1
|
Li Y, Wang Z. Biomaterials for Corneal Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2408021. [PMID: 39739318 DOI: 10.1002/advs.202408021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/19/2024] [Indexed: 01/02/2025]
Abstract
Corneal blindness is a significant reason for visual impairment globally. Researchers have been investigating several methods for corneal regeneration in order to cure these patients. Biomaterials are favored due to their biocompatibility and capacity to promote cell adhesion. A variety of natural and synthetic biomaterials, along with decellularized cornea, have been employed in corneal wound healing. Commonly utilized natural biomaterials encompass proteins such as collagen, gelatin, and silk fibroin (SF), as well as polysaccharides including alginate, chitosan (CS), hyaluronic acid (HA), and cellulose. Synthetic biomaterials primarily consist of polyvinyl alcohol (PVA), poly(ε-caprolactone) (PCL), and poly (lactic-co-glycolic acid) (PLGA). Bio-based materials and their composites are primarily utilized as hydrogels, films, scaffolds, patches, nanocapsules, and other formats for the treatment of blinding ocular conditions, including corneal wounds, corneal ulcers, corneal endothelium, and stromal defects. This review attempts to summarize in vitro, preclinical, and clinical trial studies relevant to corneal regeneration using biomaterials within the last five years, and expect that these experiences and outcomes will inspire and provide practical strategies for the future development of biomaterials for corneal regeneration. Furthermore, potential improvements and difficulties for these biomaterials are discussed.
Collapse
Affiliation(s)
- Yimeng Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
2
|
Maher C, Chen Z, Zhou Y, You J, Sutton G, Wallace G. Innervation in corneal bioengineering. Acta Biomater 2024; 189:73-87. [PMID: 39393658 DOI: 10.1016/j.actbio.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Given the crucial role nerves play in maintaining corneal function and integrity, the ability of bioengineered cornea to demonstrate functional nerve regeneration directly influences their longevity and stability. Despite advances in biofabrication techniques and an increasing appreciation of the importance of neural innervation, to this day none have completely replicated the complexity and functionality of the cornea with successful innervation. This review evaluates the materials and fabrication techniques used to produce and enhance innervation in bioengineered cornea. Approaches to facilitating innervation are discussed and methods of assessing innervation compared. Finally, current challenges and future directions for innervated bioengineered cornea are presented, providing guidance for future work. STATEMENT OF SIGNIFICANCE: The functional nerve regeneration in bioengineered corneas directly influences their longevity and stability. Despite advancements in biofabrication techniques and growing recognition of the importance of neural innervation for bioengineered cornea, there remains a lack of comprehensive reviews on this topic. This review addresses the critical gap by evaluating the materials and fabrication techniques employed to promote innervation in bioengineered corneas. Additionally, we discuss various approaches to enhancing innervation, compare assessment methods, and examine both in vitro and in vivo responses. By providing a comprehensive overview of the current state of research and highlighting challenges and future directions, this review aims to provide guidance for inducing innervation of bioengineered cornea.
Collapse
Affiliation(s)
- Clare Maher
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, New South Wales, Australia; School of Medicine, University of Notre Dame, Sydney, NSW, Australia
| | - Zhi Chen
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, New South Wales, Australia.
| | - Ying Zhou
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, New South Wales, Australia
| | - Jingjing You
- Save Sight Institute, University of Sydney, Sydney, New South Wales 2000, Australia
| | - Gerard Sutton
- Save Sight Institute, University of Sydney, Sydney, New South Wales 2000, Australia; Lions New South Wales Eye Bank and New South Wales Bone Bank, New South Wales Organ and Tissue Donation Service, GPO Box 1614, Sydney, New South Wales 2000, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gordon Wallace
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, New South Wales, Australia.
| |
Collapse
|
3
|
Jamadi Khiabani M, Soroushzadeh S, Talebi A, Samanta A. Shear-Induced Cycloreversion Leading to Shear-Thinning and Autonomous Self-Healing in an Injectable, Shape-Holding Collagen Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39377244 PMCID: PMC11492320 DOI: 10.1021/acsami.4c08066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
In vivo injectable extracellular matrix (ECM) derived hydrogels that are suitable for cell encapsulation have always been the holy grail in tissue engineering. Nevertheless, these hydrogels still fall short today of meeting three crucial criteria: (a) flexibility on the injectability time window, (b) autonomous self-healing of the injected hydrogel, and (c) shape-retention under aqueous conditions. Here we report the development of a collagen-based injectable hydrogel, cross-linked by cycloaddition reaction between furan and maleimide groups, that (a) is injectable up to 48 h after preparation, (b) can undergo complete autonomous self-healing after injection, (c) can retain its shape and size over several years when stored in the buffer, (d) can be degraded within hours when treated with collagenase, (e) is biocompatible as demonstrated by in vitro cell-culture, and (f) is completely resorbable in vivo when implanted subcutaneously in rats without causing any inflammation.
