1
|
Bizualem YD, Nurie AG, Nadew TT. A review on biodiesel micromixers: Types of micromixers, configurations, and flow patterns. Heliyon 2024; 10:e34790. [PMID: 39144977 PMCID: PMC11320477 DOI: 10.1016/j.heliyon.2024.e34790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/27/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
The production of biodiesel conventionally relies on batch reactors for the transesterification of oil and alcohol. However, the inherent limitations of batch-wise biodiesel production, including biphasic oil and alcohol, the establishment of equilibrium during transesterification, and heightened manufacturing costs, underscore the need for intensifying biodiesel synthesis. The integration of microreactors and micromixers presents a promising avenue to achieve these objectives, driving significant interest in the development of continuous biodiesel synthesis within microreactor systems. Continuous microreactors, empowered by micromixers, offer key advantages such as a heightened interfacial area between immiscible reactants and phases, as well as reduced mass transfer resistance, culminating in elevated biodiesel yields. Consequently, the micromixer emerges as a pivotal component in microreactor systems. This review delves into the pivotal role of micromixers in biodiesel production within microreactors, shedding light on micromixer types, channel configurations, reactor dimensions, mixing indices, and the influence of co-solvents in micromixers. The efficiency of various micromixer types is meticulously analyzed using a mixing index and yield of oil. Furthermore, the review addresses the challenges inherent in biodiesel production when employing micromixers and microreactors.
Collapse
Affiliation(s)
- Yonas Desta Bizualem
- Department of Chemical Engineering, Kombolcha Institute of Technology, Wollo University, P.O. Box: 208, Kombolcha, Ethiopia
| | - Amare Gashu Nurie
- Department of Chemical Engineering, Kombolcha Institute of Technology, Wollo University, P.O. Box: 208, Kombolcha, Ethiopia
| | - Talbachew Tadesse Nadew
- Department of Chemical and Food Engineering, Kombolcha Institute of Technology, Wollo University, P.O. Box: 208, Kombolcha, Ethiopia
| |
Collapse
|
2
|
Saito Y, Kobayashi S. Continuous-Flow Enantioselective Hydroacylations under Heterogeneous Chiral Rhodium Catalysts. Angew Chem Int Ed Engl 2024; 63:e202313778. [PMID: 37991463 DOI: 10.1002/anie.202313778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Indexed: 11/23/2023]
Abstract
Transition metal-catalyzed enantioselective C-H bond functionalizations have become efficient methods for the synthesis of complex optically active molecules. Heterogeneous catalysts for this chemistry remain largely unexplored despite the advantages they offer in terms of ease of separation and reuse of catalysts. Herein, we report the development of heterogeneous chiral Rh catalysts for continuous-flow enantioselective hydroacylations. Heterogeneous catalysts could be prepared simply by mixing supports and Rh complexes. The prepared catalysts exhibited excellent activity and enantioselectivity affording optically active ketones in quantitative yields with 99 % ee's. Under the optimized reaction conditions, a turnover number >300 was achieved without the leaching of Rh species. The catalysts exhibited a wide substrate scope and in sequential-flow reactions with other heterogeneous catalysts, the syntheses of biologically active molecules and functional materials were demonstrated.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shū Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
3
|
Murtaza A, Ulhaq Z, Shirinfar B, Rani S, Aslam S, Martins GM, Ahmed N. Arenes and Heteroarenes C-H Functionalization Under Enabling Conditions: Electrochemistry, Photoelectrochemistry & Flow Technology. CHEM REC 2023; 23:e202300119. [PMID: 37255348 DOI: 10.1002/tcr.202300119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Indexed: 06/01/2023]
Abstract
C-H bond functionalization generates molecular complexity in single-step transformation. However, the activation of C-H bonds requires expensive metals or stoichiometric amounts of oxidizing/reducing species. In many cases, they often require pre-functionalization of starting molecules. Such pre-activating measures cause waste generation and their separation from the final product is also troublesome. In such a scenario, reactions activating elements generating from renewable energy resources such as electricity and light would be more efficient, green, and cost-effective. Further, incorporation of growing flow technology in chemical transformation processes will accelerate the safer accesses of valuable products. Arenes & heteroarenes are ubiquitous in pharmaceuticals, natural products, medicinal compounds, and other biologically important molecules. Herein, we discussed enabling tools and technologies used for the recent C-H bonds functionalization of arenes and heteroarenes.
Collapse
Affiliation(s)
- Ayesha Murtaza
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Zia Ulhaq
- Chemical Engineering Department, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Bahareh Shirinfar
- Department of Chemistry, University of Bath, BA2 7AY, Bath, United Kingdom
- West Herts College, Hertfordshire, Watford, WD17 3EZ, London, United Kingdom
| | - Sadia Rani
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Samina Aslam
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Guilherme M Martins
- Department of Chemistry, Federal University of Sao Carlos - UFS Car, 13565-905, São Carlos -SP, Brazil
- School of Chemistry, Cardiff University, Main Building Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building Park Place, Cardiff, CF10 3AT, United Kingdom
- Centre for Chemical and Biological Sciences, HEJ Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
4
|
Nikl J, Hofman K, Mossazghi S, Möller IC, Mondeshki D, Weinelt F, Baumann FE, Waldvogel SR. Electrochemical oxo-functionalization of cyclic alkanes and alkenes using nitrate and oxygen. Nat Commun 2023; 14:4565. [PMID: 37507379 PMCID: PMC10382549 DOI: 10.1038/s41467-023-40259-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Direct functionalization of C(sp3)-H bonds allows rapid access to valuable products, starting from simple petrochemicals. However, the chemical transformation of non-activated methylene groups remains challenging for organic synthesis. Here, we report a general electrochemical method for the oxidation of C(sp3)-H and C(sp2)-H bonds, in which cyclic alkanes and (cyclic) olefins are converted into cycloaliphatic ketones as well as aliphatic (di)carboxylic acids. This resource-friendly method is based on nitrate salts in a dual role as anodic mediator and supporting electrolyte, which can be recovered and recycled. Reducing molecular oxygen as a cathodic counter reaction leads to efficient convergent use of both electrode reactions. By avoiding transition metals and chemical oxidizers, this protocol represents a sustainable oxo-functionalization method, leading to a valuable contribution for the sustainable conversion of petrochemical feedstocks into synthetically usable fine chemicals and commodities.
Collapse
Affiliation(s)
- Joachim Nikl
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Kamil Hofman
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Samuel Mossazghi
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Isabel C Möller
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Daniel Mondeshki
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Frank Weinelt
- Evonik Operations GmbH, Paul-Baumann-Strasse 1, 45772, Marl, Germany
| | | | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.
| |
Collapse
|
5
|
Ali W, Saha A, Ge H, Maiti D. Photoinduced meta-Selective C-H Oxygenation of Arenes. JACS AU 2023; 3:1790-1799. [PMID: 37388693 PMCID: PMC10301684 DOI: 10.1021/jacsau.3c00231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023]
Abstract
The merger of photocatalysis and transition-metal catalysis has recently emerged as an adaptable platform for the development of innovative and environmentally benign synthetic methodologies. In contrast to classical transformation by Pd complexes, photoredox Pd catalysis operates through a radical pathway in the absence of a radical initiator. Using the synergistic merger of photoredox and Pd catalysis, we have developed a highly efficient, regioselective, and general meta-oxygenation protocol for diverse arenes under mild reaction conditions. The protocol showcases the meta-oxygenation of phenylacetic acids and biphenyl carboxylic acids/alcohols and is also amenable for a series of sulfonyls and phosphonyl-tethered arenes, irrespective of the nature and position of the substituents. Unlike thermal C-H acetoxylation which operates through the PdII/PdIV catalytic cycle, this metallaphotocatalytic C-H activation involves PdII/PdIII/PdIV intermediacy. The radical nature of the protocol is established through radical quenching experiments and EPR analysis of the reaction mixture. Furthermore, the catalytic path of this photoinduced transformation is established through control reactions, absorption spectroscopy, luminescence quenching, and kinetic studies.
