1
|
Li W, Liu Y, Azam A, Liu Y, Yang J, Wang D, Sorrell CC, Zhao C, Li S. Unlocking Efficiency: Minimizing Energy Loss in Electrocatalysts for Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404658. [PMID: 38923073 DOI: 10.1002/adma.202404658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Catalysts play a crucial role in water electrolysis by reducing the energy barriers for hydrogen and oxygen evolution reactions (HER and OER). Research aims to enhance the intrinsic activities of potential catalysts through material selection, microstructure design, and various engineering techniques. However, the energy consumption of catalysts has often been overlooked due to the intricate interplay among catalyst microstructure, dimensionality, catalyst-electrolyte-gas dynamics, surface chemistry, electron transport within electrodes, and electron transfer among electrode components. Efficient catalyst development for high-current-density applications is essential to meet the increasing demand for green hydrogen. This involves transforming catalysts with high intrinsic activities into electrodes capable of sustaining high current densities. This review focuses on current improvement strategies of mass exchange, charge transfer, and reducing electrode resistance to decrease energy consumption. It aims to bridge the gap between laboratory-developed, highly efficient catalysts and industrial applications regarding catalyst structural design, surface chemistry, and catalyst-electrode interplay, outlining the development roadmap of hierarchically structured electrode-based water electrolysis for minimizing energy loss in electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Wenxian Li
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yang Liu
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ashraful Azam
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yichen Liu
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jack Yang
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Danyang Wang
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Charles Christopher Sorrell
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chuan Zhao
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sean Li
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Králik M, Koóš P, Markovič M, Lopatka P. Organic and Metal-Organic Polymer-Based Catalysts-Enfant Terrible Companions or Good Assistants? Molecules 2024; 29:4623. [PMID: 39407552 PMCID: PMC11477782 DOI: 10.3390/molecules29194623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
This overview provides insights into organic and metal-organic polymer (OMOP) catalysts aimed at processes carried out in the liquid phase. Various types of polymers are discussed, including vinyl (various functional poly(styrene-co-divinylbenzene) and perfluorinated functionalized hydrocarbons, e.g., Nafion), condensation (polyesters, -amides, -anilines, -imides), and additional (polyurethanes, and polyureas, polybenzimidazoles, polyporphyrins), prepared from organometal monomers. Covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and their composites represent a significant class of OMOP catalysts. Following this, the preparation, characterization, and application of dispersed metal catalysts are discussed. Key catalytic processes such as alkylation-used in large-scale applications like the production of alkyl-tert-butyl ether and bisphenol A-as well as reduction, oxidation, and other reactions, are highlighted. The versatile properties of COFs and MOFs, including well-defined nanometer-scale pores, large surface areas, and excellent chemisorption capabilities, make them highly promising for chemical, electrochemical, and photocatalytic applications. Particular emphasis is placed on their potential for CO2 treatment. However, a notable drawback of COF- and MOF-based catalysts is their relatively low stability in both alkaline and acidic environments, as well as their high cost. A special part is devoted to deactivation and the disposal of the used/deactivated catalysts, emphasizing the importance of separating heavy metals from catalysts. The conclusion provides guidance on selecting and developing OMOP-based catalysts.
Collapse
Affiliation(s)
- Milan Králik
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (M.M.); (P.L.)
| | - Peter Koóš
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (M.M.); (P.L.)
| | | | | |
Collapse
|
3
|
Yuan Y, Wu XQ, Yin X, Ruan HY, Wu YP, Li S, Hai G, Zhang G, Sun S, Li DS. Dilute Pd-Ni Alloy through Low-temperature Pyrolysis for Enhanced Electrocatalytic Hydrogen Oxidation. Angew Chem Int Ed Engl 2024:e202412680. [PMID: 39166757 DOI: 10.1002/anie.202412680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Designing highly active and cost-effective electrocatalysts for the alkaline hydrogen oxidation reaction (HOR) is critical for advancing anion-exchange membrane fuel cells (AEMFCs). While dilute metal alloys have demonstrated substantial potential in enhancing alkaline HOR performance, there has been limited exploration in terms of rational design, controllable synthesis, and mechanism study. Herein, we developed a series of dilute Pd-Ni alloys, denoted as x% Pd-Ni, based on a trace-Pd decorated Ni-based coordination polymer through a facile low-temperature pyrolysis approach. The x% Pd-Ni alloys exhibit efficient electrocatalytic activity for HOR in alkaline media. Notably, the optimal 0.5 % Pd-Ni catalyst demonstrates high intrinsic activity with an exchange current density of 0.055 mA cm-2, surpassing that of many other alkaline HOR catalysts. The mechanism study reveals that the strong synergy between Pd single atoms (SAs)/Pd dimer and Ni substrate can modulate the binding strength of proton (H)/hydroxyl (OH), thereby significantly reducing the activation energy barrier of a decisive reaction step. This work offers new insights into designing advanced dilute metal or single-atom-alloys (SAAs) for alkaline HOR and potentially other energy conversion processes.
