1
|
Hidayath M, Lavanya BSK, Namitha SN, Chandrashekara MS, Pandit SA. Mapping of uranium concentrations in groundwater samples of Davanagere district, Karnataka, India, and assessment of effective dose to the population. RADIATION PROTECTION DOSIMETRY 2024; 200:994-1002. [PMID: 39016496 DOI: 10.1093/rpd/ncae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 07/18/2024]
Abstract
The geomorphology, geohydrology, lithology and ecological features of the area influence the uranium content in groundwater. The groundwater samples were collected from 75 locations of Davanagere district, Karnataka, India. Uranium analysis in the water samples was done using LED fluorimeter, based on fluorescence of dissolved uranyl salts. The uranium concentration in water samples varied from 18.41 to 173.21 μg L-1 with a geometric mean of 39.69 μg L-1. Higher uranium concentration in groundwater was observed in Harapanahalli and Jagalur taluk of Davanagere district, which falls in the Eastern Dharwar Craton, which is generally known to contain more radioactive minerals than the Western Dharwar Craton. The effective ingestion dose and lifetime cancer risk to the population were calculated using the obtained uranium concentration in drinking water.
Collapse
Affiliation(s)
- Mohamed Hidayath
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | | | - Shivachara N Namitha
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | | | - Sundar Achuta Pandit
- Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
2
|
Wang Y, Cai W, Xiong L, Pei J, Zhang Z, Xu L, Liu Y, Cao X. Phosphorylated hollow carbon-based material derived from ZIF-8 and its U(VI) adsorptive performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22073-22086. [PMID: 38400975 DOI: 10.1007/s11356-024-32448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Inspired by its large specific surface area, and tunable chemical and physical properties, a hollow carbon-based mater8ial derived from ZIF-8 with phosphate groups (HCM-PO4) was prepared for the elimination of U(VI). The structural and surface features of HCM and HCM-PO4 were thoroughly examined using techniques such as SEM, TEM, and XRD. The resulting carbon material, HCM-PO4, exhibits a higher BET surface area of 571.2 m2·g-1, featuring a hollow structure. The removal procedure of HCM-PO4 for U(VI) aligns with the quasi-secondary kinetic model. Furthermore, the theoretical sorption capacity of HCM-PO4 was found to be 482.30 mg·g-1 at 298.15 K. The results obtained from XPS, FT-IR, and EDS analysis of HCM-PO4 after adsorption revealed the coordination of the phosphate group for U(VI), contributing significantly to the adsorption process. In brief, the HCM-PO4 demonstrates excellent adsorptive ability, positioning it as a hopeful expectant to remove U(VI) from wastewater.
Collapse
Affiliation(s)
- Youqun Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Engineering Research Center of Nuclear Technology Application (East, China University of Technology), Ministry of Education, Nanchang, 330013, Jiangxi, China
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Weiqian Cai
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Lingshan Xiong
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Jiaying Pei
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Zhibin Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Engineering Research Center of Nuclear Technology Application (East, China University of Technology), Ministry of Education, Nanchang, 330013, Jiangxi, China
| | - Lin Xu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Engineering Research Center of Nuclear Technology Application (East, China University of Technology), Ministry of Education, Nanchang, 330013, Jiangxi, China
| | - Yunhai Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Engineering Research Center of Nuclear Technology Application (East, China University of Technology), Ministry of Education, Nanchang, 330013, Jiangxi, China
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Xiaohong Cao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China.