Collapse
Affiliation(s)
- Wajid Ali
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| | - Argha Saha
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| | - Haibo Ge
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409-1061, United States
| | - Debabrata Maiti
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
6
|
Kinkutu GK, Louis C, Roy M, Blanchard J, Oble J. C3-Alkylation of furfural derivatives by continuous flow homogeneous catalysis. Beilstein J Org Chem 2023; 19:582-592. [PMID: 37180458 PMCID: PMC10167860 DOI: 10.3762/bjoc.19.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
The C3-functionalization of furfural using homogeneous ruthenium catalysts requires the preinstallation of an ortho-directing imine group, as well as high temperatures, which did not allow scaling up, at least under batch conditions. In order to design a safer process, we set out to develop a continuous flow process specifically for the C3-alkylation of furfural (Murai reaction). The transposition of a batch process to a continuous flow process is often costly in terms of time and reagents. Therefore, we chose to proceed in two steps: the reaction conditions were first optimized using a laboratory-built pulsed-flow system to save reagents. The optimized conditions in this pulsed-flow mode were then successfully transferred to a continuous flow reactor. In addition, the versatility of this continuous flow device allowed both steps of the reaction to be carried out, namely the formation of the imine directing group and the C3-functionalization with some vinylsilanes and norbonene.
Collapse
Affiliation(s)
- Grédy Kiala Kinkutu
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM UMR 8232, F-75005 Paris, France
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS UMR 7197, F-75005 Paris, France
| | - Catherine Louis
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS UMR 7197, F-75005 Paris, France
| | - Myriam Roy
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM UMR 8232, F-75005 Paris, France
| | - Juliette Blanchard
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS UMR 7197, F-75005 Paris, France
| | - Julie Oble
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM UMR 8232, F-75005 Paris, France
| |
Collapse
|
7
|
Das M, Zamani L, Bratcher C, Musacchio PZ. Azolation of Benzylic C-H Bonds via Photoredox-Catalyzed Carbocation Generation. J Am Chem Soc 2023; 145:10.1021/jacs.2c12850. [PMID: 36757817 PMCID: PMC10409882 DOI: 10.1021/jacs.2c12850] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A visible-light photoredox-catalyzed method is reported that enables the coupling between benzylic C-H substrates and N-H azoles. Classically, medicinally relevant N-benzyl azoles are produced via harsh substitution conditions between the azole and a benzyl electrophile in the presence of strong bases at high temperatures. Use of C-H bonds as the alkylating partner streamlines the preparation of these important motifs. In this work, we report the use of N-alkoxypyridinium salts as a critically enabling reagent for the development of a general C(sp3)-H azolation. The platform enables the alkylation of electron-deficient, -neutral, and -rich azoles with a range of C-H bonds, most notably secondary and tertiary partners. Moreover, the protocol is mild enough to tolerate benzyl electrophiles, thus offering an orthogonal approach to existing SN2 and cross-coupling methods.
Collapse
Affiliation(s)
- Mrinmoy Das
- Department of Chemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | - Leila Zamani
- Department of Chemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | - Christopher Bratcher
- Department of Chemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | - Patricia Z Musacchio
- Department of Chemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| |
Collapse
|
8
|
Nagy BS, Fu G, Hone CA, Kappe CO, Ötvös SB. Harnessing a Continuous-Flow Persulfuric Acid Generator for Direct Oxidative Aldehyde Esterifications. CHEMSUSCHEM 2023; 16:e202201868. [PMID: 36377674 PMCID: PMC10107610 DOI: 10.1002/cssc.202201868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Persulfuric acid is a well-known oxidant in various industrial-scale purification procedures. However, due to its tendency toward explosive decomposition, its usefulness in organic synthesis remained largely underexplored. Herein, a continuous in situ persulfuric acid generator was developed and applied for oxidative esterification of aldehydes under flow conditions. Sulfuric acid served as a readily available and benign precursor to form persulfuric acid in situ. By taking advantage of the continuous-flow generator concept, safety hazards were significantly reduced, whilst a robust and effective approach was ensured for direct transformations of aldehydes to valuable esters. The process proved useful for the transformation of diverse aliphatic as well as aromatic aldehydes, while its preparative capability was verified by the multigram-scale synthesis of a pharmaceutically relevant key intermediate. The present flow protocol demonstrates the safe, sustainable, and scalable application of persulfuric acid in a manner that would not be amenable to conventional batch processing.
Collapse
Affiliation(s)
- Bence S. Nagy
- Institute of ChemistryUniversity of GrazNAWI GrazHeinrichstrasse 28A-8010GrazAustria
| | - Gang Fu
- Institute of ChemistryUniversity of GrazNAWI GrazHeinrichstrasse 28A-8010GrazAustria
| | - Christopher A. Hone
- Institute of ChemistryUniversity of GrazNAWI GrazHeinrichstrasse 28A-8010GrazAustria
- Center for Continuous Flow Synthesis and Processing (CC FLOW)Research CenterPharmaceutical Engineering GmbH (RCPE)Inffeldgasse 13A-8010GrazAustria
| | - C. Oliver Kappe
- Institute of ChemistryUniversity of GrazNAWI GrazHeinrichstrasse 28A-8010GrazAustria
- Center for Continuous Flow Synthesis and Processing (CC FLOW)Research CenterPharmaceutical Engineering GmbH (RCPE)Inffeldgasse 13A-8010GrazAustria
| | - Sándor B. Ötvös
- Institute of ChemistryUniversity of GrazNAWI GrazHeinrichstrasse 28A-8010GrazAustria
- Center for Continuous Flow Synthesis and Processing (CC FLOW)Research CenterPharmaceutical Engineering GmbH (RCPE)Inffeldgasse 13A-8010GrazAustria
| |
Collapse
|
9
|
Maayuri R, Gandeepan P. Manganese-catalyzed hydroarylation of multiple bonds. Org Biomol Chem 2023; 21:441-464. [PMID: 36541044 DOI: 10.1039/d2ob01674e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transition metal-catalyzed C-H activation has become a promising strategy in organic synthesis due to its improved atom-, step- and resource economy. Considering the Earth's abundance, economic benefits, and low toxicity, 3d metal catalysts for C-H activation have received a significant focus. In particular, organometallic manganese-catalyzed C-H activation has proven to be versatile and suitable for a wide range of transformations such as C-H addition to π-components, arylation, alkylation, alkynylation, amination, and many more. Among them, manganese-catalyzed C-H addition to C-C and C-heteroatom multiple bonds exhibited unique and promising reactivity to construct a wide range of complex organic molecules. In this review, we highlight the developments in the field of manganese-catalyzed hydroarylation of multiple bonds via C-H activation with a range of applications until August 2022.