Collapse
Affiliation(s)
- Yi Yuan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Xue-Qian Wu
- College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, 443002, P. R. China
| | - Xi Yin
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Heng-Yu Ruan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Ya-Pan Wu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Shuang Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Guangtong Hai
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gaixia Zhang
- Department of Electrical Engineering, École de Technologie Supérieure (ÉTS), Montréal, Québec H3C 1K3, Canada
| | - Shuhui Sun
- Institut National de la Recherche Scientifique (INRS), Center Energy, Materials and Telecommunications, Varennes, Québec J3X 1P7, Canada
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| |
Collapse
|
4
|
Lee W, Choung S, Kim S, Hong J, Kim D, Tarpeh WA, Han JW, Cho K. Atomically Dispersed Ru-doped Ti 4O 7 Electrocatalysts for Chlorine Evolution Reaction with a Universal Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401248. [PMID: 38639029 DOI: 10.1002/smll.202401248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Chlorine has been supplied by the chlor-alkali process that deploys dimensionally stable anodes (DSAs) for the electrochemical chlorine evolution reaction (ClER). The paramount bottlenecks have been ascribed to an intensive usage of precious elements and inevitable competition with the oxygen evolution reaction. Herein, a unique case of Ru2+-O4 active motifs anchored on Magnéli Ti4O7 (Ru-Ti4O7) via a straightforward wet impregnation and mild annealing is reported. The Ru-Ti4O7 performs radically active ClER with minimal deployment of Ru (0.13 wt%), both in 5 m NaCl (pH 2.3) and 0.1 m NaCl (pH 6.5) electrolytes. Scanning electrochemical microscopy demonstrates superior ClER selectivity on Ru-Ti4O7 compared to the DSA. Operando X-ray absorption spectroscopy and density functional theory calculations reveal a universally active ClER (over a wide range of pH and [Cl-]), through a direct adsorption of Cl- on Ru2+-O4 sites as the most plausible pathway, together with stabilized ClO* at low [Cl-] and high pH.
Collapse
Affiliation(s)
- Woonghee Lee
- Department of Chemical Engineering, Stanford University, California, 94305, USA
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seokhyun Choung
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seok Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600, Switzerland
| | - Jiyun Hong
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, California, 94025, USA
| | - Doyeon Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - William A Tarpeh
- Department of Chemical Engineering, Stanford University, California, 94305, USA
| | - Jeong Woo Han
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kangwoo Cho
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University International Campus, Incheon, 21983, Republic of Korea
| |
Collapse
|
5
|
Cheng Z, Lian J, Zhang J, Xiang S, Chen B, Zhang Z. Pristine MOF Materials for Separator Application in Lithium-Sulfur Battery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404834. [PMID: 38894547 PMCID: PMC11336918 DOI: 10.1002/advs.202404834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Indexed: 06/21/2024]
Abstract
Lithium-sulfur (Li-S) batteries have attracted significant attention in the realm of electronic energy storage and conversion owing to their remarkable theoretical energy density and cost-effectiveness. However, Li-S batteries continue to face significant challenges, primarily the severe polysulfides shuttle effect and sluggish sulfur redox kinetics, which are inherent obstacles to their practical application. Metal-organic frameworks (MOFs), known for their porous structure, high adsorption capacity, structural flexibility, and easy synthesis, have emerged as ideal materials for separator modification. Efficient polysulfides interception/conversion ability and rapid lithium-ion conduction enabled by MOFs modified layers are demonstrated in Li-S batteries. In this perspective, the objective is to present an overview of recent advancements in utilizing pristine MOF materials as modification layers for separators in Li-S batteries. The mechanisms behind the enhanced electrochemical performance resulting from each design strategy are explained. The viewpoints and crucial challenges requiring resolution are also concluded for pristine MOFs separator in Li-S batteries. Moreover, some promising materials and concepts based on MOFs are proposed to enhance electrochemical performance and investigate polysulfides adsorption/conversion mechanisms. These efforts are expected to contribute to the future advancement of MOFs in advanced Li-S batteries.
