embolization of these tumors significantly decreases intraoperative blood loss. However, the literature on preoperative embolization in glomus tumors is limited. The aim of this study is to contribute additional evidence regarding the role of preoperative embolization, as well as to evaluate risks and complications in the treatment of glomus tumors. Methods: A retrospective evaluation of all the embolizations of glomus tumors from 2009 to 2023 was conducted. The primary outcome parameter was the rate of devascularization after embolization and the occurrence of significant perioperative hemorrhages. The secondary outcome was embolization-related complications. Results: Twenty-one embolizations in 20 patients were investigated in the study. In 43% of the cases more than 90% devascularization was achieved by embolization, while in the remaining cases, 80 to 90% devascularization was reached. In one case (5%), significant perioperative bleeding after embolization occurred. In one case (5%), a symptomatic complication occurred periinterventionally due to the brief dislocation of the coaxial and microcatheter into the internal carotid artery (ICA), which led to fresh punctate DWI lesions on the subsequent MRI. No patients developed nerve palsy following embolization. Conclusions: The preoperative embolization of glomus tumors can lead to significant tumor devascularization and a reduction in perioperative bleeding, with a low complication rate.
Collapse
Affiliation(s)
- Rana Garayzade
- Department of Neuroradiology, Institute of Diagnostic and Interventional Radiology, University Hospital Jena, 07747 Jena, Germany; (J.L.); (N.E.); (T.E.M.)
| | - Jakob Leicht
- Department of Neuroradiology, Institute of Diagnostic and Interventional Radiology, University Hospital Jena, 07747 Jena, Germany; (J.L.); (N.E.); (T.E.M.)
| | - Niklas Eckardt
- Department of Neuroradiology, Institute of Diagnostic and Interventional Radiology, University Hospital Jena, 07747 Jena, Germany; (J.L.); (N.E.); (T.E.M.)
| | - Sven Koscielny
- Department of Otorhinolaryngology, University Hospital Jena, 07747 Jena, Germany;
| | - Thomas E. Mayer
- Department of Neuroradiology, Institute of Diagnostic and Interventional Radiology, University Hospital Jena, 07747 Jena, Germany; (J.L.); (N.E.); (T.E.M.)
| |
Collapse
|
2
|
Strasser P, Schinegger V, Friske J, Brüggemann O, Helbich TH, Teasdale I, Pashkunova-Martic I. Superfluorinated, Highly Water-Soluble Polyphosphazenes as Potential 19F Magnetic Resonance Imaging (MRI) Contrast Agents. J Funct Biomater 2024; 15:40. [PMID: 38391893 PMCID: PMC10890119 DOI: 10.3390/jfb15020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
"Hot spot" 19F magnetic resonance imaging (MRI) has garnered significant attention recently for its ability to image various disease markers quantitatively. Unlike conventional gadolinium-based MRI contrast agents, which rely on proton signal modulation, 19F-MRI's direct detection has a unique advantage in vivo, as the human body exhibits a negligible background 19F-signal. However, existing perfluorocarbon (PFC) or PFC-based contrast materials suffer from several limitations, including low longitudinal relaxation rates and relatively low imaging efficiency. Hence, we designed a macromolecular contrast agent featuring a high number of magnetically equivalent 19F-nuclei in a single macromolecule, adequate fluorine nucleus mobility, and excellent water solubility. This design utilizes superfluorinated polyphosphazene (PPz) polymers as the 19F-source; these are modified with sodium mercaptoethanesulfonate (MESNa) to achieve water solubility exceeding 360 mg/mL, which is a similar solubility to that of sodium chloride. We observed substantial signal enhancement in MRI with these novel macromolecular carriers compared to non-enhanced surroundings and aqueous trifluoroacetic acid (TFA) used as a positive control. In conclusion, these novel water-soluble macromolecular carriers represent a promising platform for future MRI contrast agents.
