1
|
Kusumi K, Shaikhkhalil A, Patel HP, Mahan JD. Promoting bone health in children and adolescents following solid organ transplantation. Pediatr Transplant 2021; 25:e13940. [PMID: 33341105 DOI: 10.1111/petr.13940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Solid organ transplantation in children and adolescents provides many benefits through improving critical organ function, including better growth, development, cardiovascular status, and quality of life. Unfortunately, bone status may be adversely affected even when overall status is improving, due to issues with pre-existing bone disease as well as medications and nutritional challenges inherent post-transplantation. For all children and adolescents, bone status entering adulthood is a critical determinant of bone health through adulthood. The overall health and bone status of transplant recipients benefits from attention to regular physical activity, good nutrition, adequate calcium, phosphorous, magnesium and vitamin D intake and avoidance/minimization of soda, extra sodium, and obesity. Many immunosuppressive agents, especially glucocorticoids, can adversely affect bone function and development. Minimizing exposure to "bone-toxic" medications is an important part of promoting bone health in children post-transplantation. Existing guidelines detail how regular monitoring of bone status and biochemical markers can help detect bone abnormalities early and facilitate valuable bone-directed interventions. Attention to calcium and vitamin D supplementation, as well as tapering and withdrawing glucocorticoids as early as possible after transplant, can provide best bone outcomes for these children. Dual-energy X-ray absorptiometry can be useful to detect abnormal bone mass and fracture risk in this population and newer bone assessment methods are being evaluated in children at risk for poor bone outcomes. Newer bone therapies being explored in adults with transplants, particularly bisphosphonates and the RANKL inhibitor denosumab, may offer promise for children with low bone mass post-transplantation.
Collapse
Affiliation(s)
| | - Ala Shaikhkhalil
- Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Hiren P Patel
- Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - John D Mahan
- Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Noce A, Marrone G, Ottaviani E, Guerriero C, Di Daniele F, Pietroboni Zaitseva A, Di Daniele N. Uremic Sarcopenia and Its Possible Nutritional Approach. Nutrients 2021; 13:nu13010147. [PMID: 33406683 PMCID: PMC7824031 DOI: 10.3390/nu13010147] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Uremic sarcopenia is a frequent condition present in chronic kidney disease (CKD) patients and is characterized by reduced muscle mass, muscle strength and physical performance. Uremic sarcopenia is related to an increased risk of hospitalization and all-causes mortality. This pathological condition is caused not only by advanced age but also by others factors typical of CKD patients such as metabolic acidosis, hemodialysis therapy, low-grade inflammatory status and inadequate protein-energy intake. Currently, treatments available to ameliorate uremic sarcopenia include nutritional therapy (oral nutritional supplement, inter/intradialytic parenteral nutrition, enteral nutrition, high protein and fiber diet and percutaneous endoscopic gastrectomy) and a personalized program of physical activity. The aim of this review is to analyze the possible benefits induced by nutritional therapy alone or in combination with a personalized program of physical activity, on onset and/or progression of uremic sarcopenia.
Collapse
Affiliation(s)
- Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (E.O.); (C.G.); (F.D.D.); (A.P.Z.); (N.D.D.)
- Correspondence: (A.N.); (G.M.); Tel.: +39-06-2090-2194 (A.N.); +39-06-2090-2191 (G.M.)
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (E.O.); (C.G.); (F.D.D.); (A.P.Z.); (N.D.D.)
- PhD School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Correspondence: (A.N.); (G.M.); Tel.: +39-06-2090-2194 (A.N.); +39-06-2090-2191 (G.M.)
| | - Eleonora Ottaviani
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (E.O.); (C.G.); (F.D.D.); (A.P.Z.); (N.D.D.)
| | - Cristina Guerriero
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (E.O.); (C.G.); (F.D.D.); (A.P.Z.); (N.D.D.)
| | - Francesca Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (E.O.); (C.G.); (F.D.D.); (A.P.Z.); (N.D.D.)
- PhD School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Anna Pietroboni Zaitseva
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (E.O.); (C.G.); (F.D.D.); (A.P.Z.); (N.D.D.)
| | - Nicola Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (E.O.); (C.G.); (F.D.D.); (A.P.Z.); (N.D.D.)
| |
Collapse
|
3
|
Sydney GI, Michalakis K, Nikas IP, Spartalis E, Paschou SA. The Effect of Pituitary Gland Disorders on Glucose Metabolism: From Pathophysiology to Management. Horm Metab Res 2021; 53:16-23. [PMID: 33045752 DOI: 10.1055/a-1258-8625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This review aims to explore, present, and discuss disorders of glucose metabolism implicated in pituitary gland diseases, the appropriate interventions, as well as the therapeutic challenges that may arise. Pituitary pathologies may dysregulate glucose homeostasis, as both the excess and deficiency of various pituitary hormones can affect glucose metabolism. Increased circulating levels of growth hormone, glucocorticoids or prolactin have been shown to mainly provoke hyperglycemic states, while hypopituitarism can be associated with both hyperglycemia and hypoglycemia. Addressing the primary cause of these disorders with the use of surgery, medical treatment or radiotherapy forms the cornerstone of current management strategies. Physicians should bear in mind that some such medications have an unfavorable effect on glucose metabolism too. When unsuccessful, or until the appropriate treatment of the underlying pituitary problem, the addition of established antidiabetic therapies might prove useful. Further studies aiming to discover more accurate and effective drug preparations in combination with optimal lifestyle management models will contribute to achieving a more successful glycemic control in these patients.