Collapse
Affiliation(s)
- Mahsa Jamadi Khiabani
- Macromolecular
Chemistry, Department of Chemistry—Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala, Sweden
| | - Sareh Soroushzadeh
- Department
of Pathology, School of Medicine, Isfahan
University of Medical Sciences, Isfahan 8174673461, Iran
| | - Ardeshir Talebi
- Department
of Pathology, School of Medicine, Isfahan
University of Medical Sciences, Isfahan 8174673461, Iran
| | - Ayan Samanta
- Macromolecular
Chemistry, Department of Chemistry—Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala, Sweden
| |
Collapse
|
4
|
Li Q, Sun Y, Zhao H, Zhang F, Guo Y, Chen X, Zhao G. Structure and properties of the acellular porcine cornea irradiated with 60Co-γ and electron beam and its histocompatibility. J Biomed Mater Res A 2024; 112:825-840. [PMID: 38158889 DOI: 10.1002/jbm.a.37663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 08/15/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Acellular porcine cornea (APC) has been used in corneal transplantation and treatment of the corneal diseases. Sterilization is a key step before the application of graft, and irradiation is one of the most commonly used methods. In this paper, APC was prepared by the physical freeze-thawing combined with biological enzymes, and the effects of the electron beam (E-beam) and cobalt 60 (60Co-γ) at the dose of 15 kGy on the physicochemical properties, structure, immunogenicity, and biocompatibility of the APC were investigated. After decellularization, the residual DNA was 20.86 ± 1.02 ng/mg, and the α-Gal clearance rate was more than 99%. Irradiation, especially the 60Co-γ, reduced the cornea's transmittance, elastic modulus, enzymatic hydrolysis rate, swelling ratio, and cross-linking degree. Meanwhile, the diameter and spacing of the collagen fibers increased. In the rat subcutaneous implantation, many inflammatory cells appeared in the unirradiated APC, while the irradiated had good histocompatibility, but the degradation was faster. The lamellar keratoplasty in rabbits indicated that compared to the E-beam, the 60Co-γ damaged the chemical bond of collagen to a larger extent, reduced the content of GAGs, and prolonged the complete epithelization of the grafts. The corneal edema was more serious within 1 month after the surgery. After 2 months, the thickness of the APC with the two irradiation methods tended to be stable, but that in the 60Co-γ group became thinner. The pathological results showed that the collagen structure was looser and the pores were larger, indicating the 60Co-γ had a more extensive effect on the APC than the E-beam at 15 kGy.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Yajun Sun
- Qingdao Chunghao Tissue Engineering Co., Ltd., Qingdao, Shandong, China
| | - Haibin Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Fan Zhang
- Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yu Guo
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Xin Chen
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Guoqun Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| |
Collapse
|
5
|
Pal P, Sambhakar S, Paliwal S, Kumar S, Kalsi V. Biofabrication paradigms in corneal regeneration: bridging bioprinting techniques, natural bioinks, and stem cell therapeutics. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:717-755. [PMID: 38214998 DOI: 10.1080/09205063.2024.2301817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
Corneal diseases are a major cause of vision loss worldwide. Traditional methods like corneal transplants from donors are effective but face challenges like limited donor availability and the risk of graft rejection. Therefore, new treatment methods are essential. This review examines the growing field of bioprinting and biofabrication in corneal tissue engineering. We begin by discussing various bioprinting methods such as stereolithography, inkjet, and extrusion printing, highlighting their strengths and weaknesses for eye-related uses. We also explore how biological tissues are made suitable for bioprinting through a process called decellularization, which can be achieved using chemical, physical, or biological methods. The review then looks at natural materials, known as bioinks, used in bioprinting. We focus on materials like gelatin, collagen, fibrin, chitin, chitosan, silk fibroin, and alginate, examining their mechanical and biological properties. The importance of hydrogel scaffolds, particularly those based on collagen and other materials, is also discussed in the context of repairing corneal tissue. Another key area we cover is the use of stem cells in corneal regeneration. We pay special attention to limbal epithelial stem cells and mesenchymal stromal cells, highlighting their roles in this process. The review concludes with an overview of the latest advancements in corneal tissue bioprinting, from early techniques to advanced methods of delivering stem cells using bioengineered materials. In summary, this review presents the current state and future potential of bioprinting and biofabrication in creating functional corneal tissues, highlighting new developments and ongoing challenges with a view towards restoring vision.