Collapse
Affiliation(s)
- Zhibin Cheng
- Fujian Key Laboratory of Polymer MaterialsCollege of Materials Science and EngineeringFujian Normal UniversityFuzhou350007China
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China
| | - Jie Lian
- Fujian Key Laboratory of Polymer MaterialsCollege of Materials Science and EngineeringFujian Normal UniversityFuzhou350007China
| | - Jindan Zhang
- Fujian Key Laboratory of Polymer MaterialsCollege of Materials Science and EngineeringFujian Normal UniversityFuzhou350007China
| | - Shengchang Xiang
- Fujian Key Laboratory of Polymer MaterialsCollege of Materials Science and EngineeringFujian Normal UniversityFuzhou350007China
| | - Banglin Chen
- Fujian Key Laboratory of Polymer MaterialsCollege of Materials Science and EngineeringFujian Normal UniversityFuzhou350007China
| | - Zhangjing Zhang
- Fujian Key Laboratory of Polymer MaterialsCollege of Materials Science and EngineeringFujian Normal UniversityFuzhou350007China
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China
| |
Collapse
|
6
|
Kment Š, Bakandritsos A, Tantis I, Kmentová H, Zuo Y, Henrotte O, Naldoni A, Otyepka M, Varma RS, Zbořil R. Single Atom Catalysts Based on Earth-Abundant Metals for Energy-Related Applications. Chem Rev 2024. [PMID: 38967551 DOI: 10.1021/acs.chemrev.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Anthropogenic activities related to population growth, economic development, technological advances, and changes in lifestyle and climate patterns result in a continuous increase in energy consumption. At the same time, the rare metal elements frequently deployed as catalysts in energy related processes are not only costly in view of their low natural abundance, but their availability is often further limited due to geopolitical reasons. Thus, electrochemical energy storage and conversion with earth-abundant metals, mainly in the form of single-atom catalysts (SACs), are highly relevant and timely technologies. In this review the application of earth-abundant SACs in electrochemical energy storage and electrocatalytic conversion of chemicals to fuels or products with high energy content is discussed. The oxygen reduction reaction is also appraised, which is primarily harnessed in fuel cell technologies and metal-air batteries. The coordination, active sites, and mechanistic aspects of transition metal SACs are analyzed for two-electron and four-electron reaction pathways. Further, the electrochemical water splitting with SACs toward green hydrogen fuel is discussed in terms of not only hydrogen evolution reaction but also oxygen evolution reaction. Similarly, the production of ammonia as a clean fuel via electrocatalytic nitrogen reduction reaction is portrayed, highlighting the potential of earth-abundant single metal species.
Collapse
Affiliation(s)
- Štĕpán Kment
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB - Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB - Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Iosif Tantis
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
| | - Hana Kmentová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
| | - Yunpeng Zuo
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
| | - Olivier Henrotte
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
| | - Alberto Naldoni
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
- Department of Chemistry and NIS Centre, University of Turin, Turin, Italy 10125
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
- IT4Innovations, VŠB - Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB - Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
7
|
Dong F, Liang X, Zhang Z, Yin H, Wang D, Li J, Li Y. Atomic Pt Sites Anchored in the Interface between Grains on Vacancy-Enriched CeO 2 Nanosheets: One-Step Precursor Combustion Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401055. [PMID: 38569116 DOI: 10.1002/adma.202401055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Atomic metal catalysts have unique electronic, structural, and catalytic properties, which are widely used in the field of catalysis. However, designing new simple synthesis methods to fabricate atomic metal catalysts is a challenge in catalytic applications. Herein, a one-step precursor combustion strategy is presented that starts directly from precursors of metal salts, using a spontaneous combustion process convert platinum nitrate to atomic Pt sites. The atomic Pt sites with low valence are anchored in the formed interface between grains on vacancy-enriched CeO2 nanosheets. The obtained Pt/CeO2-2 catalyst exhibits much higher three-way catalytic activities at low temperatures than Pt/CeO2-C catalysts prepared using the traditional impregnation method. Density functional theory calculations show that the generated lower valent Pt atoms in the CeO2 interface promote catalytic activity through reducing the energy barrier, and lead to an overall improvement of three-way catalytic activities. This facile strategy provides new insights into the study of the properties and applications of atomic noble metal catalysts.
Collapse
Affiliation(s)
- Feng Dong
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zedong Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Haibo Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Ren Y, Wang J, Zhang M, Wang Y, Cao Y, Kim DH, Liu Y, Lin Z. Strategies Toward High Selectivity, Activity, and Stability of Single-Atom Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308213. [PMID: 38183335 DOI: 10.1002/smll.202308213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Indexed: 01/08/2024]
Abstract
Single-atom catalysts (SACs) hold immense promise in facilitating the rational use of metal resources and achieving atomic economy due to their exceptional atom-utilization efficiency and distinct characteristics. Despite the growing interest in SACs, only limited reviews have holistically summarized their advancements centering on performance metrics. In this review, first, a thorough overview on the research progress in SACs is presented from a performance perspective and the strategies, advancements, and intriguing approaches employed to enhance the critical attributes in SACs are discussed. Subsequently, a comprehensive summary and critical analysis of the electrochemical applications of SACs are provided, with a particular focus on their efficacy in the oxygen reduction reaction , oxygen evolution reaction, hydrogen evolution reaction , CO2 reduction reaction, and N2 reduction reaction . Finally, the outline future research directions on SACs by concentrating on performance-driven investigation, where potential areas for improvement are identified and promising avenues for further study are highlighted, addressing challenges to unlock the full potential of SACs as high-performance catalysts.