Collapse
Affiliation(s)
- Rajaram Maayuri
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu-Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh 517619, India.
| | - Parthasarathy Gandeepan
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu-Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh 517619, India.
| |
Collapse
|
10
|
Dutta S, Kumar P, Yadav S, Sharma RD, Shivaprasad P, Vimaleswaran KS, Srivastava A, Sharma RK. Accelerating innovations in C H activation/functionalization through intricately designed magnetic nanomaterials: From genesis to applicability in liquid/regio/photo catalysis. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
11
|
Reynard G, Wimmer E, Richelet J, Fourquez JM, Lebel H. Chemoselective borylation of bromoiodoarene in continuous flow: synthesis of bromoarylboronic acids. J Flow Chem 2022. [DOI: 10.1007/s41981-022-00246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Wei B, Sharland JC, Blackmond DG, Musaev DG, Davies HML. In-situ Kinetic Studies of Rh(II)-Catalyzed C-H Functionalization to Achieve High Catalyst Turnover Numbers. ACS Catal 2022; 12:13400-13410. [PMID: 37274060 PMCID: PMC10237631 DOI: 10.1021/acscatal.2c04115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Detailed kinetic studies on the functionalization of unactivated hydrocarbon sp3 C-H bonds by dirhodium-catalyzed reaction of aryldiazoacetates revealed that the C-H functionalization step is rate-determining. The efficiency of this step was increased by using the hydrocarbon as solvent and using donor/acceptor carbenes with an electron-withdrawing substituent on the aryl donor group. The optimum catalyst for these reactions is the tetraphenylphthalimido derivative Rh2(R-TPPTTL)4 and a further beneficial refinement was obtained by using N,N'-dicyclohexylcarbodiimide as an additive. Under the optimum conditions with a catalyst loading of 0.001 mol %, effective enantioselective C-H functionalization (66-97% yield, 83-97% ee) was achieved of cycloalkanes with a range of aryldiazoacetates as long as the aryldiazoacetate was not to sterically demanding. The reaction with cyclohexane using a catalyst loading of 0.0005 mol % could be recharged twice with additional aryldiazoacetate, resulting in an overall dirhodium catalyst turnover number of 580,000.
Collapse
Affiliation(s)
- Bo Wei
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jack C. Sharland
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Donna G. Blackmond
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, 92037, United States
| | - Djamaladdin G. Musaev
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Cherry L. Emerson Center for Scientific Computation, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huw M. L. Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
13
|
Sanjosé-Orduna J, Silva RC, Raymenants F, Reus B, Thaens J, de Oliveira KT, Noël T. Dual role of benzophenone enables a fast and scalable C-4 selective alkylation of pyridines in flow. Chem Sci 2022; 13:12527-12532. [PMID: 36382292 PMCID: PMC9629060 DOI: 10.1039/d2sc04990b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/08/2022] [Indexed: 08/27/2023] Open
Abstract
The efficient C-4 selective modification of pyridines is a major challenge for the synthetic community. Current strategies are plagued with at least one drawback regarding functional group-tolerant electronic activation of the heteroarene, mild generation of the required alkyl radicals, regioselectivity, safety and/or scalability. Herein, we describe a fast, safe and scalable flow process which allows preparation of said C-4 alkylated pyridines. The process involves a photochemical hydrogen atom transfer (HAT) event to generate the carbon-centered radicals needed to alkylate the C-2 blocked pyridine. In a two-step streamlined flow process, this light-mediated alkylation step is combined with a nearly instantaneous inline removal of the blocking group. Notably, cheap benzophenone plays a dual role in the pyridine alkylation mechanism by activating the hydrocarbon feedstock reagents via a HAT mechanism, and by acting as a benign, terminal oxidant. The key role of benzophenone in the operative reaction mechanism has also been revealed through a combination of experimental and computational studies.
Collapse
Affiliation(s)
- Jesús Sanjosé-Orduna
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands https://www.noelresearchgroup.com/
| | - Rodrigo C Silva
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands https://www.noelresearchgroup.com/
- Departamento de Química, Universidade Federal de São Carlos SP 13565-905 Brazil
| | - Fabian Raymenants
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands https://www.noelresearchgroup.com/
| | - Bente Reus
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands https://www.noelresearchgroup.com/
| | - Jannik Thaens
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands https://www.noelresearchgroup.com/
| | | | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands https://www.noelresearchgroup.com/
| |
Collapse
|
14
|
Sable DA, Gholap A, Kommyreddy SP, Fartade DJ, Gharpure SJ, Schulzke C, Kapdi AR. Heteroatom-Assisted Regio- and Stereoselective Palladium-Catalyzed Carboxylation of 9-Allyl Adenine. J Org Chem 2022; 87:12574-12585. [PMID: 36173114 DOI: 10.1021/acs.joc.2c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Strategy for the synthesis of acyclic nucleoside analogs of biological relevance via highly regio- and stereoselective C-H functionalization employing heteroatom-assisted palladium-catalyzed carboxylation of 9-allyl adenine is disclosed. Substrate scope with different carboxylic acids was performed giving decent to good yields of the desired products. The method also allowed for the synthesis of deuterated analogs.
Collapse
Affiliation(s)
- Dhanashri A Sable
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Raod, Matunga, Mumbai 400019, India
| | - Aniket Gholap
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Raod, Matunga, Mumbai 400019, India
| | | | - Dipak J Fartade
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Carola Schulzke
- Institute fur Biochemie, University of Greifswald, Felix-Hausdorff Strasse 4, D-17487 Greifswald, Germany
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Raod, Matunga, Mumbai 400019, India
| |
Collapse
|
15
|
Luridiana A, Mazzarella D, Capaldo L, Rincón JA, García-Losada P, Mateos C, Frederick MO, Nuño M, Jan Buma W, Noël T. The Merger of Benzophenone HAT Photocatalysis and Silyl Radical-Induced XAT Enables Both Nickel-Catalyzed Cross-Electrophile Coupling and 1,2-Dicarbofunctionalization of Olefins. ACS Catal 2022; 12:11216-11225. [PMID: 36158902 PMCID: PMC9486949 DOI: 10.1021/acscatal.2c03805] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/22/2022] [Indexed: 12/17/2022]
Abstract
![]()
A strategy for both
cross-electrophile coupling and 1,2-dicarbofunctionalization
of olefins has been developed. Carbon-centered radicals are generated
from alkyl bromides by merging benzophenone hydrogen atom transfer
(HAT) photocatalysis and silyl radical-induced halogen atom transfer
(XAT) and are subsequently intercepted by a nickel catalyst to forge
the targeted C(sp3)–C(sp2) and C(sp3)–C(sp3) bonds. The mild protocol is fast
and scalable using flow technology, displays broad functional group
tolerance, and is amenable to a wide variety of medicinally relevant
moieties. Mechanistic investigations reveal that the ketone catalyst,
upon photoexcitation, is responsible for the direct activation of
the silicon-based XAT reagent (HAT-mediated XAT) that furnishes the
targeted alkyl radical and is ultimately involved in the turnover
of the nickel catalytic cycle.