Collapse
Affiliation(s)
- Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Radha Kishnpura, Rajasthan, India
| | - Sharda Sambhakar
- Department of Pharmacy, Banasthali Vidyapith, Radha Kishnpura, Rajasthan, India
| | - Shailendra Paliwal
- Department of Pharmacy, L.L.R.M Medical College, Meerut, Uttar Pradesh, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Vandna Kalsi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
6
|
Bhutani U, Dey N, Chowdhury SK, Waghmare N, Mahapatra RD, Selvakumar K, Chandru A, Bhowmick T, Agrawal P. Biopolymeric corneal lenticules by digital light processing based bioprinting: a dynamic substitute for corneal transplant. Biomed Mater 2024; 19:035017. [PMID: 38471165 DOI: 10.1088/1748-605x/ad3312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Digital light processing (DLP) technology has gained significant attention for its ability to construct intricate structures for various applications in tissue modeling and regeneration. In this study, we aimed to design corneal lenticules using DLP bioprinting technology, utilizing dual network bioinks to mimic the characteristics of the human cornea. The bioink was prepared using methacrylated hyaluronic acid and methacrylated gelatin, where ruthenium salt and sodium persulfate were included for mediating photo-crosslinking while tartrazine was used as a photoabsorber. The bioprinted lenticules were optically transparent (85.45% ± 0.14%), exhibited adhesive strength (58.67 ± 17.5 kPa), and compressive modulus (535.42 ± 29.05 kPa) sufficient for supporting corneal tissue integration and regeneration. Puncture resistance tests and drag force analysis further confirmed the excellent mechanical performance of the lenticules enabling their application as potential corneal implants. Additionally, the lenticules demonstrated outstanding support for re-epithelialization and stromal regeneration when assessed with human corneal stromal cells. We generated implant ready corneal lenticules while optimizing bioink and bioprinting parameters, providing valuable solution for individuals suffering from various corneal defects and waiting for corneal transplants.
Collapse
Affiliation(s)
- Utkarsh Bhutani
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Namit Dey
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Suvro Kanti Chowdhury
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Neha Waghmare
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Rita Das Mahapatra
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Kamalnath Selvakumar
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Arun Chandru
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Tuhin Bhowmick
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
- Pandorum International Inc., San Francisco, CA, United States of America
| | - Parinita Agrawal
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| |
Collapse
|
7
|
Seo JS, Tumursukh NE, Choi JH, Song Y, Jeon G, Kim NE, Kim SJ, Kim N, Song JE, Khang G. Modified gellan gum-based hydrogel with enhanced mechanical properties for application as a cell carrier for cornea endothelial cells. Int J Biol Macromol 2023; 236:123878. [PMID: 36894057 DOI: 10.1016/j.ijbiomac.2023.123878] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/13/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023]
Abstract
Recently, the number of people suffering from visual loss due to eye diseases is increasing rapidly around the world. However, due to the severe donor shortage and the immune response, corneal replacement is needed. Gellan gum (GG) is biocompatible and widely used for cell delivery or drug delivery, but its strength is not suitable for the corneal substitute. In this study, a GM hydrogel was prepared by blending methacrylated gellan gum with GG (GM) to give suitable mechanical properties to the corneal tissue. In addition, lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), a crosslinking initiator, was added to the GM hydrogel. After the photo-crosslinking treatment, it was named GM/LAP hydrogel. GM and GM/LAP hydrogels were analyzed for physicochemical properties, mechanical characterization, and transparency tests to confirm their applicability as carriers for corneal endothelial cells (CEnCs). Also, in vitro studies were performed with cell viability tests, cell proliferation tests, cell morphology, cell-matrix remodeling analysis, and gene expression evaluation. The compressive strength of the GM/LAP hydrogel was improved compared to the GM hydrogel. The GM/LAP hydrogel showed excellent cell viability, proliferation, and cornea-specific gene expression than the GM hydrogel. Crosslinking-improved GM/LAP hydrogel can be applied as a promising cell carrier in corneal tissue engineering.