Collapse
Affiliation(s)
- Paul Strasser
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Verena Schinegger
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Joachim Friske
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Structural and Molecular Preclinical Imaging, Medical University of Vienna and General Hospital of Vienna, 18-20 Währinger Gürtel, 1090 Vienna, Austria
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Structural and Molecular Preclinical Imaging, Medical University of Vienna and General Hospital of Vienna, 18-20 Währinger Gürtel, 1090 Vienna, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Irena Pashkunova-Martic
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Structural and Molecular Preclinical Imaging, Medical University of Vienna and General Hospital of Vienna, 18-20 Währinger Gürtel, 1090 Vienna, Austria
| |
Collapse
|
3
|
Tagad HD, Brito J, Marin A, Buckley C, Wang H, Sun J, Sukhishvili SA, Wang H, Andrianov AK. 4-Methylumbelliferone-Functionalized Polyphosphazene and Its Assembly into Biocompatible Fluorinated Nanocoatings with Selective Antiproliferative Activity. Biomacromolecules 2023; 24:2278-2290. [PMID: 37071718 DOI: 10.1021/acs.biomac.3c00153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Advanced multifunctional biomaterials are increasingly relying on clinically dictated patterns of selectivity against various biological targets. Integration of these frequently conflicting features into a single material surface may be best achieved by combining various complementary methodologies. Herein, a drug with a broad spectrum of activity, i.e., 4-methylumbelliferone (4-MU), is synthetically multimerized into water-soluble anionic macromolecules with the polyphosphazene backbone. The polymer structure, composition, and solution behavior are studied by 1H and 31P NMR spectroscopy, size-exclusion chromatography, dynamic light scattering, and UV and fluorescence spectrophotometry. To take advantage of the clinically proven hemocompatibility of fluorophosphazene surfaces, the drug-bearing macromolecule was then nanoassembled onto the surface of selected substrates in an aqueous solution with fluorinated polyphosphazene of the opposite charge using the layer-by-layer (LbL) technique. Nanostructured 4-MU-functionalized fluoro-coatings exhibited a strong antiproliferative effect on vascular smooth muscle cells (VSMCs) and fibroblasts with no cytotoxicity against endothelial cells. This selectivity pattern potentially provides the opportunity for highly desirable fast tissue healing while preventing the overgrowth of VSMCs and fibrosis. Taken together with the established in vitro hemocompatibility and anticoagulant activity, 4-MU-functionalized fluoro-coatings demonstrate potential for applications as restenosis-resistant coronary stents and artificial joints.
Collapse
Affiliation(s)
- Harichandra D Tagad
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Christian Buckley
- Department of Biomedical Engineering, Department of Chemistry and Chemical Biology, Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Haoyu Wang
- Department of Biomedical Engineering, Department of Chemistry and Chemical Biology, Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Jingyu Sun
- Department of Biomedical Engineering, Department of Chemistry and Chemical Biology, Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Hongjun Wang
- Department of Biomedical Engineering, Department of Chemistry and Chemical Biology, Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| |
Collapse
|
4
|
Alwine S, Chen C, Shen L, Allcock HR, Siedlecki CA, Xu LC. Crosslinkable fluorophenoxy-substituted poly[bis(octafluoropentoxy) phosphazene] biomaterials with improved antimicrobial effect and hemocompatibility. J Biomed Mater Res B Appl Biomater 2023. [PMID: 36965183 PMCID: PMC10247504 DOI: 10.1002/jbm.b.35252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/23/2022] [Accepted: 03/12/2023] [Indexed: 03/27/2023]
Abstract
Biomaterial-associated microbial infection is one of the most frequent and severe complications associated with the use of biomaterials in medical devices. In previous studies, we developed new fluorinated polyphosphazenes, poly[bis(octafluoropentoxy) phosphazene] (OFP) and crosslinkable OFP (X-OFP), and demonstrated the inhibition of bacterial adhesion and biofilm formation, thereby controlling microbial infection. In this study, two additional fluorinated polyphosphazenes (PPs, defined as LS02 and LS03) with fluorophenoxy-substituted side groups, 4-fluorophenoxy and 4-(trifluoromethyl)phenoxy, respectively, based on X-OFP general structure, were synthesized and applied as coatings on stainless steel. The linkage of fluorophenoxy groups to the P-N backbone of PPs was found to increase the surface stiffness and significantly reduced Staphylococcus bacterial adhesion and inhibited biofilm formation. It also significantly reduced microbial infection compared to OFP, our prior X-OFPs or poly[bis(trifluoroethoxy) phosphazene] (TFE). The biofilm experiments show that the newly synthesized PPs LS02 and LS03 are biofilm free up to 28 days. Plasma coagulation and platelet adhesion/activation experiments also demonstrated that new PPs containing fluorophenoxy side groups are hemocompatible. The development of new crosslinkable fluorinated PPs containing fluorophenoxy-substituted side groups provides a new generation of polyphosphazene materials for medical devices with improved resistance to microbial infections and thrombosis formation.