Collapse
Affiliation(s)
- Guy I Sydney
- Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Ilias P Nikas
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Eleftherios Spartalis
- 2nd Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula A Paschou
- School of Medicine, European University Cyprus, Nicosia, Cyprus
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Abstract
The growth plate is the cartilaginous portion of long bones where the longitudinal growth of the bone takes place. Its structure comprises chondrocytes suspended in a collagen matrix that go through several stages of maturation until they finally die, and are replaced by osteoblasts, osteoclasts, and lamellar bone.The process of endochondral ossification is coordinated by chondrocytes and a variety of humoral factors including growth hormone, parathyroid hormone, oestrogen, growth factors, cytokines, and various signalling pathways.Chondrocytes progress from a resting state to enter the phases of proliferation and hypertrophy. Under the influence of oestrogen, the proliferation of chondrocytes decreases as the resting chondrocytes are consumed. During the terminal phase of differentiation, cartilage is replaced by blood vessels and organized bone tissue, and once chondrocytes have died, the longitudinal growth of the bone ceases and the growth plate closes.The highly complex regulatory signals involved in this process are genetically determined, and genetic perturbations in any of the associated genes can result in abnormalities of bone growth. Hundreds of chondrodysplasias have been described, pointing to the complexity of the humoral control systems involved in endochondral ossification.While our knowledge of the mechanisms behind the various bone growth control systems is improving, a deeper understanding of the underlying processes could aid clinicians to better understand bone health and bone growth abnormalities. This review describes the current clinical research into the physiology of the growth plate. Cite this article: EFORT Open Rev 2020;5:498-507. DOI: 10.1302/2058-5241.5.190088.
Collapse
Affiliation(s)
- Yücel Ağırdil
- Department of Orthopaedics and Traumatology, İzzet Baysal State Hospital, Bolu, Turkey
| |
Collapse
|
5
|
Stroup BM, Marom R, Li X, Hsu CW, Chang CY, Truong LD, Dawson B, Grafe I, Chen Y, Jiang MM, Lanza D, Green JR, Sun Q, Barrish JP, Ani S, Christiansen AE, Seavitt JR, Dickinson ME, Kheradmand F, Heaney JD, Lee B, Burrage LC. A global Slc7a7 knockout mouse model demonstrates characteristic phenotypes of human lysinuric protein intolerance. Hum Mol Genet 2020; 29:2171-2184. [PMID: 32504080 PMCID: PMC7399531 DOI: 10.1093/hmg/ddaa107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
Lysinuric protein intolerance (LPI) is an inborn error of cationic amino acid (arginine, lysine, ornithine) transport caused by biallelic pathogenic variants in SLC7A7, which encodes the light subunit of the y+LAT1 transporter. Treatments for the complications of LPI, including growth failure, renal disease, pulmonary alveolar proteinosis, autoimmune disorders and osteoporosis, are limited. Given the early lethality of the only published global Slc7a7 knockout mouse model, a viable animal model to investigate global SLC7A7 deficiency is needed. Hence, we generated two mouse models with global Slc7a7 deficiency (Slc7a7em1Lbu/em1Lbu; Slc7a7Lbu/Lbu and Slc7a7em1(IMPC)Bay/em1(IMPC)Bay; Slc7a7Bay/Bay) using CRISPR/Cas9 technology by introducing a deletion of exons 3 and 4. Perinatal lethality was observed in Slc7a7Lbu/Lbu and Slc7a7Bay/Bay mice on the C57BL/6 and C57BL/6NJ inbred genetic backgrounds, respectively. We noted improved survival of Slc7a7Lbu/Lbu mice on the 129 Sv/Ev × C57BL/6 F2 background, but postnatal growth failure occurred. Consistent with human LPI, these Slc7a7Lbu/Lbu mice exhibited reduced plasma and increased urinary concentrations of the cationic amino acids. Histopathological assessment revealed loss of brush border and lipid vacuolation in the renal cortex of Slc7a7Lbu/Lbu mice, which combined with aminoaciduria suggests proximal tubular dysfunction. Micro-computed tomography of L4 vertebrae and skeletal radiographs showed delayed skeletal development and suggested decreased mineralization in Slc7a7Lbu/Lbu mice, respectively. In addition to delayed skeletal development and delayed development in the kidneys, the lungs and liver were observed based on histopathological assessment. Overall, our Slc7a7Lbu/Lbu mouse model on the F2 mixed background recapitulates multiple human LPI phenotypes and may be useful for future studies of LPI pathology.
Collapse
Affiliation(s)
- Bridget M Stroup
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| | - Xiaohui Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cheng-Yen Chang
- Department of Medicine-Pulmonary, Baylor College of Medicine, Houston, TX 77030, USA
| | - Luan D Truong
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ingo Grafe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Center for Healthy Aging, University Clinic, Dresden D-01307, Germany
| | - Yuqing Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Denise Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennie Rose Green
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qin Sun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics, Houston, TX 77021, USA
| | - J P Barrish
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Safa Ani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Audrey E Christiansen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - John R Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Farrah Kheradmand
- Department of Medicine-Pulmonary, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|