Collapse
Affiliation(s)
- Jin Sol Seo
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Nomin-Erdene Tumursukh
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Joo Hee Choi
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Youngeun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Gayeong Jeon
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Na Eun Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Seung Jae Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Nahyeon Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Jeong Eun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea; Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea; Department of Orthopaedic & Traumatology, Airlangga University, Jl. Airlangga No.4 - 6, Airlangga, Kec. Gubeng, Kota SBY, Jawa Timur 60115, Indonesia.
| |
Collapse
|
8
|
Abstract
Despite rigorous investigations, the hydrogels currently available to replace damaged tissues, such as the cornea, cannot fulfill mechanical and structural requirements and, more importantly, cannot be sutured into host tissues due to the lack of hierarchical structures to dissipate exerted stress. In this report, solution electrospinning of polycaprolactone (PCL), protein-based hydrogel perfusion, and layer-by-layer stacking are used to generate a hydrogel-microfiber composite with varying PCL fiber diameters and hydrogel concentrations. Integrating PCL microfibers into the hydrogel synergistically improves the mechanical properties and suturability of the construct up to 10-fold and 50-fold, respectively, compared to the hydrogel and microfiber scaffolds alone, approaching those of the corneal tissue. Human corneal cells cultured on composites are viable and can spread, proliferate, and retain phenotypic characteristics. Moreover, corneal stromal cells migrate into the scaffold, degrade it, and regenerate the extracellular matrix. The current hydrogel reinforcing system paves the way for producing suturable and, therefore, transplantable tissue constructs with desired mechanical properties.
Collapse
Affiliation(s)
- Sina Sharifi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts02114, United States
| | - Hannah Sharifi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts02114, United States
| |
Collapse
|
9
|
Meganathan I, Pachaiyappan M, Aarthy M, Radhakrishnan J, Mukherjee S, Shanmugam G, You J, Ayyadurai N. Recombinant and genetic code expanded collagen-like protein as a tailorable biomaterial. MATERIALS HORIZONS 2022; 9:2698-2721. [PMID: 36189465 DOI: 10.1039/d2mh00652a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Collagen occurs in nature with a dedicated triple helix structure and is the most preferred biomaterial in commercialized medical products. However, concerns on purity, disease transmission, and the reproducibility of animal derived collagen restrict its applications and warrants alternate recombinant sources. The expression of recombinant collagen in different prokaryotic and eukaryotic hosts has been reported with varying degrees of success, however, it is vital to elucidate the structural and biological characteristics of natural collagen. The recombinant production of biologically functional collagen is restricted by its high molecular weight and post-translational modification (PTM), especially the hydroxylation of proline to hydroxyproline. Hydroxyproline plays a key role in the structural stability and higher order self-assembly to form fibrillar matrices. Advancements in synthetic biology and recombinant technology are being explored for improving the yield and biomimicry of recombinant collagen. It emerges as reliable, sustainable source of collagen, promises tailorable properties and thereby custom-made protein biomaterials. Remarkably, the evolutionary existence of collagen-like proteins (CLPs) has been identified in single-cell organisms. Interestingly, CLPs exhibit remarkable ability to form stable triple helical structures similar to animal collagen and have gained increasing attention. Strategies to expand the genetic code of CLPs through the incorporation of unnatural amino acids promise the synthesis of highly tunable next-generation triple helical proteins required for the fabrication of smart biomaterials. The review outlines the importance of collagen, sources and diversification, and animal and recombinant collagen-based biomaterials and highlights the limitations of the existing collagen sources. The emphasis on genetic code expanded tailorable CLPs as the most sought alternate for the production of functional collagen and its advantages as translatable biomaterials has been highlighted.