Collapse
Affiliation(s)
- Shelby Alwine
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, 13699, USA
| | - Chen Chen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Lihui Shen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Harry R Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Christopher A Siedlecki
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, 17033, USA
- Department of Biomedical Engineering, The Pennsylvania State University, Hershey, Pennsylvania, 17033, USA
| | - Li-Chong Xu
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, 17033, USA
| |
Collapse
|
5
|
Ajvazi E, Bauer F, Kracalik M, Hild S, Brüggemann O, Teasdale I. Poly[bis(serine ethyl ester)phosphazene] regulates the degradation rates of vinyl ester photopolymers. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-023-03042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
AbstractVinyl esters and carbonates have recently been demonstrated to have considerably lower cytotoxicity than their more commonly used (meth)acrylate counterparts, inspiring their use in the 3D printing of biomaterials. However, the degradation rates of such synthetic photopolymers are slow, especially in the mild conditions present in many biological environments. Some applications, for example, tissue regeneration scaffolds and drug release, require considerably faster biodegradation. Furthermore, it is essential to be able to easily tune the degradation rate to fit the requirements for a range of applications. Herein we present the design and synthesis of hydrolytically degradable polyphosphazenes substituted with a vinyl carbonate functionalized amino acid. Thiolene copolymerization with vinyl esters gave cured polymers which are demonstrated to considerably accelerate the degradation rates of cured vinylester/thiolene polymer scaffolds.
Graphical abstract
Collapse
|
6
|
Strasser P, Plavcan O, Ajvazi E, Henke H, Brüggemann O, Teasdale I. Hetero and homo α,ω-chain-end functionalized polyphosphazenes. JOURNAL OF POLYMER SCIENCE 2022; 60:2000-2007. [PMID: 35915665 PMCID: PMC9325445 DOI: 10.1002/pol.20220066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 12/03/2022]
Abstract
The control of chain-ends is fundamental in modern macromolecular chemistry for directed one-to-one bioconjugation and the synthesis of advanced architectures such as block copolymers or bottlebrush polymers and the preparation of advanced soft materials. Polyphosphazenes are of growing importance as elastomers, biodegradable materials and in biomedical drug delivery due to their synthetic versatility. While controlled polymerization methods have been known for some time, controlling both chain-ends with high fidelity has proven difficult. We demonstrate a robust synthetic route to hetero and homo α,ω-chain-end functionalized polyphosphazenes via end-capping with easily accessible, functionalized triphenylphosphine-based phosphoranimines. A versatile thiol-ene "click"-reaction approach then allows for subsequent conversion of the end-capped polymers with various functional groups. Finally, we demonstrate the utility of this system to prepare gels based on homo α,ω-chain-end functionalized polyphosphazenes. This development will enhance their progress in various applications, particularly in soft materials and as degradable polymers.
Collapse
Affiliation(s)
- Paul Strasser
- Institute of Polymer ChemistryJohannes Kepler University LinzLinzAustria
| | - Oliver Plavcan
- Institute of Polymer ChemistryJohannes Kepler University LinzLinzAustria
| | - Edip Ajvazi
- Institute of Polymer ChemistryJohannes Kepler University LinzLinzAustria
| | - Helena Henke
- Institute of Polymer ChemistryJohannes Kepler University LinzLinzAustria
- Centre for Additive ManufacturingUniversity of Nottingham, Jubilee Campus, Wollaton RoadNottingham, NG8 1BBUK
| | - Oliver Brüggemann
- Institute of Polymer ChemistryJohannes Kepler University LinzLinzAustria
| | - Ian Teasdale
- Institute of Polymer ChemistryJohannes Kepler University LinzLinzAustria
| |
Collapse
|
7
|
Emerging Polymer Materials in Trackable Endovascular Embolization and Cell Delivery: From Hype to Hope. Biomimetics (Basel) 2022; 7:biomimetics7020077. [PMID: 35735593 PMCID: PMC9221114 DOI: 10.3390/biomimetics7020077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Minimally invasive endovascular embolization is a widely used clinical technique used for the occlusion of blood vessels to treat various diseases. Different occlusive agents ranging from gelatin foam to synthetic polymers such as poly(vinyl alcohol) (PVA) have been commercially used for embolization. However, these agents have some drawbacks, such as undesired toxicity and unintended and uncontrolled occlusion. To overcome these issues, several polymer-based embolic systems are under investigation including biocompatible and biodegradable microspheres, gelling liquid embolic with controlled occlusive features, and trackable microspheres with enhanced safety profiles. This review aims to summarize recent advances in current and emerging polymeric materials as embolization agents with varying material architectures. Furthermore, this review also explores the potential of combining injectable embolic agents and cell therapy to achieve more effective embolization with the promise of outstanding results in treating various devastating diseases. Finally, limitations and challenges in developing next-generation multifunctional embolic agents are discussed to promote advancement in this emerging field.