- Engineering Research Center of Nuclear Technology Application (East, China University of Technology), Ministry of Education, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
3
|
Rout S, Patra A, Yadav S, Wagh S, Pulhani V, Saradhi IV, Kumar AV. Uranium bioavailability in soil pore water: A long-term investigation in a contaminated soil mesocosm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167899. [PMID: 37858822 DOI: 10.1016/j.scitotenv.2023.167899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Uranium in soil can exist in both (IV) and (VI) oxidation states, distributed among different soil fractions (exchangeable, carbonate, oxidizable, reducible, and residual). Following its release from these fractions, uranium enters the soil pore water, becoming bioavailable and potentially posing risks due to its radio and chemical toxicity. Given the significant health and environmental risks associated with uranium, it is crucial to understand its behaviour in contaminated soil pore water and how it changes over time, especially in response to seasonal variations. To address this issue, study was designed to investigate the temporal changes in uranium availability in soil pore water, with a special focus on effect of seasonal variations and biogeochemical reactions that govern the bioavailability of uranium in a contaminated soil mesocosm. This field investigation was carried out for two consecutive years, and revealed that, seasonal variation has a significant effect on the bioavailability of the uranium in the upper soil layers (<30 cm). The biogenic NO3- induced oxidative dissolution of uranium was found to be the predominant reaction causing the dissolution of uranium into soil pore water, followed by ion-exchange in upper layer, whereas at higher depths (30 cm < d < 70 cm) bioavailability is predominantly controlled by ion-exchange reaction. Furthermore, the study shows that at upper layers bioavailability is high during the summer, which is attributed to higher rate of biogenic denitrification and ion exchange reactions. Fast vertical migration of uranium in the soil column is attributed to formation of stable mobile species such as hydroxo‑carbonato ((UO2)xCO3(OH)y-), hydroxo (UO2)x(OH)y and carbonato (UO2CO3) complexes, identified by speciation modelling. For the first time, this study reports the process controlling uranium behaviour in soil pore water and the effect of seasonal variation on it in a contaminated soil. The findings are essential for assessing its potential radiological impact and remediation planning.
Collapse
Affiliation(s)
- Sabyasachi Rout
- Environmental Monitoring and Assessment Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National University, Mumbai 400094, India.
| | - Akhaya Patra
- Environmental Monitoring and Assessment Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sonali Yadav
- Environmental Monitoring and Assessment Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National University, Mumbai 400094, India
| | - Shambhaji Wagh
- Environmental Monitoring and Assessment Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Vandana Pulhani
- Environmental Monitoring and Assessment Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National University, Mumbai 400094, India
| | - I V Saradhi
- Environmental Monitoring and Assessment Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - A V Kumar
- Environmental Monitoring and Assessment Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National University, Mumbai 400094, India
| |
Collapse
|
4
|
Arkoc O. Health risk assessment of toxic elements in groundwater in a major industrial and agricultural basin, (East of Ergene Basin, Turkey). INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1033-1046. [PMID: 35469512 DOI: 10.1080/09603123.2022.2068510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Ergene Basin is an important agricultural and industrial region and an important water resource. In this current research, groundwater quality of east of Ergene Basin was evaluated using water quality index (WQI), and health risk due to groundwater consumption was assessed with HQ, HI, and CR. Multivariate statistical analyses were performed to evaluate the multiple effects of pollutants on groundwater. Uncertainty and sensitivity analyses were also performed. All samples were in the "excellent" WQI category. Health risk values for adults and children were below the safe limit, both from digestion and dermal exposure. CR values of As in some samples exceeded the threshold value, both for adults and children. Sensitivity analysis revealed that ingestion rate and exposure frequency for adults and exposure duration and concentration of toxic metal for children were the most sensitive variables affecting probabilistic health risk.
Collapse
Affiliation(s)
- Orhan Arkoc
- Vocational School of Technical Sciences, Kirklareli University, Kirklareli, Turkey
| |
Collapse
|
5
|
Menaria T, Tiwari SN, Patra AK, Saradhi IV, Kumar AV, Khangarot RK, Rathore DS. Evaluation of uranium content and annual ingestion dose in the surface and ground water bodies of Chittorgarh, Rajasthan, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1043. [PMID: 37589894 DOI: 10.1007/s10661-023-11660-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
Uranium, naturally occurring radionuclide is chemotoxic and nephrotoxic beyond acceptable limit. The presence of uranium beyond acceptable limit in surface and ground water, adversely affecting people's health. In the present investigation, the uranium concentration in surface and ground water of Chittorgarh, Rajasthan was studied along with the physico-chemical parameters of water (n = 87). The ground water was further sub-categorised into well water, handpump water, and borewell water. The mean uranium concentration was observed at 2.5 ± 1.9 µgL-1 and 16.5 ± 1.4 µgL-1 in the surface and ground water samples, respectively. In sub-categories of ground water, the highest uranium concentration was found in borewell water (23.3 ± 17.0 µgL-1), followed by handpump water (13.5 ± 9.1 µgL-1) and well water (6.0 ± 5.5 µgL-1). The uranium concentration was correlated significantly with the depth of the ground water table. It also correlated significantly with electrical conductivity, total dissolved solids and nitrate concentration. 100% of surface water and 88.9% of ground water samples carried uranium concentration within the acceptable limit of WHO (30 µgL-1). The annual ingestion dose was found at 3.8 µSvy-1 (for males) and 2.8 µSvy-1 (for females) in surface water and 25.4 µSvy-1 (for males) and 18.5 µSvy-1 (for females) in ground water. In the sub-categories of the ground water sample, the annual ingestion dose followed the trend in males 35.8 µSvy-1 (borewell water) > 20.7 µSvy-1 (hand pump water) > 9.2 µSvy-1 (well water) and in females 26.1 µSvy-1 (borewell water) > 15.1 µSvy-1 (hand pump water) > 6.7 µSvy-1 (well water).