Collapse
Affiliation(s)
- Ilamaran Meganathan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Mohandass Pachaiyappan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Mayilvahanan Aarthy
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Janani Radhakrishnan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Smriti Mukherjee
- Division of Organic and Bio-organic Chemistry, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India
| | - Ganesh Shanmugam
- Division of Organic and Bio-organic Chemistry, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jingjing You
- Save Sight Institute, Sydney Medical School, University of Sydney, Australia
| | - Niraikulam Ayyadurai
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
Corneal Stroma Regeneration with Collagen-Based Hydrogel as an Artificial Stroma Equivalent: A Comprehensive In Vivo Study. Polymers (Basel) 2022; 14:polym14194017. [PMID: 36235965 PMCID: PMC9572218 DOI: 10.3390/polym14194017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Restoring the anatomical and functional characteristics of the cornea using various biomaterials is especially relevant in the context of a global shortage of donor tissue. Such biomaterials must be biocompatible, strong, and transparent. Here, we report a Viscoll collagen membrane with mechanical and optical properties suitable for replacing damaged stromal tissue. After removing a portion of the stroma, a Viscoll collagen membrane was implanted into the corneas of rabbits. After 6 months, the active migration of host cells into Viscoll collagen membranes was noted, with the preservation of corneal transparency in all experimental animals. Effective integration of the Viscoll collagen membrane with corneal tissue promoted nerve regeneration in vivo, as confirmed by in vivo confocal microscopy. We also demonstrated the safety and efficacy of the Viscoll collagen membrane for corneal stroma regeneration. Thus, in combination with the proposed packaging format that provides long-term storage of up to 10 months, this material has great potential for replacing and regenerating damaged stromal tissues.
Collapse
|
11
|
Pourjabbar B, Biazar E, Heidari Keshel S, Baradaran‐Rafii A. Improving the properties of fish skin collagen/silk fibroin dressing by chemical treatment for corneal wound healing. Int Wound J 2022; 20:484-498. [PMID: 35912793 PMCID: PMC9885469 DOI: 10.1111/iwj.13896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/03/2023] Open
Abstract
Natural biomaterials are crucial in ocular tissue engineering because they allow cells to proliferate, differentiate, and stratify while maintaining the typical epithelial phenotype. In this study, membranes as dressings were formed from silk fibroin and collagen (Co) extracted from fish skin and then modified with carbodiimide chemical cross linker in different concentrations. The samples were evaluated by different analyses such as structural, physical (optical, swelling, denaturation temperature, degradation), mechanical, and biological (viability, cell adhesion, immunocytochemistry) assays. The results showed that all membranes have excellent transparency, especially with higher silk fibroin content. Increasing the cross linker concentration and the ratio of silk fibroin to Co increased the denaturation temperature and mechanical strength and, conversely, reduced the degradation rate and cell adhesion. The samples did not show a significant difference in toxicity with increasing cross linker and silk fibroin ratio. In general, samples with a low silk fibroin ratio combined with cross linker can provide desirable properties as a membrane for corneal wound healing.
Collapse
Affiliation(s)
- Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Esmaeil Biazar
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon BranchIslamic Azad UniversityTonekabonIran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran,Medical Nanotechnology and Tissue Engineering Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Alireza Baradaran‐Rafii
- Ophthalmic Research Center, Department of Ophthalmology, Labbafinejad Medical CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
12
|
Lei M, Zhang S, Zhou H, Wan H, Lu Y, Lin S, Sun J, Qu X, Liu C. Electrical Signal Initiates Kinetic Assembly of Collagen to Construct Optically Transparent and Geometry Customized Artificial Cornea Substitutes. ACS NANO 2022; 16:10632-10646. [PMID: 35802553 DOI: 10.1021/acsnano.2c02291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Corneal transplantation is an effective treatment for reconstructing injured corneas but is very limited due to insufficient donors, which has led to a growing demand for development of artificial corneal substitutes (ACSs). Collagen is a potential building block for ACS fabrication, whereas technically there are limited capabilities to control the collagen assembly for creating highly transparent collagen ACSs. Here, we report an electro-assembly technique to kinetically control collagen assembly on the nanoscale that allows the yielding collagen ACSs with structure determined superior optics. Structurally, the kinetically electro-assembled collagen (KEA-Col) is composed of partially aligned microfibrils (∼10 nm in diameter) with compacted lamellar organization. Optical analysis reveals that such microstructure is directly responsible for its optimal light transmittance by reducing light scattering. Moreover, this method allows the creation of complex three-dimensional geometries and thus is convenient to customize collagen ACSs with specific curvatures to meet refractive power requirements. Available properties (e.g., optics and mechanics) of cross-linked KEA-Cols were studied to meet the clinical requirement as ACSs, and in vitro tests further proved their beneficial characteristics of cell growth and migration. An in vivo study established a rabbit lamellar keratectomy corneal wound model and demonstrated the customized collagen ACSs can adapt to the defective cornea and support epithelial healing as well as stroma integration and reconstruction with lower immunoreaction compared with commercial xenografts, which suggests its promising application prospects. More broadly, this work illustrates the potential for enlisting electrical signals to mediate collagen's assembly and microstructure organization for specific structural functionalization for regenerative medicine.
