1
|
Wu CH, Nhien PQ, Cuc TTK, Hue BTB, Lin HC. Designs and Applications of Multi-stimuli Responsive FRET Processes in AIEgen-Functionalized and Bi-fluorophoric Supramolecular Materials. Top Curr Chem (Cham) 2022; 381:2. [PMID: 36495421 DOI: 10.1007/s41061-022-00412-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/12/2022] [Indexed: 12/13/2022]
Abstract
Materials capable of displaying strong ratiometric fluorescence with Förster resonance energy transfer (FRET) processes have attracted much research interest because of various chemosensor and biomedical applications. This review highlights several popular strategies in designing FRET-OFF/ON mechanisms of ratiometric fluorescence systems. In particular, the developments of organic and polymeric FRET materials featuring aggregation-induced emission-based luminogens (AIEgens), supramolecular assemblies, photochromic molecular switches and surfactant-induced AIE/FRET mechanisms are presented. AIEgens have been frequently employed as FRET donor and/or acceptor fluorophores to obtain enhanced ratiometric fluorescences in solution and solid states. Since AIE effects and FRET processes rely on controllable distances between fluorophores, many interesting fluorescent properties can be designed by regulating aggregation states in polymers and supramolecular systems. Photo-switchable fluorophores, such as spiropyran and diarylethene, provide drastic changes in fluorescence spectra upon photo-induced isomerizations, leading to photo-switching mechanisms to activate/deactivate FRET processes. Supramolecular assemblies offer versatile platforms to regulate responsive FRET processes effectively. In rotaxane structures, the donor-acceptor distance and FRET efficiency can be tuned by acid/base-controlled shuttling of the macrocycle component. The tunable supramolecular interactions are strongly influenced by external factors (such as pH values, temperatures, analytes, surfactants, UV-visible lights, etc.), which induce the assembly and disassembly of host-guest systems and thus their FRET-ON/FRET-OFF behavior. In addition, the changes in donor or acceptor fluorescence profiles upon detections of analytes can also sufficiently alter the FRET behavior and result in different ratiometric fluorescence outputs. The strategies and examples provided in this review offer the insights and toolkits for future FRET-based material developments.
Collapse
Affiliation(s)
- Chia-Hua Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Pham Quoc Nhien
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, 94000, Viet Nam
| | - Tu Thi Kim Cuc
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Bui Thi Buu Hue
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, 94000, Viet Nam
| | - Hong-Cheu Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.
| |
Collapse
|
2
|
Yoshida Y, Ti Z, Tanabe W, Tomoike F, Hashiya F, Suzuki T, Hirota S, Saiki Y, Horii A, Hirayama A, Soga T, Kimura Y, Abe H. Development of Fluorophosphoramidate as a New Biocompatible Transformable Functional Group and its Application as a Phosphate Prodrug for Nucleoside Analogs. ChemMedChem 2022; 17:e202200188. [PMID: 35393747 DOI: 10.1002/cmdc.202200188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Indexed: 11/12/2022]
Abstract
Synthetic phosphate-derived functional groups are important for controlling the function of bioactive molecules in vivo . Herein we describe the development of a new type of biocompatible phosphate analog, a fluorophosphoramidate (FPA) functional group that has characteristic P-F and P-N bonds. We found that FPA with a primary amino group was relatively unstable in aqueous solution and was converted to a monophosphate, while FPA with a secondary amino group was stable. Furthermore, by improving the molecular design of FPA, we developed a reaction in which a secondary amino group is converted to a primary amino group in the intracellular environment, and clarified that the FPA group functions as a phosphate prodrug of nucleoside. Various FPA-gemcitabine derivatives were synthesized and their anticancer activities were evaluated. One of the FPA-gemcitabine derivatives showed superior anticancer activity compared with gemcitabine and its ProTide prodrug, which methodology is widely used in various nucleoside analogs, including anti-cancer and anti-virus drugs.