Collapse
|
8
|
Marin A, Brito J, Sukhishvili SA, Andrianov AK. Cationic Fluoropolyphosphazenes: Synthesis and Assembly with Heparin as a Pathway to Hemocompatible Nanocoatings. ACS APPLIED BIO MATERIALS 2022; 5:313-321. [PMID: 35014813 DOI: 10.1021/acsabm.1c01099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of state-of-the-art blood-contacting devices can be advanced through integrating hemocompatibility, durability, and anticoagulant functionalities within engineered nanoscale coatings. To enable all-aqueous assembly of nanocoatings combining omniphobic fluorinated features with the potent anticoagulant activity of hydrophilic heparin, two fluoropolymers containing cationic functionalities were synthesized─poly[(trifluoroethoxy)(dimethylaminopropyloxy)phosphazene], PFAP-O, and poly[(trifluoroethoxy)(dimethylaminopropylamino)phosphazene], PFAP-A. Despite a relatively high content of fluorinated pendant groups─approximately 50% (mol) in each─both polymers displayed solubility in aqueous solutions and were able to spontaneously form stable supramolecular complexes with heparin, as determined by dynamic light scattering and asymmetric flow field-flow fractionation methods. Heparin-containing coatings were then assembled by layer-by-layer deposition in aqueous solutions. Nanoassembled coatings were evaluated for potential thrombogenicity in three important categories of in vitro tests─coagulation by thrombin generation, platelet retention, and hemolysis. In all assays, heparin-containing fluoro-coatings consistently displayed superior performance compared to untreated titanium surfaces or fluoro-coatings assembled using poly(acrylic acid) in the absence of heparin. Short-term stability studies revealed the noneluting nature of these noncovalently assembled coatings.
Collapse
Affiliation(s)
- Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20853, United States
| | - Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77845, United States
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77845, United States
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20853, United States
| |
Collapse
|
9
|
Cherian AM, Nair SV, Maniyal V, Menon D. Surface engineering at the nanoscale: A way forward to improve coronary stent efficacy. APL Bioeng 2021; 5:021508. [PMID: 34104846 PMCID: PMC8172248 DOI: 10.1063/5.0037298] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Coronary in-stent restenosis and late stent thrombosis are the two major inadequacies of vascular stents that limit its long-term efficacy. Although restenosis has been successfully inhibited through the use of the current clinical drug-eluting stent which releases antiproliferative drugs, problems of late-stent thrombosis remain a concern due to polymer hypersensitivity and delayed re-endothelialization. Thus, the field of coronary stenting demands devices having enhanced compatibility and effectiveness to endothelial cells. Nanotechnology allows for efficient modulation of surface roughness, chemistry, feature size, and drug/biologics loading, to attain the desired biological response. Hence, surface topographical modification at the nanoscale is a plausible strategy to improve stent performance by utilizing novel design schemes that incorporate nanofeatures via the use of nanostructures, particles, or fibers, with or without the use of drugs/biologics. The main intent of this review is to deliberate on the impact of nanotechnology approaches for stent design and development and the recent advancements in this field on vascular stent performance.