Collapse
Affiliation(s)
- Alberto Luridiana
- Flow Chemistry Group, Van’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Daniele Mazzarella
- Flow Chemistry Group, Van’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Luca Capaldo
- Flow Chemistry Group, Van’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Juan A. Rincón
- Centro de Investigación Lilly S.A., Avda. de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Pablo García-Losada
- Centro de Investigación Lilly S.A., Avda. de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Carlos Mateos
- Centro de Investigación Lilly S.A., Avda. de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Michael O. Frederick
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Manuel Nuño
- Vapourtec Ltd. Park Farm Business Centre, Fornham St Genevieve, Bury St Edmunds, Suffolk IP28 6TS, U.K
| | - Wybren Jan Buma
- Molecular Photonics, Van’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, Van’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
16
|
Continuous flow process for preparing budesonide. J Flow Chem 2022; 12:237-246. [PMID: 35465101 PMCID: PMC9017729 DOI: 10.1007/s41981-022-00221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 10/28/2022]
|
17
|
Ferlin F, Anastasiou I, Salameh N, Miyakoshi T, Baudoin O, Vaccaro L. C(sp 3 )-H Arylation Promoted by a Heterogeneous Palladium-N-Heterocyclic Carbene Complex in Batch and Continuous Flow. CHEMSUSCHEM 2022; 15:e202102736. [PMID: 35098689 PMCID: PMC9303704 DOI: 10.1002/cssc.202102736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Indexed: 06/14/2023]
Abstract
A heterogeneous reusable palladium(II)-bis(N-heterocyclic carbene) catalyst was prepared and shown to catalyze the intramolecular C(sp3 )-H activation/cyclization of N-alkyl-2-bromoanilines furnishing indolines. This new catalytic system was based on a bis-imidazolium ligand immobilized on a spaced cross-linked polystyrene support. The iodide ligands on the catalyst played a central role in the efficiency of the process occurring through a "release and catch" mechanism. The heterogeneous nature of the catalyst was further exploited in the design of a continuous-flow protocol that allowed a more efficient recovery and reuse of the catalyst, as well as a very fast and safe procedure.
Collapse
Affiliation(s)
- Francesco Ferlin
- Laboratory of Green SOCDipartimento di ChimicaBiologia e BiotecnologieUniversità degli Studi di PerugiaVia Elce di Sotto, 806124PerugiaItaly
| | - Ioannis Anastasiou
- Laboratory of Green SOCDipartimento di ChimicaBiologia e BiotecnologieUniversità degli Studi di PerugiaVia Elce di Sotto, 806124PerugiaItaly
| | - Nihad Salameh
- Laboratory of Green SOCDipartimento di ChimicaBiologia e BiotecnologieUniversità degli Studi di PerugiaVia Elce di Sotto, 806124PerugiaItaly
| | - Takeru Miyakoshi
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 19CH-4056BaselSwitzerland
| | - Olivier Baudoin
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 19CH-4056BaselSwitzerland
| | - Luigi Vaccaro
- Laboratory of Green SOCDipartimento di ChimicaBiologia e BiotecnologieUniversità degli Studi di PerugiaVia Elce di Sotto, 806124PerugiaItaly
- Peoples Friendship University of Russia (RUDN University)6 Miklukho-Maklaya StMoscow117198Russia
| |
Collapse
|
18
|
Pokhrel T, B K B, Giri R, Adhikari A, Ahmed N. C-H Bond Functionalization under Electrochemical Flow Conditions. CHEM REC 2022; 22:e202100338. [PMID: 35315954 DOI: 10.1002/tcr.202100338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023]
Abstract
Electrochemical C-H functionalization is a rapidly growing area of interest in organic synthesis. To achieve maximum atom economy, the flow electrolysis process is more sustainable. This allows shorter reaction times, safer working environments, and better selectivities. Using this technology, the problem of overoxidation can be reduced and less emergence of side products or no side products are possible. Flow electro-reactors provide high surface-to-volume ratios and contain electrodes that are closely spaced where the diffusion layers overlap to give the desired product, electrochemical processes can now be managed without the need for a deliberately added supporting electrolyte. Considering the importance of flow electrochemical C-H functionalization, a comprehensive review is presented. Herein, we summarize flow electrolysis for the construction of C-C and C-X (X=O, N, S, and I) bonds formation. Also, benzylic oxidation and access to biologically active molecules are discussed.
Collapse
Affiliation(s)
- Tamlal Pokhrel
- Central Department of Chemistry, Tribhuvan University, Kirtipur, 44618, Kathmandu, Nepal
| | - Bijaya B K
- Central Department of Chemistry, Tribhuvan University, Kirtipur, 44618, Kathmandu, Nepal
| | - Ramesh Giri
- Central Department of Chemistry, Tribhuvan University, Kirtipur, 44618, Kathmandu, Nepal
| | - Achyut Adhikari
- Central Department of Chemistry, Tribhuvan University, Kirtipur, 44618, Kathmandu, Nepal
| | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
19
|
Grover J, Prakash G, Goswami N, Maiti D. Traditional and sustainable approaches for the construction of C–C bonds by harnessing C–H arylation. Nat Commun 2022; 13:1085. [PMID: 35228555 PMCID: PMC8885660 DOI: 10.1038/s41467-022-28707-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 01/27/2022] [Indexed: 12/18/2022] Open
Abstract
Biaryl scaffolds are found in natural products and drug molecules and exhibit a wide range of biological activities. In past decade, the transition metal-catalyzed C–H arylation reaction came out as an effective tool for the construction of biaryl motifs. However, traditional transition metal-catalyzed C–H arylation reactions have limitations like harsh reaction conditions, narrow substrate scope, use of additives etc. and therefore encouraged synthetic chemists to look for alternate greener approaches. This review aims to draw a general overview on C–H bond arylation reactions for the formation of C–C bonds with the aid of different methodologies, majorly highlighting on greener and sustainable approaches. Transition-metal-catalyzed C–H arylations are an effective tool for the construction of biaryl motifs in an efficient and selective manner. Here the authors provide an overview of the state-of-the-art of the field and perspectives on emerging directions toward increased sustainability.
Collapse
|
20
|
Improved efficiency of photo-induced synthetic reactions enabled by advanced photo flow technologies. Photochem Photobiol Sci 2022; 21:761-775. [DOI: 10.1007/s43630-021-00151-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
|
21
|
Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem Rev 2022; 122:2752-2906. [PMID: 34375082 PMCID: PMC8796205 DOI: 10.1021/acs.chemrev.1c00332] [Citation(s) in RCA: 250] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 02/08/2023]
Abstract
Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry.
Collapse
Affiliation(s)
- Laura Buglioni
- Micro
Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14—Helix, 5600 MB, Eindhoven, The Netherlands
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Fabian Raymenants
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aidan Slattery
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D. A. Zondag
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Wan L, Jiang M, Cheng D, Liu M, Chen F. Continuous flow technology-a tool for safer oxidation chemistry. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00520k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advantages and benefits of continuous flow technology for oxidation chemistry have been illustrated in tube reactors, micro-channel reactors, tube-in-tube reactors and micro-packed bed reactors in the presence of various oxidants.
Collapse
Affiliation(s)
- Li Wan
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Dang Cheng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
23
|
El-Assaad TH, Zhu J, Sebastian A, McGrath DV, Neogi I, Parida KN. Dioxiranes: A Half-Century Journey. Org Chem Front 2022. [DOI: 10.1039/d2qo01005d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dioxiranes are multi-tasking reagents inheriting mild and selective oxygen transfer attributes. These oxidants are accessed from the reaction of ketones with an oxidant and are employed stoichiometrically or catalytically (in...