Collapse
Affiliation(s)
- Yujing Ren
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jinyong Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Mingyue Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yuqing Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yuan Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Dong Ha Kim
- Department of Chemistry and NanoScience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Yan Liu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- Department of Chemistry and NanoScience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| |
Collapse
|
9
|
Yu Y, Tan Y, Niu W, Zhao S, Hao J, Shi Y, Dong Y, Liu H, Huang C, Gao C, Zhang P, Wu Y, Zeng L, Du B, He Y. Advances in Synthesis and Applications of Single-Atom Catalysts for Metal Oxide-Based Gas Sensors. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1970. [PMID: 38730776 PMCID: PMC11084526 DOI: 10.3390/ma17091970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Abstract
As a stable, low-cost, environment-friendly, and gas-sensitive material, semiconductor metal oxides have been widely used for gas sensing. In the past few years, single-atom catalysts (SACs) have gained increasing attention in the field of gas sensing with the advantages of maximized atomic utilization and unique electronic and chemical properties and have successfully been applied to enhance the detection sensitivity and selectivity of metal oxide gas sensors. However, the application of SACs in gas sensors is still in its infancy. Herein, we critically review the recent advances and current status of single-atom catalysts in metal oxide gas sensors, providing some suggestions for the development of this field. The synthesis methods and characterization techniques of SAC-modified metal oxides are summarized. The interactions between SACs and metal oxides are crucial for the stable loading of single-atom catalysts and for improving gas-sensitive performance. Then, the current application progress of various SACs (Au, Pt, Cu, Ni, etc.) in metal oxide gas sensors is introduced. Finally, the challenges and perspectives of SACs in metal oxide gas sensors are presented.
Collapse
Affiliation(s)
- Yuanting Yu
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Yiling Tan
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Wen Niu
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Shili Zhao
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Jiongyue Hao
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Yijie Shi
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Yingchun Dong
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Hangyu Liu
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Chun Huang
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Chao Gao
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Peng Zhang
- Chongqing Key Laboratory of Toxic and Drug Analysis, Chongqing Police College, Chongqing 401331, China; (P.Z.); (Y.W.)
| | - Yuhong Wu
- Chongqing Key Laboratory of Toxic and Drug Analysis, Chongqing Police College, Chongqing 401331, China; (P.Z.); (Y.W.)
| | - Linggao Zeng
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China;
| | - Bingsheng Du
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing 400054, China
| | - Yong He
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| |
Collapse
|
10
|
Bols ML, Ma J, Rammal F, Plessers D, Wu X, Navarro-Jaén S, Heyer AJ, Sels BF, Solomon EI, Schoonheydt RA. In Situ UV-Vis-NIR Absorption Spectroscopy and Catalysis. Chem Rev 2024; 124:2352-2418. [PMID: 38408190 DOI: 10.1021/acs.chemrev.3c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
This review highlights in situ UV-vis-NIR range absorption spectroscopy in catalysis. A variety of experimental techniques identifying reaction mechanisms, kinetics, and structural properties are discussed. Stopped flow techniques, use of laser pulses, and use of experimental perturbations are demonstrated for in situ studies of enzymatic, homogeneous, heterogeneous, and photocatalysis. They access different time scales and are applicable to different reaction systems and catalyst types. In photocatalysis, femto- and nanosecond resolved measurements through transient absorption are discussed for tracking excited states. UV-vis-NIR absorption spectroscopies for structural characterization are demonstrated especially for Cu and Fe exchanged zeolites and metalloenzymes. This requires combining different spectroscopies. Combining magnetic circular dichroism and resonance Raman spectroscopy is especially powerful. A multitude of phenomena can be tracked on transition metal catalysts on various supports, including changes in oxidation state, adsorptions, reactions, support interactions, surface plasmon resonances, and band gaps. Measurements of oxidation states, oxygen vacancies, and band gaps are shown on heterogeneous catalysts, especially for electrocatalysis. UV-vis-NIR absorption is burdened by broad absorption bands. Advanced analysis techniques enable the tracking of coking reactions on acid zeolites despite convoluted spectra. The value of UV-vis-NIR absorption spectroscopy to catalyst characterization and mechanistic investigation is clear but could be expanded.
Collapse
Affiliation(s)
- Max L Bols
- Laboratory for Chemical Technology (LCT), University of Ghent, Technologiepark Zwijnaarde 125, 9052 Ghent, Belgium
| | - Jing Ma
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Fatima Rammal
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Dieter Plessers
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Xuejiao Wu
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Sara Navarro-Jaén
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Alexander J Heyer
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Bert F Sels
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Robert A Schoonheydt
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
11
|
Wang Z, Zeng Y, Deng J, Wang Z, Guo Z, Yang Y, Xu X, Song B, Zeng G, Zhou C. Preparation and Application of Single-Atom Cobalt Catalysts in Organic Synthesis and Environmental Remediation. SMALL METHODS 2024; 8:e2301363. [PMID: 38010986 DOI: 10.1002/smtd.202301363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/04/2023] [Indexed: 11/29/2023]
Abstract
The development of high-performance catalysts plays a crucial role in facilitating chemical production and reducing environmental contamination. Single-atom catalysts (SACs), a class of catalysts that bridge the gap between homogeneous and heterogeneous catalysis, have garnered increasing attention because of their unique activity, selectivity, and stability in many pivotal reactions. Meanwhile, the scarcity of precious metal SACs calls for the arrival of cost-effective SACs. Cobalt, as a common non-noble metal, possesses tremendous potential in the field of single-atom catalysis. Despite their potential, reviews about single-atom Co catalysts (Co-SACs) are lacking. Accordingly, this review thoroughly summarized various preparation methodologies of Co-SACs, particularly pyrolysis; its application in the specific domain of organic synthesis and environmental remediation is discussed as well. The structure-activity relationship and potential catalytic mechanism of Co-SACs are elucidated through some representative reactions. The imminent challenges and development prospects of Co-SACs are discussed in detail. The findings and insights provided herein can guide further exploration and development in this charming area of catalyst design, leading to the realization of efficient and sustainable catalytic processes.