Collapse
Affiliation(s)
- Aleena Mary Cherian
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita
Vishwa Vidyapeetham, Ponekkara P.O. Cochin 682041, Kerala,
India
| | - Shantikumar V. Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita
Vishwa Vidyapeetham, Ponekkara P.O. Cochin 682041, Kerala,
India
| | - Vijayakumar Maniyal
- Department of Cardiology, Amrita Institute of Medical Science
and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O. Cochin
682041, Kerala, India
| | - Deepthy Menon
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita
Vishwa Vidyapeetham, Ponekkara P.O. Cochin 682041, Kerala,
India
| |
Collapse
|
10
|
Nanotechnology applications for cardiovascular disease treatment: Current and future perspectives. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 34:102387. [PMID: 33753283 DOI: 10.1016/j.nano.2021.102387] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 11/22/2022]
Abstract
A large majority of cardiovascular nanomedicine research has focused on fabricating designer nanoparticles for improved targeting as a means to overcome biological barriers. For cardiac related disorders, such as atherosclerosis, hypertension, and myocardial infarction, designer micro or nanoparticles are often administered into the vasculature or targeted vessel with the hope to circumvent problems associated with conventional drug delivery, including negative systemic side effects. Additionally, novel nano-drug carriers that enter circulation can be selectively uptaken by immune cells with the intended purpose that they modulate inflammatory processes and migrate locally to plaque for therapeutic payload delivery. Indeed, innovative design in nanoparticle composition, formulation, and functionalization has advanced the field as a means to achieve therapeutic efficacy for a variety of cardiac disease indications. This perspective aims to discuss these advances and provide new interpretations of how nanotechnology can be best applied to aid in cardiovascular disease treatment. In an effort to spark discussions on where the field of research should go, we share our outlook in new areas of nanotechnological inclusion and integration, such as in vascular, implantable, or wearable device technologies as well as nanocomposites and nanocoatings. Further, as cardiovascular diseases (CVD) increasingly claim a number of lives globally, we propose more attention should be placed by researchers on nanotechnological approaches for risk factor treatment to aid in early prevention and treatment of CVD.
Collapse
|
11
|
Drug-zein@lipid hybrid nanoparticles: Electrospraying preparation and drug extended release application. Colloids Surf B Biointerfaces 2021; 201:111629. [PMID: 33639514 DOI: 10.1016/j.colsurfb.2021.111629] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/30/2021] [Accepted: 02/13/2021] [Indexed: 02/06/2023]
Abstract
The reasonable selection and elaborate conversion of raw materials into desired functional products represent a main topic in modern material engineering. In this study, zein (a plant protein) and lipids (extracted from egg yolk) are converted into a new type of drug-polymer@lipid hybrid nanoparticles (HNPs) via modified coaxial electrospraying. Tamoxifen citrate (TC) is used as a model anticancer drug to prepare TC-zein monolithic nanocomposites (MNCs) via traditional blended electrospraying; these MNCs are then used for comparison. Modified coaxial electrospraying is a continuous and robust process for the preparation of solid particles because of the action of unsolidifiable shell lipid solutions. HNPs have a round morphology with clear core-shell nanostructures, whereas MNCs have an indented flat morphology. Although both hold the drug in an amorphous state because of the fine compatibility of TC and zein, HNPs demonstrate a better sustained release of TC compared with MNCs in terms of retarding initial burst release (6.7 %±2.9 % vs. 37.2 %±4.3 %) and prolonged linear release period (20.47 h vs. 4.97 h for releasing 90 % of the loaded drug). Mechanisms by which the shell's lipid layer adjusts the release behavior of TC molecules are proposed. The present protocol based on coaxial electrospraying shows a new strategy of combining edible protein and lipids to fabricate advanced functional nanomaterials.
Collapse
|
12
|
Colleran R, Joner M, Cutlip D, Urban P, Maeng M, Jauhar R, Barakat M, Michel JM, Mehran R, Kirtane AJ, Maillard L, Kastrati A, Byrne RA. Design and rationale of a randomized trial of COBRA PzF stenting to REDUCE duration of triple therapy (COBRA-REDUCE). CARDIOVASCULAR REVASCULARIZATION MEDICINE 2021; 34:17-24. [PMID: 33608239 DOI: 10.1016/j.carrev.2021.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND/PURPOSE A coronary stent with thromboresistant and pro-healing properties such as the polymer polyzene F-coated (COBRA PzF) stent might safely allow for a very short duration of triple therapy in patients taking oral anticoagulation (OAC) who undergo coronary stenting. METHODS The COBRA-REDUCE trial is a prospective, multinational, randomized, open-label, assessor-blinded trial. A total of 996 patients at high bleeding risk because of requirement for OAC (with a vitamin K antagonist or non-vitamin K antagonist for any indication) will be randomized at sites in the United States and Europe to treatment with the COBRA-PzF stent followed by very short duration (14 days) DAPT or a Food and Drug Administration (FDA)-approved new generation drug-eluting stent followed by guideline-recommended DAPT duration (3 or 6 months). Two co-primary endpoints will be tested at 6 months: a bleeding co-primary endpoint (bleeding academic research consortium [BARC] ≥2 bleeding beyond 14 days or after hospital discharge, whichever is later [superiority hypothesis]) and a thrombo-embolic co-primary endpoint (the composite of all-cause death, myocardial infarction, definite/probable stent thrombosis or ischaemic stroke [non-inferiority hypothesis]). The trial is registered at clinicaltrials.gov (NCT02594501). CONCLUSION The COBRA-REDUCE trial will determine whether coronary stenting with the COBRA PzF stent followed by 14 days of clopidogrel will reduce bleeding without increasing thrombo-embolic events compared with FDA-approved DES followed by 3-6 months clopidogrel in patients taking OAC and aspirin.