Collapse
|
24
|
Liu S, Wang Q, Huang F, Wang W, Yang C, Liu J, Chen D. Insight into the mechanism of the arylation of arenes via norbornene relay palladation through meta- to para-selectivity. Org Chem Front 2022. [DOI: 10.1039/d1qo01500a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A theoretical insight was shown into the origin of site-selectivity in the arylation of arenes by a norbornene relay palladation through meta- to para-selectivity.
Collapse
Affiliation(s)
- Shengnan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Qiong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Fang Huang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wenjuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Chong Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jianbiao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Dezhan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
25
|
Cao CL, Zhang GX, Xue F, Deng HP. Photoinduced C–H monofluoroalkenylation with gem-difluoroalkenes through hydrogen atom transfer under batch and flow conditions. Org Chem Front 2022. [DOI: 10.1039/d1qo01689j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A mild and effective protocol for the monofluoroalkenylation of C–H bonds with gem-difluoroalkenes through the synergetic merger of photoredox and bromine-based hydrogen atom transfer catalysis under batch and flow conditions is reported.
Collapse
Affiliation(s)
- Chen-Lin Cao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guang-Xu Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Hong-Ping Deng
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
26
|
Sivo A, Kim TK, Ruta V, Luisi R, Osorio-Tejada J, Escriba-Gelonch M, Hessel V, Sponchioni M, Vilé G. Enhanced flow synthesis of small molecules by in-line integration of sequential catalysis and benchtop twin-column continuous chromatography. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00242f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In-line integration of sequential catalysis and continuous multi-column purification. Adapted for small compound amounts (hit-to-lead). Suitable for large-scale purification (process chemistry).
Collapse
Affiliation(s)
- Alessandra Sivo
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, IT-20131 Milano, Italy
| | - Tae Keun Kim
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, IT-20131 Milano, Italy
| | - Vincenzo Ruta
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, IT-20131 Milano, Italy
| | - Renzo Luisi
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, Via E. Orabona 4, IT-70125 Bari, Italy
| | | | | | - Volker Hessel
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace Campus, Adelaide, 5005, Australia
| | - Mattia Sponchioni
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, IT-20131 Milano, Italy
| | - Gianvito Vilé
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, IT-20131 Milano, Italy
| |
Collapse
|
27
|
Wen Z, Wan T, Vijeta A, Casadevall C, Buglioni L, Reisner E, Noël T. Photocatalytic C-H Azolation of Arenes Using Heterogeneous Carbon Nitride in Batch and Flow. CHEMSUSCHEM 2021; 14:5265-5270. [PMID: 34529334 PMCID: PMC9298336 DOI: 10.1002/cssc.202101767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/16/2021] [Indexed: 05/08/2023]
Abstract
The functionalization of aryl C(sp2 )-H bonds is a useful strategy for the late-stage modification of biologically active molecules, especially for the regioselective introduction of azole heterocycles to prepare medicinally-relevant compounds. Herein, we describe a practical photocatalytic transformation using a mesoporous carbon nitride (mpg-CNx ) photocatalyst, which enables the efficient azolation of various arenes through direct oxidation. The method exhibits a broad substrate scope and is amenable to the late-stage functionalization of several pharmaceuticals. Due to the heterogeneous nature and high photocatalytic stability of mpg-CNx , the catalyst can be easily recovered and reused leading to greener and more sustainable routes, using either batch or flow processing, to prepare these important compounds of interest in pharmaceutical and agrochemical research.
Collapse
Affiliation(s)
- Zhenghui Wen
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
| | - Ting Wan
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
| | - Arjun Vijeta
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUnited Kingdom
| | - Carla Casadevall
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUnited Kingdom
| | - Laura Buglioni
- Department of Chemical Engineering and ChemistrySustainable Process EngineeringEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Erwin Reisner
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUnited Kingdom
| | - Timothy Noël
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
28
|
Buglioni L, Beslać M, Noël T. Dehydrogenative Azolation of Arenes in a Microflow Electrochemical Reactor. J Org Chem 2021; 86:16195-16203. [PMID: 34455793 PMCID: PMC8609577 DOI: 10.1021/acs.joc.1c01409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The electrochemical
synthesis of aryl azoles was performed for
the first time in a microflow reactor. The reaction relies on the
anodic oxidation of the arene partners making these substrates susceptible
for C–H functionalization with azoles, thus requiring no homogeneous
transition-metal-based catalysts. The synthetic protocol benefits
from the implementation of a microflow setup, leading to shorter residence
times (10 min), compared to previously reported batch systems. Various
azolated compounds (22 examples) are obtained in good to excellent
yields.
Collapse
Affiliation(s)
- Laura Buglioni
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Marko Beslać
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Timothy Noël
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park, 904 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
29
|
Jana R, Begam HM, Dinda E. The emergence of the C-H functionalization strategy in medicinal chemistry and drug discovery. Chem Commun (Camb) 2021; 57:10842-10866. [PMID: 34596175 DOI: 10.1039/d1cc04083a] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to the market competitiveness and urgent societal need, an optimum speed of drug discovery is an important criterion for successful implementation. Despite the rapid ascent of artificial intelligence and computational and bioanalytical techniques to accelerate drug discovery in big pharma, organic synthesis of privileged scaffolds predicted in silico for in vitro and in vivo studies is still considered as the rate-limiting step. C-H activation is the latest technology added into an organic chemist's toolbox for the rapid construction and late-stage modification of functional molecules to achieve the desired chemical and physical properties. Particularly, elimination of prefunctionalization steps, exceptional functional group tolerance, complexity-to-diversity oriented synthesis, and late-stage functionalization of privileged medicinal scaffolds expand the chemical space. It has immense potential for the rapid synthesis of a library of molecules, structural modification to achieve the required pharmacological properties such as absorption, distribution, metabolism, excretion, toxicology (ADMET) and attachment of chemical reporters for proteome profiling, metabolite synthesis, etc. for preclinical studies. Although heterocycle synthesis, late-stage drug modification, 18F labelling, methylation, etc. via C-H functionalization have been reviewed from the synthetic standpoint, a general overview of these protocols from medicinal and drug discovery aspects has not been reviewed. In this feature article, we will discuss the recent trends of C-H activation methodologies such as synthesis of medicinal scaffolds through C-H activation/annulation cascade; C-H arylation for sp2-sp2 and sp2-sp3 cross-coupling; C-H borylation/silylation to introduce a functional linchpin for further manipulation; C-H amination for N-heterocycles and hydrogen bond acceptors; C-H fluorination/fluoroalkylation to tune polarity and lipophilicity; C-H methylation: methyl magic in drug discovery; peptide modification and macrocyclization for therapeutics and biologics; fluorescent labelling and radiolabelling for bioimaging; bioconjugation for chemical biology studies; drug-metabolite synthesis for biodistribution and excretion studies; late-stage diversification of drug-molecules to increase efficacy and safety; cutting-edge DNA encoded library synthesis and improved synthesis of drug molecules via C-H activation in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India.
| | - Hasina Mamataj Begam
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India.
| | - Enakshi Dinda
- Department of Chemistry and Environment, Heritage Institute of Technology, Kolkata-700107, India
| |
Collapse
|
30
|
Pulcinella A, Mazzarella D, Noël T. Homogeneous catalytic C(sp 3)-H functionalization of gaseous alkanes. Chem Commun (Camb) 2021; 57:9956-9967. [PMID: 34495026 DOI: 10.1039/d1cc04073a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conversion of light alkanes into bulk chemicals is becoming an important challenge as it effectively avoids the use of prefunctionalized alkylating reagents. The implementation of such processes is, however, hampered by their gaseous nature and low solubility, as well as the low reactivity of the C-H bonds. Efforts have been made to enable both polar and radical processes to activate these inert compounds. In addition, these methodologies also benefit significantly from the development of a suitable reactor technology that intensifies gas-liquid mass transfer. In this review, we critically highlight these developments, both from a conceptual and a practical point of view. The recent expansion of these mechanistically-different methods have enabled the use of various gaseous alkanes for the development of different bond-forming reactions, including C-C, C-B, C-N, C-Si and C-S bonds.