Collapse
Affiliation(s)
- Zihao Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Yuxi Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Jie Deng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Ziwei Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Zicong Guo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Yang Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Biao Song
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Chengyun Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
- Jiangxi Province Key Laboratory of Drinking Water Safety, Nanchang, Jiangxi Province, 330013, P. R. China
| |
Collapse
|
12
|
Zhao X, Li WP, Cao Y, Portniagin A, Tang B, Wang S, Liu Q, Yu DYW, Zhong X, Zheng X, Rogach AL. Dual-Atom Co/Ni Electrocatalyst Anchored at the Surface-Modified Ti 3C 2T x MXene Enables Efficient Hydrogen and Oxygen Evolution Reactions. ACS NANO 2024; 18:4256-4268. [PMID: 38265044 DOI: 10.1021/acsnano.3c09639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Dual-atom catalytic sites on conductive substrates offer a promising opportunity for accelerating the kinetics of multistep hydrogen and oxygen evolution reactions (HER and OER, respectively). Using MXenes as substrates is a promising strategy for depositing those dual-atom electrocatalysts, if the efficient surface anchoring strategy ensuring metal-substrate interactions and sufficient mass loading is established. We introduce a surface-modification strategy of MXene substrates by preadsorbing L-tryptophan molecules, which enabled attachment of dual-atom Co/Ni electrocatalyst at the surface of Ti3C2Tx by forming N-Co/Ni-O bonds, with mass loading reaching as high as 5.6 wt %. The electron delocalization resulting from terminated O atoms on MXene substrates, N atoms in L-tryptophan anchoring moieties, and catalytic metal atoms Co and Ni provides an optimal adsorption strength of intermediates and boosts the HER and OER kinetics, thereby notably promoting the intrinsic activity of the electrocatalyst. CoNi-Ti3C2Tx electrocatalyst displayed HER and OER overpotentials of 31 and 241 mV at 10 mA cm-2, respectively. Importantly, the CoNi-Ti3C2Tx electrocatalyst also exhibited high operational stability for both OER and HER over 100 h at an industrially relevant current density of 500 mA cm-2. Our study provided guidance for constructing dual-atom active metal sites on MXene substrates to synergistically enhance the electrochemical efficiency and stability of the energy conversion and storage systems.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Wan-Peng Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Yanhui Cao
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Arsenii Portniagin
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Bing Tang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Shixun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Qi Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Denis Y W Yu
- Research Center for Energy and Environmental Materials (GREEN), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Xiaoyan Zhong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Xuerong Zheng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
- Key Laboratory of Pico Electron Microscopy of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, P.R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| |
Collapse
|
13
|
Wang Z, Deng D, Wang H, Wu S, Zhu L, Xu L, Li H. Engineering Mn-N x sites on porous carbon via molecular assembly strategy for long-life zinc-air batteries. J Colloid Interface Sci 2024; 653:1348-1357. [PMID: 37801845 DOI: 10.1016/j.jcis.2023.09.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/03/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
Nitrogen-coordinated manganese atoms on carbon materials denoted as MnNC, serve as the highly active non-precious metal electrocatalysts for oxygen reduction reaction (ORR) in zinc-air batteries (ZABs). Nonetheless, a significant challenge arises from the tendency of Mn atoms to aggregate during heat treatment, thereby compromising ORR performance in ZABs. In this work, the molecular assembly strategy based on the hydrogen bond interaction was employed to fabricate the MnNC electrocatalyst. This approach promotes the dispersion of Mn atoms, creating abundant Mn-Nx active sites. Furthermore, the resulting three-dimensional porous nanostructure, formed by molecular assembly, significantly enhances accessibility to the Mn-Nx active sites. The porous nanostructure not only shortens the diffusion path of reactants and charges but also improves mass transfer. The MnNC exhibits impressive ORR catalytic performance with a half-wave potential of 0.90 V (vs. RHE). The liquid-type ZAB based on MnNC displays a high specific capacity of 816.6 mAh/g and an extended charge-discharge cycle life of 1000 h. Quasi-solid-state ZAB based on MnNC can operate stably for 24 h. This work presents an effective strategy to synthesize transition metal-nitrogen-carbon (MNC) electrocatalysts tailored for long-life zinc-air battery.