Collapse
Affiliation(s)
- Yuki Yoshida
- Nagoya University: Nagoya Daigaku, Graduate School of Science, JAPAN
| | - Zheng Ti
- Nagoya University: Nagoya Daigaku, Graduate School of Science, JAPAN
| | - Wataru Tanabe
- Nagoya University: Nagoya Daigaku, Graduate School of Science, JAPAN
| | - Fumiaki Tomoike
- Gakushuin University: Gakushuin Daigaku, Graduate School of Science, JAPAN
| | - Fumitaka Hashiya
- Nagoya University: Nagoya Daigaku, Research Center for Material Science, JAPAN
| | | | - Shuto Hirota
- Tohoku University: Tohoku Daigaku, School of Medicine, JAPAN
| | - Yuriko Saiki
- Tohoku University: Tohoku Daigaku, School of Medicine, JAPAN
| | - Akira Horii
- Tohoku University: Tohoku Daigaku, School of Medicine, JAPAN
| | - Akiyoshi Hirayama
- Keio University: Keio Gijuku Daigaku, Institute for Biosciences, JAPAN
| | - Tomoyoshi Soga
- Keio University: Keio Gijuku Daigaku, Institute for Advance Biosciences, JAPAN
| | - Yasuaki Kimura
- Nagoya University: Nagoya Daigaku, Graduate School of Science, JAPAN
| | - Hiroshi Abe
- Nagoya University, Department of Chemistry, Graduate School of Science, Furo, Chikusa, 464-8602, Nagoya, JAPAN
| |
Collapse
|
3
|
Zhang Q, Hou X, Liu X, Xie X, Duan L, Lü W, Gao G. Nucleotide-Tackified Organohydrogel Electrolyte for Environmentally Self-Adaptive Flexible Supercapacitor with Robust Electrolyte/Electrode Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103091. [PMID: 34643034 DOI: 10.1002/smll.202103091] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Hydrogel electrolytes have attracted enormous attention in flexible and safe supercapacitors. However, the interfacial contact problem between hydrogel electrolyte and electrodes, and the environmental instability are the key factors restricting the development of hydrogel-based supercapacitors. Here, a nucleotide-tackified adhesive organohydrogel electrolyte is successfully constructed and exhibits freezing resistance and water-holding ability based on the water/glycerol binary solvent system. Adenosine monophosphate enables the organohydrogels to possess outstanding adhesion and mechanical robustness. The robust adhesion can ensure close contact between the organohydrogel electrolyte and electrodes for constructing an all-in-one supercapacitor with low interfacial contact resistance. Impressively, the integrated organohydrogel-based supercapacitors display an areal specific capacitance of 163.6 mF cm-2 . Besides, the supercapacitors feature prominent environmental stability with capacitance retention of 90.6% after 5000 charging/discharging cycles at -20 °C. Furthermore, based on the strong interfacial adhesion, the supercapacitors present excellent electrochemical stability without delamination/displacement between electrolyte and electrodes even under severe deformations such as bending and twisting. It is anticipated that this work will provide an encouraging way for developing flexible energy storage devices with electrochemical stability and environmental adaptability.
Collapse
Affiliation(s)
- Qin Zhang
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - Xulin Hou
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - Xin Liu
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - Xuan Xie
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - Lijie Duan
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - Wei Lü
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| |
Collapse
|
4
|
Ripp A, Singh J, Jessen HJ. Rapid Synthesis of Nucleoside Triphosphates and Analogues. ACTA ACUST UNITED AC 2021; 81:e108. [PMID: 32391982 DOI: 10.1002/cpnc.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nucleoside triphosphates (NTPs) are essential biomolecules involved in almost all biological processes, and their study is therefore critical to understanding cellular biology. Here, we describe a chemical synthesis suitable for obtaining both natural and highly modified NTPs, which can, for example, be used as surrogates to probe biological processes. The approach includes the preparation of a reagent that enables the facile introduction and modification of three phosphate units: cyclic pyrophosphoryl P-amidite (c-PyPA), derived from pyrophosphate (PV ) and a reactive phosphoramidite (PIII ). By using non-hydrolyzable analogues of pyrophosphate, the reagent can be readily modified to obtain a family of non-hydrolyzable analogues containing CH2 , CF2 , CCl2 , and NH that are stable in solution for several weeks if stored appropriately. They enable the synthesis of NTPs by reaction with nucleosides to give deoxycyclotriphosphate esters that are then oxidized to cyclotriphosphate (cyclo-TP) esters. The use of different oxidizing agents provides an opportunity for modification at P-α. Furthermore, terminal modifications at P-γ can be introduced by linearization of the cyclo-TP ester with various nucleophiles. © 2020 The Authors. Basic Protocol 1: Synthesis of cyclic pyrophosphoryl P-amidite (c-PyPA) and derivatives (c-PyNH PA, c-PyCH2 PA, c-PyCCl2 PA, c-PyCF2 PA) Basic Protocol 2: Synthesis of 3'-azidothymidine 5'-γ-P-propargylamido triphosphates and analogues Basic Protocol 3: Synthesis of 2'-deoxythymidine 5'-γ-P-propargylamido triphosphate (15) Basic Protocol 4: Synthesis of adenosine 5'-γ-P-amido triphosphate (19) and adenosine 5'-γ-P-propargylamido triphosphate (20) Basic Protocol 5: Synthesis of d4T 5'-γ-propargylamido β,γ-(difluoromethylene)triphosphate Support Protocol: Synthesis of diisopropylphosphoramidous dichloride.