Collapse
Affiliation(s)
- Róisín Colleran
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Michael Joner
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Donald Cutlip
- Cardiology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Philip Urban
- La Tour Hospital, Geneva, Switzerland; CERC (Cardiovascular European Research Center), Massy, France
| | | | - Rajiv Jauhar
- North Shore University Hospital, Manhasset New York, NY, USA
| | | | - Jonathan M Michel
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Roxana Mehran
- Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Ajay J Kirtane
- Department of Medicine, Columbia University Irving Medical Center/New York Presbyterian Hospital, New York, NY, United States of America; Cardiovascular Research Foundation, New York, NY, United States of America
| | - Luc Maillard
- GCS-ES Axium-Rambot, Clinique Axium, Aix en Provence, France
| | - Adnan Kastrati
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.
| | - Robert A Byrne
- Cardiovascular Research Institute Dublin, Mater Private Hospital, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
13
|
Weir MD, Kaner P, Marin A, Andrianov AK. Ionic Fluoropolyphosphazenes as Potential Adhesive Agents for Dental Restoration Applications. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-020-00192-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Ogueri KS, Ogueri KS, Ude CC, Allcock HR, Laurencin CT. Biomedical applications of polyphosphazenes. MEDICAL DEVICES & SENSORS 2020; 3:e10113. [PMID: 33889811 PMCID: PMC8059710 DOI: 10.1002/mds3.10113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022]
Abstract
Ever since the pioneering research efforts on their utility in biomedicine, polyphosphazene polymers have witnessed enormous growth and expansion in several biomedical applications due to their unique properties. The development of this exceptional biodegradable system with extraordinary design flexibility, property tunability and neutral bioactivity could stimulate an unprecedented paradigm in biomaterial design. Thus, polyphosphazenes are, undoubtedly, the next-generation biomaterials. This editorial provides a brief perspective on the promising prospects of polyphosphazene-based biomaterials for medical device technology, focusing mainly on the authors' work on this particular polymeric system.
Collapse
Affiliation(s)
- Kenneth S. Ogueri
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Kennedy S. Ogueri
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Chinedu C. Ude
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Harry R. Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Cato T. Laurencin
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
15
|
Abstract
Although the best-known examples of synthetic polymers are derived from carbon-based monomers, there exists another large and growing family of macromolecules based on the chemistry of phosphorus. These are the poly(organophosphazenes): polymers with a backbone of alternating phosphorus and nitrogen atoms and with two organic side groups attached to each phosphorus. The methods of synthesis of these polymers allow access to property combinations not found in all-organic counterparts, and this provides pathways to new materials that are important in biomedical research, energy generation and storage, aerospace materials, and numerous other specialized applications.