Collapse
Affiliation(s)
- Zehui Wang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu Province and Education Ministry Co-Sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Jiangsu University, Zhenjiang 212013, China
| | - Daijie Deng
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu Province and Education Ministry Co-Sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Jiangsu University, Zhenjiang 212013, China
| | - Huan Wang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu Province and Education Ministry Co-Sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Jiangsu University, Zhenjiang 212013, China
| | - Suqin Wu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu Province and Education Ministry Co-Sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Jiangsu University, Zhenjiang 212013, China
| | - Linhua Zhu
- College of Chemistry and Chemical Engineering, Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Hainan Normal University, Haikou 571158, China
| | - Li Xu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu Province and Education Ministry Co-Sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Jiangsu University, Zhenjiang 212013, China.
| | - Henan Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu Province and Education Ministry Co-Sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
14
|
Xiao Y, Hu S, Miao Y, Gong F, Chen J, Wu M, Liu W, Chen S. Recent Progress in Hot Spot Regulated Strategies for Catalysts Applied in Li-CO 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305009. [PMID: 37641184 DOI: 10.1002/smll.202305009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/23/2023] [Indexed: 08/31/2023]
Abstract
As a high energy density power system, lithium-carbon dioxide (Li-CO2 ) batteries play an important role in addressing the fossil fuel crisis issues and alleviating the greenhouse effect. However, the sluggish transformation kinetic of CO2 and the difficult decomposition of discharge products impede the achievement of large capacity, small overpotential, and long life span of the batteries, which require exploring efficient catalysts to resolve these problems. In this review, the main focus is on the hot spot regulation strategies of the catalysts, which include the modulation of the active sites, the designing of microstructure, and the construction of composition. The recent progress of promising catalysis with hot spot regulated strategies is systematically addressed. Critical challenges are also presented and perspectives to provide useful guidance for the rational design of highly efficient catalysts for practical advanced Li-CO2 batteries are proposed.
Collapse
Affiliation(s)
- Ying Xiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shilin Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yue Miao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fenglian Gong
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jun Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Mingxuan Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shimou Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
15
|
Vennapoosa CS, Varangane S, Abraham BM, Bhasin V, Bhattacharyya S, Wang X, Pal U, Chatterjee D. Single-Atom Ru Catalyst-Decorated CNF(ZnO) Nanocages for Efficient H 2 Evolution and CH 3OH Production. J Phys Chem Lett 2023; 14:11400-11411. [PMID: 38079360 DOI: 10.1021/acs.jpclett.3c02347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The presence of transition-metal single-atom catalysts effectively enhances the interaction between the substrate and reactant molecules, thus exhibiting extraordinary catalytic performance. In this work, we for the first time report a facile synthetic procedure for placing highly dispersed Ru single atoms on stable CNF(ZnO) nanocages. We unravel the atomistic nature of the Ru single atoms in CNF(ZnO)/Ru systems using advanced HAADF-STEM, HRTEM, and XANES analytical methods. Density functional theory calculations further support the presence of ruthenium single-atom sites in the CNF(ZnO)/Ru system. Our work further demonstrates the excellent photocatalytic ability of the CNF(ZnO)/Ru system with respect to H2 production (5.8 mmol g-1 h-1) and reduction of CO2 to CH3OH [249 μmol (g of catalyst)-1] with apparent quantum efficiencies of 3.8% and 1.4% for H2 and CH3OH generation, respectively. Our studies unambiguously demonstrate the presence of atomically dispersed ruthenium sites in CNF(ZnO)/Ru catalysts, which greatly enhance charge transfer, thus facilitating the aforementioned photocatalytic redox reactions.
Collapse
Affiliation(s)
- Chandra Shobha Vennapoosa
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sagar Varangane
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - B Moses Abraham
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Vidha Bhasin
- Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | - Xuefeng Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ujjwal Pal
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Debabrata Chatterjee
- Vice-Chancellor's Research Group, Zoology Department, University of Burdwan, Burdwan 713104, India
| |
Collapse
|
16
|
Zhang L, Jin N, Yang Y, Miao XY, Wang H, Luo J, Han L. Advances on Axial Coordination Design of Single-Atom Catalysts for Energy Electrocatalysis: A Review. NANO-MICRO LETTERS 2023; 15:228. [PMID: 37831204 PMCID: PMC10575848 DOI: 10.1007/s40820-023-01196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/28/2023] [Indexed: 10/14/2023]
Abstract
Single-atom catalysts (SACs) have garnered increasingly growing attention in renewable energy scenarios, especially in electrocatalysis due to their unique high efficiency of atom utilization and flexible electronic structure adjustability. The intensive efforts towards the rational design and synthesis of SACs with versatile local configurations have significantly accelerated the development of efficient and sustainable electrocatalysts for a wide range of electrochemical applications. As an emergent coordination avenue, intentionally breaking the planar symmetry of SACs by adding ligands in the axial direction of metal single atoms offers a novel approach for the tuning of both geometric and electronic structures, thereby enhancing electrocatalytic performance at active sites. In this review, we briefly outline the burgeoning research topic of axially coordinated SACs and provide a comprehensive summary of the recent advances in their synthetic strategies and electrocatalytic applications. Besides, the challenges and outlooks in this research field have also been emphasized. The present review provides an in-depth and comprehensive understanding of the axial coordination design of SACs, which could bring new perspectives and solutions for fine regulation of the electronic structures of SACs catering to high-performing energy electrocatalysis.
Collapse
Affiliation(s)
- Linjie Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Na Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, People's Republic of China
| | - Yibing Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Xiao-Yong Miao
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Hua Wang
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China.