Collapse
Affiliation(s)
- Alexander Ripp
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany.,Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Jyoti Singh
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany.,Freiburg Research Institute for Advanced Studies, University of Freiburg, Freiburg, Germany.,Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Espinasse A, Lembke HK, Cao AA, Carlson EE. Modified nucleoside triphosphates in bacterial research for in vitro and live-cell applications. RSC Chem Biol 2020; 1:333-351. [PMID: 33928252 PMCID: PMC8081287 DOI: 10.1039/d0cb00078g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Modified nucleoside triphosphates (NTPs) are invaluable tools to probe bacterial enzymatic mechanisms, develop novel genetic material, and engineer drugs and proteins with new functionalities. Although the impact of nucleobase alterations has predominantly been studied due to their importance for protein recognition, sugar and phosphate modifications have also been investigated. However, NTPs are cell impermeable due to their negatively charged phosphate tail, a major hurdle to achieving live bacterial studies. Herein, we review the recent advances made to investigate and evolve bacteria and their processes with the use of modified NTPs by exploring alterations in one of the three moieties: the nucleobase, the sugar and the phosphate tail. We also present the innovative methods that have been devised to internalize NTPs into bacteria for in vivo applications.
Collapse
Affiliation(s)
- Adeline Espinasse
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Hannah K. Lembke
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Angela A. Cao
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Erin E. Carlson
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
- Department of Medicinal Chemistry, University of Minnesota208 Harvard Street SEMinneapolisMinnesota 55454USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota321 Church St SEMinneapolisMinnesota 55454USA
| |
Collapse
|
6
|
Haas TM, Qiu D, Häner M, Angebauer L, Ripp A, Singh J, Koch HG, Jessen-Trefzer C, Jessen HJ. Four Phosphates at One Blow: Access to Pentaphosphorylated Magic Spot Nucleotides and Their Analysis by Capillary Electrophoresis. J Org Chem 2020; 85:14496-14506. [PMID: 32502348 PMCID: PMC7684580 DOI: 10.1021/acs.joc.0c00841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The
complex phosphorylation pattern of natural and modified pentaphosphorylated
magic spot nucleotides is generated in a highly efficient way. A cyclic
pyrophosphoryl phosphoramidite (cPyPA) reagent is used to introduce
four phosphates on nucleosides regioselectively in a one-flask key
transformation. The obtained magic spot nucleotides are used to develop
a capillary electrophoresis UV detection method, enabling nucleotide
assignment in complex bacterial extracts.
Collapse
Affiliation(s)
- Thomas M Haas
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Markus Häner
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Larissa Angebauer
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Alexander Ripp
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Jyoti Singh
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Claudia Jessen-Trefzer
- Institute of Pharmaceutical Biology and Biotechnology, University of Freiburg, 79104 Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany.,CIBSS, Centre for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
7
|
Bezold D, Dürr T, Singh J, Jessen HJ. Cyclotriphosphate: A Brief History, Recent Developments, and Perspectives in Synthesis. Chemistry 2020; 26:2298-2308. [PMID: 31637774 PMCID: PMC7065162 DOI: 10.1002/chem.201904433] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/21/2019] [Indexed: 01/08/2023]
Abstract
There has been a recent upsurge in the study and application of approaches utilizing cyclotriphosphate 1 (cyclo-TP, also known as trimetaphosphate, TMP) and/or proceeding through its analogues in synthetic chemistry to access modified oligo- and polyphosphates. This is especially useful in the area of chemical nucleotide synthesis, but by no means restricted to it. Enabled by new high yielding and easy-to-implement methodologies, these approaches promise to open up an area of research that has previously been underappreciated. Additionally, refinements of concepts of prebiotic phosphorylation chemistry have been disclosed that ultimately rely on cyclo-TP 1 as a precursor, placing it as a potentially central compound in the emergence of life. Given the importance of such concepts for our understanding of prebiotic chemistry in combination with the need to readily access modified polyphosphates for structural and biological studies, this paper will discuss selected recent developments in the field of cyclo-TP chemistry, briefly touch on ultraphosphate chemistry, and highlight areas in which further developments can be expected.