Collapse
Affiliation(s)
- Antonio Pulcinella
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Daniele Mazzarella
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Mazzarella D, Pulcinella A, Bovy L, Broersma R, Noël T. Rapid and Direct Photocatalytic C(sp
3
)−H Acylation and Arylation in Flow. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daniele Mazzarella
- Flow Chemistry Group Van't Hoff Institute for Molecular Sciences (HIMS) University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Antonio Pulcinella
- Flow Chemistry Group Van't Hoff Institute for Molecular Sciences (HIMS) University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Loïc Bovy
- Flow Chemistry Group Van't Hoff Institute for Molecular Sciences (HIMS) University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Rémy Broersma
- Signify Research High Tech Campus 7 5656 AE Eindhoven The Netherlands
| | - Timothy Noël
- Flow Chemistry Group Van't Hoff Institute for Molecular Sciences (HIMS) University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
32
|
Mazzarella D, Pulcinella A, Bovy L, Broersma R, Noël T. Rapid and Direct Photocatalytic C(sp 3 )-H Acylation and Arylation in Flow. Angew Chem Int Ed Engl 2021; 60:21277-21282. [PMID: 34329531 PMCID: PMC8518495 DOI: 10.1002/anie.202108987] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 01/20/2023]
Abstract
Herein, we report a photocatalytic procedure that enables the acylation/arylation of unfunctionalized alkyl derivatives in flow. The method exploits the ability of the decatungstate anion to act as a hydrogen atom abstractor and produce nucleophilic carbon-centered radicals that are intercepted by a nickel catalyst to ultimately forge C(sp3 )-C(sp2 ) bonds. Owing to the intensified conditions in flow, the reaction time can be reduced from 12-48 hours to only 5-15 minutes. Finally, kinetic measurements highlight how the intensified conditions do not change the reaction mechanism but reliably speed up the overall process.
Collapse
Affiliation(s)
- Daniele Mazzarella
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)University of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Antonio Pulcinella
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)University of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Loïc Bovy
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)University of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Rémy Broersma
- Signify ResearchHigh Tech Campus 75656AEEindhovenThe Netherlands
| | - Timothy Noël
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)University of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
33
|
Ohara N, Das A, Mahato SK, Chatani N. Synthesis of α-Amino Acid Derivatives through the Iridium-catalyzed α-C-H Amidation of 2-Acylimidazoles with Dioxazolones under Continuous-flow. CHEM LETT 2021. [DOI: 10.1246/cl.210364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Nozomi Ohara
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Amrita Das
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sanjit K. Mahato
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
34
|
Wan T, Capaldo L, Laudadio G, Nyuchev AV, Rincón JA, García‐Losada P, Mateos C, Frederick MO, Nuño M, Noël T. Decatungstate-Mediated C(sp 3 )-H Heteroarylation via Radical-Polar Crossover in Batch and Flow. Angew Chem Int Ed Engl 2021; 60:17893-17897. [PMID: 34060204 PMCID: PMC8457183 DOI: 10.1002/anie.202104682] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/29/2021] [Indexed: 12/13/2022]
Abstract
Photocatalytic hydrogen atom transfer is a very powerful strategy for the regioselective C(sp3 )-H functionalization of organic molecules. Herein, we report on the unprecedented combination of decatungstate hydrogen atom transfer photocatalysis with the oxidative radical-polar crossover concept to access the direct net-oxidative C(sp3 )-H heteroarylation. The present methodology demonstrates a high functional group tolerance (40 examples) and is scalable when using continuous-flow reactor technology. The developed protocol is also amenable to the late-stage functionalization of biologically relevant molecules such as stanozolol, (-)-ambroxide, podophyllotoxin, and dideoxyribose.
Collapse
Affiliation(s)
- Ting Wan
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)University of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Luca Capaldo
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)University of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Gabriele Laudadio
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)University of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Alexander V. Nyuchev
- Department of Organic ChemistryLobachevsky State University of Nizhny NovgorodGagarina Avenue 23603950Nizhny NovgorodRussia
| | - Juan A. Rincón
- Centro de Investigación Lilly S.A.Avda. de la Industria 3028108Alcobendas-MadridSpain
| | - Pablo García‐Losada
- Centro de Investigación Lilly S.A.Avda. de la Industria 3028108Alcobendas-MadridSpain
| | - Carlos Mateos
- Centro de Investigación Lilly S.A.Avda. de la Industria 3028108Alcobendas-MadridSpain
| | - Michael O. Frederick
- Small Molecule Design and DevelopmentEli Lilly and CompanyIndianapolisIN46285USA
| | - Manuel Nuño
- Vapourtec Ltd.Park Farm Business CentreFornham St GenevieveBury St EdmundsSuffolkIP28 6TSUK
| | - Timothy Noël
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)University of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
35
|
Late-stage C–H functionalization offers new opportunities in drug discovery. Nat Rev Chem 2021; 5:522-545. [PMID: 37117588 DOI: 10.1038/s41570-021-00300-6] [Citation(s) in RCA: 285] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
Over the past decade, the landscape of molecular synthesis has gained major impetus by the introduction of late-stage functionalization (LSF) methodologies. C-H functionalization approaches, particularly, set the stage for new retrosynthetic disconnections, while leading to improvements in resource economy. A variety of innovative techniques have been successfully applied to the C-H diversification of pharmaceuticals, and these key developments have enabled medicinal chemists to integrate LSF strategies in their drug discovery programmes. This Review highlights the significant advances achieved in the late-stage C-H functionalization of drugs and drug-like compounds, and showcases how the implementation of these modern strategies allows increased efficiency in the drug discovery process. Representative examples are examined and classified by mechanistic patterns involving directed or innate C-H functionalization, as well as emerging reaction manifolds, such as electrosynthesis and biocatalysis, among others. Structurally complex bioactive entities beyond small molecules are also covered, including diversification in the new modalities sphere. The challenges and limitations of current LSF methods are critically assessed, and avenues for future improvements of this rapidly expanding field are discussed. We, hereby, aim to provide a toolbox for chemists in academia as well as industrial practitioners, and introduce guiding principles for the application of LSF strategies to access new molecules of interest.