Collapse
Affiliation(s)
- Harry R Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chen Chen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
16
|
Salinas Y, Kneidinger M, Fornaguera C, Borrós S, Brüggemann O, Teasdale I. Dual stimuli-responsive polyphosphazene-based molecular gates for controlled drug delivery in lung cancer cells. RSC Adv 2020; 10:27305-27314. [PMID: 35516962 PMCID: PMC9055533 DOI: 10.1039/d0ra03210g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/14/2020] [Indexed: 11/21/2022] Open
Abstract
A switchable silane derived stimuli-responsive bottle-brush polyphosphazene (PPz) was prepared and attached to the surface of mesoporous silica nanoparticles (MSNs). The hybrid polymer with PEG-like Jeffamine® M-2005 side-arms undergo conformational changes in response to both pH and temperature due to its amphiphilic substituents and protonatable main-chain, hence were investigated as a gatekeeper. Safranin O as control fluorophore or the anticancer drug camptothecin (CPT) were encapsulated in the PPz-coated MSNs. At temperatures below the lower critical solution temperature (LCST), the swollen conformation of PPz efficiently blocked the cargo within the pores. However, above the LCST, the PPz collapsed, allowing release of the payload. Additionally, protonation of the polymer backbone at lower pH values was observed to enhance opening of the pores from the surface of the MSNs and therefore the release of the dye. In vitro studies demonstrated the ability of these nanoparticles loaded with the drug camptothecin to be endocytosed in both models of tumor (A549) and healthy epithelial (BEAS-2B) lung cells. Their accumulation and the release of the chemotherapeutic drug, co-localized within lysosomes, was faster and higher for tumor than for healthy cells, further, the biocompatibility of PPz-gated nanosystem without drug was demonstrated. Tailored dual responsive polyphosphazenes thus represent novel and promising candidates in the construction of future gated mesoporous silica nanocarriers designs for lung cancer-directed treatment.
Collapse
Affiliation(s)
- Yolanda Salinas
- Institute of Polymer Chemistry (ICP), Johannes Kepler University Linz (JKU) Altenberger Strasse 69 4040 Linz Austria
- Linz Institute of Technology (LIT), Johannes Kepler University Linz (JKU) Altenberger Strasse 69 4040 Linz Austria
| | - Michael Kneidinger
- Institute of Polymer Chemistry (ICP), Johannes Kepler University Linz (JKU) Altenberger Strasse 69 4040 Linz Austria
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL) Via Augusta 390 Barcelona 08017 Spain
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL) Via Augusta 390 Barcelona 08017 Spain
| | - Oliver Brüggemann
- Institute of Polymer Chemistry (ICP), Johannes Kepler University Linz (JKU) Altenberger Strasse 69 4040 Linz Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry (ICP), Johannes Kepler University Linz (JKU) Altenberger Strasse 69 4040 Linz Austria
- Linz Institute of Technology (LIT), Johannes Kepler University Linz (JKU) Altenberger Strasse 69 4040 Linz Austria
| |
Collapse
|
17
|
Strasser P, Teasdale I. Main-Chain Phosphorus-Containing Polymers for Therapeutic Applications. Molecules 2020; 25:E1716. [PMID: 32276516 PMCID: PMC7181247 DOI: 10.3390/molecules25071716] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Polymers in which phosphorus is an integral part of the main chain, including polyphosphazenes and polyphosphoesters, have been widely investigated in recent years for their potential in a number of therapeutic applications. Phosphorus, as the central feature of these polymers, endears the chemical functionalization, and in some cases (bio)degradability, to facilitate their use in such therapeutic formulations. Recent advances in the synthetic polymer chemistry have allowed for controlled synthesis methods in order to prepare the complex macromolecular structures required, alongside the control and reproducibility desired for such medical applications. While the main polymer families described herein, polyphosphazenes and polyphosphoesters and their analogues, as well as phosphorus-based dendrimers, have hitherto predominantly been investigated in isolation from one another, this review aims to highlight and bring together some of this research. In doing so, the focus is placed on the essential, and often mutual, design features and structure-property relationships that allow the preparation of such functional materials. The first part of the review details the relevant features of phosphorus-containing polymers in respect to their use in therapeutic applications, while the second part highlights some recent and innovative applications, offering insights into the most state-of-the-art research on phosphorus-based polymers in a therapeutic context.
Collapse
Affiliation(s)
- Paul Strasser
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| |
Collapse
|
18
|
Allcock HR. The Background and Scope of Polyphosphazenes as Biomedical Materials. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00128-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Albright V, Marin A, Kaner P, Sukhishvili SA, Andrianov AK. New Family of Water-Soluble Sulfo–Fluoro Polyphosphazenes and Their Assembly within Hemocompatible Nanocoatings. ACS APPLIED BIO MATERIALS 2019; 2:3897-3906. [DOI: 10.1021/acsabm.9b00485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Victoria Albright
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| | - Papatya Kaner
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| | - Svetlana A. Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| |
Collapse
|