Collapse
Affiliation(s)
- Tejpal Menaria
- Environmental Monitoring and Assessment Division, Bhabha Atomic Research Center, Mumbai, India
| | - Shailesh Nath Tiwari
- Environmental Monitoring and Assessment Division, Bhabha Atomic Research Center, Mumbai, India
| | - Akshay Kumar Patra
- Environmental Monitoring and Assessment Division, Bhabha Atomic Research Center, Mumbai, India
| | - Inampudi Vijaya Saradhi
- Environmental Monitoring and Assessment Division, Bhabha Atomic Research Center, Mumbai, India
| | - A Vinod Kumar
- Environmental Monitoring and Assessment Division, Bhabha Atomic Research Center, Mumbai, India
| | | | - Devendra Singh Rathore
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, India.
- Department of Environmental Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, India.
| |
Collapse
|
6
|
Rani A, Parashar K, Meena R, Sharma SK, Tiwari KK, Ajaykumar V, Mondal NC. Hydrochemical characteristics and potential health risks of nitrate, fluoride, and uranium in Kota district, Rajasthan, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82485-82505. [PMID: 37326727 DOI: 10.1007/s11356-023-28071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
This study examines the uranium, fluoride, and nitrate dispositions in groundwater as well as potential health risks in Kota district, Rajasthan, India. Total 198 groundwater samples were collected in both dry and wet periods and analyzed for physicochemical parameters along with U, F-, and NO3- using standard methods. Results indicate that the electrical conductivity, total dissolved solids, total hardness, alkalinity, Ca2+, Mg2+, HCO3-, Cl-, NO3-, and F- exceed the WHO standard limits of drinking water in both periods. Uranium concentration is at the broader of drinking water permissible limit (30 μg/L) and found about 1.05 times more. Nitrate and fluoride concentrations ranged from 9.8 to 412.0 mg/L and 0.1 to 4.0 mg/L for the dry season, while in the wet period, they varied from 10.0 to 954.0 mg/L and 0.1 to 3.5 mg/L, respectively. Correlation studies show a significantly strong positive correlation between uranium and total alkalinity and carbonate. Natural background levels (NBLs) were explored to assess the source of groundwater pollution. It shows that the second inflection points of NBLs estimated for NO3-, F-, and U are about 168 mg/L, 1.2 mg/L, and 7.3 μg/L, respectively, during the experimental period. The USEPA technique was used to evaluate the non-carcinogenic health risks associated with consuming the NO3- and F--contaminated groundwater. The health risks in Kota district show that children are more at risk than adults. The risk assessment of uranium reveals that the excess cancer risk (ECR) and hazard quotient (HQ) are found to be below the standard limits, but a high concentration of uranium (31.6 μg/L) is observed at Amarpura village of Digod block. This study will provide a baseline of uranium, fluoride, and nitrate dispositions in groundwater for simulating mass transport model and safe use of drinking water.
Collapse
Affiliation(s)
- Ashu Rani
- Department of Pure and Applied Chemistry, University of Kota, Rajasthan, Kota, India
| | - Kiran Parashar
- Department of Pure and Applied Chemistry, University of Kota, Rajasthan, Kota, India
| | - Ramet Meena
- Department of Chemistry, Govt. College Kota, Rajasthan, Kota, India
| | - Sushil K Sharma
- Department of Pure and Applied Chemistry, University of Kota, Rajasthan, Kota, India
| | - Kamal K Tiwari
- Department of Chemistry, National Institute of Technology, Srinagar Garhwal, Uttarakhand, India
| | - Venkatarao Ajaykumar
- Earth Process Modeling Group, CSIR-National Geophysical Research Institute, Hyderabad, India
| | - Nepal C Mondal
- Earth Process Modeling Group, CSIR-National Geophysical Research Institute, Hyderabad, India.