Collapse
|
36
|
Wan T, Capaldo L, Laudadio G, Nyuchev AV, Rincón JA, García‐Losada P, Mateos C, Frederick MO, Nuño M, Noël T. Decatungstate‐Mediated C(sp
3
)–H Heteroarylation via Radical‐Polar Crossover in Batch and Flow. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ting Wan
- Flow Chemistry Group Van't Hoff Institute for Molecular Sciences (HIMS) University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Luca Capaldo
- Flow Chemistry Group Van't Hoff Institute for Molecular Sciences (HIMS) University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Gabriele Laudadio
- Flow Chemistry Group Van't Hoff Institute for Molecular Sciences (HIMS) University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Alexander V. Nyuchev
- Department of Organic Chemistry Lobachevsky State University of Nizhny Novgorod Gagarina Avenue 23 603950 Nizhny Novgorod Russia
| | - Juan A. Rincón
- Centro de Investigación Lilly S.A. Avda. de la Industria 30 28108 Alcobendas-Madrid Spain
| | - Pablo García‐Losada
- Centro de Investigación Lilly S.A. Avda. de la Industria 30 28108 Alcobendas-Madrid Spain
| | - Carlos Mateos
- Centro de Investigación Lilly S.A. Avda. de la Industria 30 28108 Alcobendas-Madrid Spain
| | - Michael O. Frederick
- Small Molecule Design and Development Eli Lilly and Company Indianapolis IN 46285 USA
| | - Manuel Nuño
- Vapourtec Ltd. Park Farm Business Centre Fornham St Genevieve Bury St Edmunds Suffolk IP28 6TS UK
| | - Timothy Noël
- Flow Chemistry Group Van't Hoff Institute for Molecular Sciences (HIMS) University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
37
|
Harenberg JH, Weidmann N, Wiegand AJ, Hoefer CA, Annapureddy RR, Knochel P. (2-Ethylhexyl)sodium: A Hexane-Soluble Reagent for Br/Na-Exchanges and Directed Metalations in Continuous Flow. Angew Chem Int Ed Engl 2021; 60:14296-14301. [PMID: 33826212 PMCID: PMC8252725 DOI: 10.1002/anie.202103031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 12/14/2022]
Abstract
We report the on-demand generation of hexane-soluble (2-ethylhexyl)sodium (1) from 3-(chloromethyl)heptane (2) using a sodium-packed-bed reactor under continuous flow conditions. Thus, the resulting solution of 1 is free of elemental sodium and therefore suited for a range of synthetic applications. This new procedure avoids the storage of an alkylsodium and limits the handling of metallic sodium to a minimum. (2-Ethylhexyl)sodium (1) proved to be a very useful reagent and undergoes in-line Br/Na-exchanges as well as directed sodiations. The resulting arylsodium intermediates are subsequently trapped in batch with various electrophiles such as ketones, aldehydes, Weinreb-amides, imines, allyl bromides, disulfides and alkyl iodides. A reaction scale-up of the Br/Na-exchange using an in-line electrophile quench was also reported.
Collapse
Affiliation(s)
- Johannes H. Harenberg
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Niels Weidmann
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Alexander J. Wiegand
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Carla A. Hoefer
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | | | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
38
|
Harenberg JH, Weidmann N, Wiegand AJ, Hoefer CA, Annapureddy RR, Knochel P. (2‐Ethylhexyl)natrium: Ein hexanlösliches Reagenz für Br/Na‐Austauschreaktionen und dirigierte Metallierungen im kontinuierlichen Durchfluss. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Johannes H. Harenberg
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Niels Weidmann
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Alexander J. Wiegand
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Carla A. Hoefer
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Rajasekar Reddy Annapureddy
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Paul Knochel
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
39
|
Chen S, Oliva M, Van Meervelt L, Van der Eycken EV, Sharma UK. Palladium‐Catalyzed Domino Synthesis of 2,3‐Difunctionalized Indoles
via
Migratory Insertion of Isocyanides in Batch and Continuous Flow. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Su Chen
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Monica Oliva
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Luc Van Meervelt
- Biomolecular Architecture Department of Chemistry KU Leuven Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya street 6 RU-117198 Moscow Russia
| | - Upendra K. Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| |
Collapse
|
40
|
Scale-up of micro- and milli-reactors: An overview of strategies, design principles and applications. CHEMICAL ENGINEERING SCIENCE: X 2021. [DOI: 10.1016/j.cesx.2021.100097] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
41
|
Lee HJ, Yonekura Y, Kim N, Yoshida JI, Kim H. Regioselective Synthesis of α-Functional Stilbenes via Precise Control of Rapid cis- trans Isomerization in Flow. Org Lett 2021; 23:2904-2910. [PMID: 33797929 DOI: 10.1021/acs.orglett.1c00538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rapid cis-trans isomerization of α-anionic stilbene was regioselectively controlled by using flow microreactors, and its reaction with various electrophiles was conducted. The reaction time was precisely controlled within milliseconds to seconds at -50 °C to selectively give the cis- or trans-isomer in high yields. This synthetic method in flow was well-applied to synthesize precursors of commercial drug compound, (E)- and (Z)-tamoxifen with high regioselectivity and productivity.
Collapse
Affiliation(s)
- Hyune-Jea Lee
- Department of Chemistry, College of Science, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Yuya Yonekura
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-08510, Japan
| | - Nayoung Kim
- Department of Chemistry, College of Science, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Jun-Ichi Yoshida
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-08510, Japan.,National Institution of Technology, Suzuka College, Suzuka, Mie 510-0294, Japan
| | - Heejin Kim
- Department of Chemistry, College of Science, Korea University, Seongbuk-gu, Seoul 02841, South Korea.,Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-08510, Japan
| |
Collapse
|
42
|
Sambiagio C, Ferrari M, van Beurden K, Ca’ ND, van Schijndel J, Noël T. Continuous-Flow Synthesis of Pyrylium Tetrafluoroborates: Application to Synthesis of Katritzky Salts and Photoinduced Cationic RAFT Polymerization. Org Lett 2021; 23:2042-2047. [PMID: 33650879 PMCID: PMC8041383 DOI: 10.1021/acs.orglett.1c00178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Indexed: 11/29/2022]
Abstract
Katritzky salts have emerged as effective alkyl radical sources upon metal- or photocatalysis. These are typically prepared from the corresponding triarylpyrylium ions, in turn an important class of photocatalysts for small molecules synthesis and photopolymerization. Here, a flow method for the rapid synthesis of both pyrylium and Katrizky salts in a telescoped fashion is reported. Moreover, several pyrylium salts were tested in the photoinduced RAFT polymerization of vinyl ethers under flow and batch conditions.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Department
of Chemical Engineering and Chemistry, Micro Flow Chemistry and Synthetic
Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Matteo Ferrari
- Department
of Chemical Engineering and Chemistry, Micro Flow Chemistry and Synthetic
Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
- Department
of Chemistry, Life Sciences and Environmental Sustainability (SCVSA), University of Parma, Parco Area delle Scienze 17A, 43124 Parma, Italy
| | - Koen van Beurden
- Research
Group Biopolymers/Green Chemistry, Avans
University of Applied Science, 4818 CR Breda, The Netherlands
| | - Nicola della Ca’
- Department
of Chemistry, Life Sciences and Environmental Sustainability (SCVSA), University of Parma, Parco Area delle Scienze 17A, 43124 Parma, Italy
| | - Jack van Schijndel
- Research
Group Biopolymers/Green Chemistry, Avans
University of Applied Science, 4818 CR Breda, The Netherlands
| | - Timothy Noël
- Department
of Chemical Engineering and Chemistry, Micro Flow Chemistry and Synthetic
Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
43
|
Imine as a linchpin approach for meta-C-H functionalization. Nat Commun 2021; 12:1393. [PMID: 33654108 PMCID: PMC7925593 DOI: 10.1038/s41467-021-21633-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 12/02/2022] Open
Abstract
Despite the widespread applications of C–H functionalization, controlling site selectivity remains a significant challenge. Covalently attached directing groups (DGs) served as ancillary ligands to ensure ortho-, meta- and para-C–H functionalization over the last two decades. These covalently linked DGs necessitate two extra steps for a single C–H functionalization: introduction of DG prior to C–H activation and removal of DG post-functionalization. Here we report a temporary directing group (TDG) for meta-C–H functionalization via reversible imine formation. By overruling facile ortho-C–H bond activation by imine-N atom, a suitably designed pyrimidine-based TDG successfully delivered selective meta-C–C bond formation. Application of this temporary directing group strategy for streamlining the synthesis of complex organic molecules without any necessary pre-functionalization at the meta position has been explored. Site-selective C–H functionalization still faces some challenges, such as the introduction and removal of an appropriate directing group. Here, the authors introduce a temporary directing group for selective meta-C–H functionalization of 2-arylbenzaldehydes via reversible imine formation.