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
17
|
Wei K, Pan K, Qu G, Zhou J. Customization from Single to Dual Atomic Sites for Efficient Electrocatalytic CO 2 Reduction to Value-added Chemicals. Chem Asian J 2023; 18:e202300498. [PMID: 37401141 DOI: 10.1002/asia.202300498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
In recent years, single-atom catalysts (SACs) have received increasing attention in the field of electrochemical CO2 RR with their efficient atom utilization efficiency and excellent catalytic performance. However, their low metal loading and the presence of linear relationships for single active sites with simple structures possibly restrict their activity and practical applications. Active site tailoring at the atomic level is a visionary approach to break the existing limitations of SACs. This paper first briefly introduces the synthesis strategies of SACs and DACs. Then, combining previous experimental and theoretical studies, this paper introduces four optimization strategies, namely spin-state tuning engineering, axial functionalization engineering, ligand engineering, and substrate tuning engineering, for improving the catalytic performance of SACs in the electrochemical CO2 RR process by combining previous experimental and theoretical studies. Then it is introduced that DACs exhibit significant advantages over SACs in increasing metal atom loading, promoting the adsorption and activation of CO2 molecules, modulating intermediate adsorption, and promoting C-C coupling. At the end of this paper, we briefly and succinctly summarize the main challenges and application prospects of SACs and DACs in the field of electrochemical CO2 RR at present.
Collapse
Affiliation(s)
- Kunling Wei
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, 650500, China
| | - Keheng Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, 650500, China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, 650500, China
| | - Junhong Zhou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, 650500, China
| |
Collapse
|
18
|
Saptal VB, Ruta V, Bajada MA, Vilé G. Single-Atom Catalysis in Organic Synthesis. Angew Chem Int Ed Engl 2023; 62:e202219306. [PMID: 36918356 DOI: 10.1002/anie.202219306] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/16/2023]
Abstract
Single-atom catalysts hold the potential to significantly impact the chemical sector, pushing the boundaries of catalysis in new, uncharted directions. These materials, featuring isolated metal species ligated on solid supports, can exist in many coordination environments, all of which have shown important functions in specific transformations. Their emergence has also provided exciting opportunities for mimicking metalloenzymes and bridging the gap between homogeneous and heterogeneous catalysis. This Review outlines the impressive progress made in recent years regarding the use of single-atom catalysts in organic synthesis. We also illustrate potential knowledge gaps in the search for more sustainable, earth-abundant single-atom catalysts for synthetic applications.
Collapse
Affiliation(s)
- Vitthal B Saptal
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Vincenzo Ruta
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Mark A Bajada
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Gianvito Vilé
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| |
Collapse
|
19
|
Pei Z, Zhang H, Wu ZP, Lu XF, Luan D, Lou XWD. Atomically dispersed Ni activates adjacent Ce sites for enhanced electrocatalytic oxygen evolution activity. SCIENCE ADVANCES 2023; 9:eadh1320. [PMID: 37379398 DOI: 10.1126/sciadv.adh1320] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Manipulating the intrinsic activity of heterogeneous catalysts at the atomic level is an effective strategy to improve the electrocatalytic performances but remains challenging. Here, atomically dispersed Ni anchored on CeO2 particles entrenched on peanut-shaped hollow nitrogen-doped carbon structures (a-Ni/CeO2@NC) is rationally designed and synthesized. The as-prepared a-Ni/CeO2@NC catalyst exhibits substantially boosted intrinsic activity and greatly reduced overpotential for the electrocatalytic oxygen evolution reaction. Experimental and theoretical results demonstrate that the decoration of isolated Ni species over the CeO2 induces electronic coupling and redistribution, thus resulting in the activation of the adjacent Ce sites around Ni atoms and greatly accelerated oxygen evolution kinetics. This work provides a promising strategy to explore the electronic regulation and intrinsic activity improvement at the atomic level, thereby improving the electrocatalytic activity.
Collapse
Affiliation(s)
- Zhihao Pei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Huabin Zhang
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Zhi-Peng Wu
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xue Feng Lu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Deyan Luan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong, China
| |
Collapse
|
20
|
Jiang Y, Mao K, Li J, Duan D, Li J, Wang X, Zhong Y, Zhang C, Liu H, Gong W, Long R, Xiong Y. Pushing the Performance Limit of Cu/CeO 2 Catalyst in CO 2 Electroreduction: A Cluster Model Study for Loading Single Atoms. ACS NANO 2023; 17:2620-2628. [PMID: 36715316 DOI: 10.1021/acsnano.2c10534] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pushing the performance limit of catalysts is a major goal of CO2 electroreduction toward practical application. A single-atom catalyst is recognized as a solution for achieving this goal, which is, however, a double-edged sword considering the limited loading amount and stability of single-atom sites. To overcome the limit, the loading of single atoms on supports should be well addressed, requiring a suitable model system. Herein, we report the model system of an ultrasmall CeO2 cluster (2.4 nm) with an atomic precise structure and a high surface-to-volume ratio for loading Cu single atoms. The combination of multiple characterizations and theoretical calculations reveals the loading location and limit of Cu single atoms on CeO2 clusters, determining an optimal configuration for CO2 electroreduction. The optimal catalyst achieves a maximum Faradaic efficiency (FE) of 67% and a maximum partial current density of -364 mA/cm2 for CH4, and can maintain high CH4 FE values over 50% in a wide range of applied current densities (-50 ∼ -600 mA/cm2), exceeding those of the reported catalysts.