Collapse
Affiliation(s)
- Dominik Bezold
- Institute of Organic ChemistryUniversity of Freiburg79104FreiburgGermany
| | - Tobias Dürr
- Institute of Organic ChemistryUniversity of Freiburg79104FreiburgGermany
| | - Jyoti Singh
- Institute of Organic ChemistryUniversity of Freiburg79104FreiburgGermany
| | - Henning J. Jessen
- Institute of Organic ChemistryUniversity of Freiburg79104FreiburgGermany
- Freiburg Research Institute for Advanced Studies (FRIAS)University of Freiburg79104FreiburgGermany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for, Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| |
Collapse
|
8
|
Singh J, Steck N, De D, Hofer A, Ripp A, Captain I, Keller M, Wender PA, Bhandari R, Jessen HJ. A Phosphoramidite Analogue of Cyclotriphosphate Enables Iterative Polyphosphorylations. Angew Chem Int Ed Engl 2019; 58:3928-3933. [DOI: 10.1002/anie.201814366] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Jyoti Singh
- University of FreiburgInstitute of Organic Chemistry Albertstrasse 21 79104 Freiburg Germany
| | - Nicole Steck
- University of FreiburgInstitute of Organic Chemistry Albertstrasse 21 79104 Freiburg Germany
| | - Debaditya De
- Laboratory of Cell Signaling, CDFD Hyderabad India
| | - Alexandre Hofer
- University of FreiburgInstitute of Organic Chemistry Albertstrasse 21 79104 Freiburg Germany
| | - Alexander Ripp
- University of FreiburgInstitute of Organic Chemistry Albertstrasse 21 79104 Freiburg Germany
| | - Ilya Captain
- University of FreiburgInstitute of Organic Chemistry Albertstrasse 21 79104 Freiburg Germany
| | - Manfred Keller
- University of FreiburgInstitute of Organic Chemistry Albertstrasse 21 79104 Freiburg Germany
| | - Paul A. Wender
- Stanford UniversityChemistry Department 333 Campus Drive Stanford CA 94305-5080 USA
| | | | - Henning J. Jessen
- University of FreiburgInstitute of Organic Chemistry Albertstrasse 21 79104 Freiburg Germany
| |
Collapse
|
9
|
Singh J, Steck N, De D, Hofer A, Ripp A, Captain I, Keller M, Wender PA, Bhandari R, Jessen HJ. A Phosphoramidite Analogue of Cyclotriphosphate Enables Iterative Polyphosphorylations. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jyoti Singh
- University of FreiburgInstitute of Organic Chemistry Albertstrasse 21 79104 Freiburg Germany
| | - Nicole Steck
- University of FreiburgInstitute of Organic Chemistry Albertstrasse 21 79104 Freiburg Germany
| | - Debaditya De
- Laboratory of Cell Signaling, CDFD Hyderabad India
| | - Alexandre Hofer
- University of FreiburgInstitute of Organic Chemistry Albertstrasse 21 79104 Freiburg Germany
| | - Alexander Ripp
- University of FreiburgInstitute of Organic Chemistry Albertstrasse 21 79104 Freiburg Germany
| | - Ilya Captain
- University of FreiburgInstitute of Organic Chemistry Albertstrasse 21 79104 Freiburg Germany
| | - Manfred Keller
- University of FreiburgInstitute of Organic Chemistry Albertstrasse 21 79104 Freiburg Germany
| | - Paul A. Wender
- Stanford UniversityChemistry Department 333 Campus Drive Stanford CA 94305-5080 USA
| | | | - Henning J. Jessen
- University of FreiburgInstitute of Organic Chemistry Albertstrasse 21 79104 Freiburg Germany
| |
Collapse
|
10
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
11
|
Joachimiak Ł, Błażewska KM. Phosphorus-Based Probes as Molecular Tools for Proteome Studies: Recent Advances in Probe Development and Applications. J Med Chem 2018; 61:8536-8562. [DOI: 10.1021/acs.jmedchem.8b00249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Łukasz Joachimiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| | - Katarzyna M. Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| |
Collapse
|
12
|
Piecyk K, Krynska P, Kaluzna J, Jankowska-Anyszka M. Synthesis of the first double-functionalized dinucleotide mRNA cap analogue for its specific labeling. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.06.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|