Collapse
|
44
|
Oliva M, Coppola GA, Van der Eycken EV, Sharma UK. Photochemical and Electrochemical Strategies towards Benzylic C−H Functionalization: A Recent Update. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001581] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Monica Oliva
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Guglielmo A. Coppola
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) 6 Miklukho-Maklaya street RU-117198 Moscow Russia
| | - Upendra K. Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| |
Collapse
|
45
|
Chen Q, Xia S, Wang Y, Luo G, Shang H, Wang K. Continuous synthesis of
1‐ethoxy
‐2,3‐difluoro‐4‐iodo‐benzene in a microreactor system and the Gaussian and
computational fluid dynamics
simulations. AIChE J 2021. [DOI: 10.1002/aic.17217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qiang Chen
- Department of Chemical Engineering, The State Key Lab of Chemical Engineering Tsinghua University Beijing China
| | - Siting Xia
- Department of Chemical Engineering, The State Key Lab of Chemical Engineering Tsinghua University Beijing China
| | - Yujun Wang
- Department of Chemical Engineering, The State Key Lab of Chemical Engineering Tsinghua University Beijing China
| | - Guangsheng Luo
- Department of Chemical Engineering, The State Key Lab of Chemical Engineering Tsinghua University Beijing China
| | - Hongyong Shang
- Shijiazhuang Chengzhi Yonghua Display Material Co., Ltd Shijiazhuang China
| | - Kui Wang
- Shijiazhuang Chengzhi Yonghua Display Material Co., Ltd Shijiazhuang China
| |
Collapse
|
46
|
Das A, Chatani N. Rh(i)- and Rh(ii)-catalyzed C-H alkylation of benzylamines with alkenes and its application in flow chemistry. Chem Sci 2021; 12:3202-3209. [PMID: 34164088 PMCID: PMC8179371 DOI: 10.1039/d0sc05813k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Rh-catalyzed C–H alkylation of benzylamines with alkenes using a picolinamide derivative as a directing group is reported. Both Rh(i) and Rh(ii) complexes can be used as active catalysts for this transformation. In addition, a flow set up was designed to successfully mimic this process under flow conditions. Several examples are presented under flow conditions and it was confirmed that a flow process is advantageous over a batch process. Deuterium labelling experiments were performed to elucidate the mechanism of the reaction, and the results indicated a possible carbene mechanism for this C–H alkylation process. Rh(i)- and Rh(ii)-catalyzed C–H alkylation of benzylamines with alkenes using a picolinamide derivative as a directing group is reported under both batch and flow.![]()
Collapse
Affiliation(s)
- Amrita Das
- Department of Applied Chemistry, Faculty of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
47
|
Pandit S, Maiti S, Maiti D. Noncovalent interactions in Ir-catalyzed remote C–H borylation: a recent update. Org Chem Front 2021. [DOI: 10.1039/d1qo00452b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This highlight provides a recent update on noncovalent interaction enabled Ir-catalyzed remote C–H borylation, with a special emphasis on the corresponding enantioselective variant.
Collapse
Affiliation(s)
- Saikat Pandit
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Sudip Maiti
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Debabrata Maiti
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| |
Collapse
|
48
|
Dhawa U, Kaplaneris N, Ackermann L. Green strategies for transition metal-catalyzed C–H activation in molecular syntheses. Org Chem Front 2021. [DOI: 10.1039/d1qo00727k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sustainable strategies for the activation of inert C–H bonds towards improved resource-economy.
Collapse
Affiliation(s)
- Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
49
|
Cannalire R, Pelliccia S, Sancineto L, Novellino E, Tron GC, Giustiniano M. Visible light photocatalysis in the late-stage functionalization of pharmaceutically relevant compounds. Chem Soc Rev 2020; 50:766-897. [PMID: 33350402 DOI: 10.1039/d0cs00493f] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The late stage functionalization (LSF) of complex biorelevant compounds is a powerful tool to speed up the identification of structure-activity relationships (SARs) and to optimize ADME profiles. To this end, visible-light photocatalysis offers unique opportunities to achieve smooth and clean functionalization of drugs by unlocking site-specific reactivities under generally mild reaction conditions. This review offers a critical assessment of current literature, pointing out the recent developments in the field while emphasizing the expected future progress and potential applications. Along with paragraphs discussing the visible-light photocatalytic synthetic protocols so far available for LSF of drugs and drug candidates, useful and readily accessible synoptic tables of such transformations, divided by functional groups, will be provided, thus enabling a useful, fast, and easy reference to them.
Collapse
Affiliation(s)
- Rolando Cannalire
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy.
| | | | | | | | | | | |
Collapse
|
50
|
Bonciolini S, Di Filippo M, Baumann M. A scalable continuous photochemical process for the generation of aminopropylsulfones. Org Biomol Chem 2020; 18:9428-9432. [PMID: 32969443 DOI: 10.1039/d0ob01801e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient continuous photochemical process is presented that delivers a series of novel γ-aminopropylsulfones via a tetrabutylammonium decatungstate (TBADT) catalysed HAT-process. Crucial to this success is the exploitation of a new high-power LED emitting at 365 nm that was found to be superior to an alternative medium-pressure Hg lamp. The resulting flow process enabled the scale-up of this transformation reaching throughputs of 20 mmol h-1 at substrate concentrations up to 500 mM. Additionally, the substrate scope of this transformation was evaluated demonstrating the straightforward incorporation of different amine substituents as well as alkyl appendages next to the sulfone moiety. It is anticipated that this methodology will allow for further exploitations of these underrepresented γ-aminopropylsulfone scaffolds in the future.
Collapse
Affiliation(s)
- Stefano Bonciolini
- School of Chemistry, University College Dublin, Science Centre South, Belfield, D04 N2E2, Ireland.
| | - Mara Di Filippo
- School of Chemistry, University College Dublin, Science Centre South, Belfield, D04 N2E2, Ireland.
| | - Marcus Baumann
- School of Chemistry, University College Dublin, Science Centre South, Belfield, D04 N2E2, Ireland.
| |
Collapse
|