Collapse
Affiliation(s)
- Yawen Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui230031, China
| | - Keke Mao
- School of Energy and Environment Science, Anhui University of Technology, Maanshan, Anhui243032, China
| | - Jiawei Li
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Delong Duan
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Jiayi Li
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Xinyu Wang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Yuan Zhong
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Chao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Hengjie Liu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Wanbing Gong
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Ran Long
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui230031, China
| |
Collapse
|
21
|
Wang S, Ding T, Liu T, Zhu Y, Tao Z, Pang B, Liu X, Luo Q, Sun M, Sheng H, Zhu M, Yao T. Ligand Assisted Thermal Atomization of Palladium Clusters: An Inspiring Approach for the Rational Design of Atomically Dispersed Metal Catalysts. Angew Chem Int Ed Engl 2023; 62:e202218630. [PMID: 36732313 DOI: 10.1002/anie.202218630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
The transformation from metal nanocluster catalysts to metal single-atom catalysts is an important procedure in the rational design of atomically dispersed metal catalysts (ADCs). However, the conversion methods often involve high annealing temperature as well as reducing atmosphere. Herein, we reported a continuous and convenient approach to transfer Pd nanocluster into Pd single-atom in a ligand assisted annealing procedure, by which means we reduced its activating temperature low to 400 °C. Using ex-situ microscopy and spectroscopy, we comprehensively monitored the structural evolution of Pd species though the whole atomization process. Theoretical calculation revealed that the structural instability caused by remaining Cl ligands was the main reason for this low-temperature transformation. The present atomization strategy and mechanistic knowledge for the conversion from cluster to atomic dispersion provides guidelines for the rational design of ADCs.
Collapse
Affiliation(s)
- Sicong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Tao Ding
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Tong Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Yanan Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University), Ministry of Education, Hefei, 230601 (P .R., China
| | - Zhinan Tao
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University), Ministry of Education, Hefei, 230601 (P .R., China
| | - Beibei Pang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Mei Sun
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongting Sheng
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University), Ministry of Education, Hefei, 230601 (P .R., China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University), Ministry of Education, Hefei, 230601 (P .R., China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| |
Collapse
|
22
|
Liu Y, Zhang S, Jiao C, Chen H, Wang G, Wu W, Zhuo Z, Mao J. Axial Phosphate Coordination in Co Single Atoms Boosts Electrochemical Oxygen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206107. [PMID: 36494096 PMCID: PMC9929106 DOI: 10.1002/advs.202206107] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/21/2022] [Indexed: 05/27/2023]
Abstract
Cobalt single atoms coordinated with planar four nitrogen atoms (Co1 N4 ) represent an efficient electrocatalyst for oxygen evolution reaction (OER), whereas the large energy barrier of CoOH dehydrogenation limits the OER activity. Herein, axial phosphate (PO4 ) coordination is incorporated in Co1 N4 single atoms of cobalt phthalocyanine@carbon nanotubes (P-CoPc@CNT), so as to boost the intrinsic OER performance through manipulating the reaction pathway. With a relative low mass loading of Co (2.7%), the P-CoPc@CNT shows remarkable alkaline OER activity with the overpotential of 300 mV and Tafel slope of 41.7 mV dec-1 , which dramatically outperforms the CoPc@CNT without axial PO4 coordination. Based on mechanistic analysis, the axial PO4 coordination directly participates in the OER cycle by the transformation of axial ligand. Specially, the CoOH dehydrogenation process is replaced by the dehydrogenation of HPO4 -Co1 N4 intermediate, which largely decreases the energy barrier and thus benefits the whole OER process.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Functional Molecular SolidsMinistry of EducationCollege of Chemistry and Materials ScienceAnhui Normal UniversityWuhu241002P. R. China
| | - Shuangshuang Zhang
- Key Laboratory of Functional Molecular SolidsMinistry of EducationCollege of Chemistry and Materials ScienceAnhui Normal UniversityWuhu241002P. R. China
| | - Chi Jiao
- Key Laboratory of Functional Molecular SolidsMinistry of EducationCollege of Chemistry and Materials ScienceAnhui Normal UniversityWuhu241002P. R. China
| | - Huimei Chen
- Key Laboratory of Functional Molecular SolidsMinistry of EducationCollege of Chemistry and Materials ScienceAnhui Normal UniversityWuhu241002P. R. China
| | - Gang Wang
- Key Laboratory of Functional Molecular SolidsMinistry of EducationCollege of Chemistry and Materials ScienceAnhui Normal UniversityWuhu241002P. R. China
| | - Wenjie Wu
- Institute of ChemistryChinese Academy of Sciences (CAS)Beijing100190P. R. China
| | - Zhiwen Zhuo
- Key Laboratory of Functional Molecular SolidsMinistry of EducationCollege of Chemistry and Materials ScienceAnhui Normal UniversityWuhu241002P. R. China
| | - Junjie Mao
- Key Laboratory of Functional Molecular SolidsMinistry of EducationCollege of Chemistry and Materials ScienceAnhui Normal UniversityWuhu241002P. R. China
| |
Collapse
|