Collapse
Affiliation(s)
- Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shaohua Zhang
- Eye Institute and Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Hang Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haoran Wan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Lu
- Eye Institute and Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Shaoliang Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianguo Sun
- Eye Institute and Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
13
|
Binlateh T, Thammanichanon P, Rittipakorn P, Thinsathid N, Jitprasertwong P. Collagen-Based Biomaterials in Periodontal Regeneration: Current Applications and Future Perspectives of Plant-Based Collagen. Biomimetics (Basel) 2022; 7:34. [PMID: 35466251 PMCID: PMC9036199 DOI: 10.3390/biomimetics7020034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Collagen is the most widely distributed protein in human body. Within the field of tissue engineering and regenerative medical applications, collagen-based biomaterials have been extensively growing over the past decades. The focus of this review is mainly on periodontal regeneration. Currently, multiple innovations of collagen-based biomaterials have evolved, from hemostatic collagen sponges to bone/tissue regenerative scaffolds and injectable collagen matrices for gene or cell regenerative therapy. Collagen sources also differ from animal to marine and plant-extracted recombinant human type I collagen (rhCOL1). Animal-derived collagen has a number of substantiated concerns such as pathogenic contamination and transmission and immunogenicity, and rhCOL1 is a potential solution to those aforementioned issues. This review presents a brief overview of periodontal regeneration. Also, current applications of collagen-based biomaterials and their mechanisms for periodontal regeneration are provided. Finally, special attention is paid to mechanical, chemical, and biological properties of rhCOL1 in pre-clinical and clinical studies, and its future perspectives in periodontal regeneration are discussed.
Collapse
Affiliation(s)
- Thunwa Binlateh
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Peungchaleoy Thammanichanon
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.T.); (P.R.); (N.T.)
| | - Pawornwan Rittipakorn
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.T.); (P.R.); (N.T.)
| | - Natthapol Thinsathid
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.T.); (P.R.); (N.T.)
| | - Paiboon Jitprasertwong
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.T.); (P.R.); (N.T.)
| |
Collapse
|
14
|
Ramezaniaghdam M, Nahdi ND, Reski R. Recombinant Spider Silk: Promises and Bottlenecks. Front Bioeng Biotechnol 2022; 10:835637. [PMID: 35350182 PMCID: PMC8957953 DOI: 10.3389/fbioe.2022.835637] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 02/02/2023] Open
Abstract
Spider silk threads have exceptional mechanical properties such as toughness, elasticity and low density, which reach maximum values compared to other fibre materials. They are superior even compared to Kevlar and steel. These extraordinary properties stem from long length and specific protein structures. Spider silk proteins can consist of more than 20,000 amino acids. Polypeptide stretches account for more than 90% of the whole protein, and these domains can be repeated more than a hundred times. Each repeat unit has a specific function resulting in the final properties of the silk. These properties make them attractive for innovative material development for medical or technical products as well as cosmetics. However, with livestock breeding of spiders it is not possible to reach high volumes of silk due to the cannibalistic behaviour of these animals. In order to obtain spider silk proteins (spidroins) on a large scale, recombinant production is attempted in various expression systems such as plants, bacteria, yeasts, insects, silkworms, mammalian cells and animals. For viable large-scale production, cost-effective and efficient production systems are needed. This review describes the different types of spider silk, their proteins and structures and discusses the production of these difficult-to-express proteins in different host organisms with an emphasis on plant systems.
Collapse
Affiliation(s)
- Maryam Ramezaniaghdam
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS at FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Nadia D. Nahdi
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS at FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| |
Collapse
|