- Electrical & Heliborne Geophysics Group, CSIR-National Geophysical Research Institute, Hyderabad, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
7
|
Raja V, Neelakantan MA. Toxic uranium contamination in groundwater of Thoothukudi district, India: Evaluation of health risks using the geochemical and statistical approach. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2150648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Velayutham Raja
- Chemistry Research Centre, National Engineering College, Kovilpatti, India
| | | |
Collapse
|
8
|
Dutta S, Barman R, Radhapyari K, Datta S, Lale K, Ray B, Chakraborty T, Srivastava SK. Potentially toxic elements in groundwater of the upper Brahmaputra floodplains of Assam, India: water quality and health risk. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:923. [PMID: 36258132 DOI: 10.1007/s10661-022-10637-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
This paper presents the groundwater quality assessment of the upper Brahmaputra floodplains of Assam on a seasonal basis. A total of 88 samples were analyzed for the presence of potentially toxic elements in two seasons. In addition, an attempt is made to identify any possible associated health risks to the residents via the drinking water pathway. The study reveals the presence of various potentially toxic elements, in particular, manganese, iron, nickel, and fluoride concentration exceeding the drinking water specifications set by BIS and WHO drinking water standards. The degree of groundwater contamination was assessed using the Water Quality Index, Heavy metal Pollution Index, Heavy metal Evaluation Index, and Degree of Contamination. The spatial distribution maps of groundwater quality were prepared using geographical information system. The non-carcinogenic health risk was evaluated using hazard quotients and hazard index as per the United States Environmental Protection Agency methodology. The hazard quotient of fluoride and manganese have values > 1, which exceeds USEPA recommended benchmark. The health risk assessment identified that the risk was highest during the pre-monsoon season, and the child population is more vulnerable to non-carcinogenic risk than the adults. Findings of cancer risk identified that pre-monsoon groundwater samples from the Golaghat District pose the highest health risks in the upper Brahmaputra floodplains. The risk is highest in the southwest of the study area, followed by the south and then by the north.
Collapse
Affiliation(s)
- Snigdha Dutta
- Central Ground Water Board, North Eastern Region, Guwahati, 781035, Assam, India
| | - Rinkumoni Barman
- Central Ground Water Board, North Eastern Region, Guwahati, 781035, Assam, India
| | - Keisham Radhapyari
- Central Ground Water Board, North Eastern Region, Guwahati, 781035, Assam, India.
| | - Suparna Datta
- Central Ground Water Board, Eastern Region, Kolkata, 700091, West Bengal, India
| | - Kiran Lale
- Central Ground Water Board, North Western Region, Chandigarh, 160019, India
| | - Biplab Ray
- Central Ground Water Board, North Eastern Region, Guwahati, 781035, Assam, India
| | - Tapan Chakraborty
- Central Ground Water Board, State Unit Office, Shillong, 793001, Meghalaya, India
- Central Ground Water Board, Central Head Quarters, Faridabad, 121001, Haryana, India
| | | |
Collapse
|
9
|
Rakib MA, Quraishi SB, Newaz MA, Sultana J, Bodrud-Doza M, Rahman MA, Patwary MA, Bhuiyan MAH. Groundwater quality and human health risk assessment in selected coastal and floodplain areas of Bangladesh. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 249:104041. [PMID: 35759889 DOI: 10.1016/j.jconhyd.2022.104041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Groundwater aquifers are a common source of drinking water in Bangladesh. However, groundwater contamination is a major public health concern across the country. This research aims to examine the groundwater quality and health concerns using a random sampling process. Multivariate statistical and health risk analyses of elements were performed to determine the source of contaminants and their effects on human health. A total of 24 parameters were analyzed, where Na+, NH4+, K+, Mg2+, F-, NO3-, Mn, Fe, Se, U, and As concentrations were found to be high in different sampling points compared to the Department of Environment of Bangladesh (DoE), and the World Health Organization (WHO) groundwater quality standards. Principal Component Analysis (PCA) and Cluster Analysis (CA) identified the dominant and potential sources of contaminants in the groundwater aquifer, including geogenic, salinity intrusion, industrial, and agricultural. The results of the degree of contamination level (Cd) and the heavy metal pollution index (HPI) showed that 28% and 12% of the sampling points had high levels of heavy metal contamination, indicating a high risk for human health issues. Cr concentrations were found to have a higher carcinogenic (cancer) risk than As and Cd concentrations. Hazard quotient (HQ) and hazard index (HI) scores expressed the hazardous status and possible chronic effects in the context of individual sampling points. For both child and adults, 44% and 36% of the sampling points had a high HI score, indicating the possibility of long-term health risks for local populations.
Collapse
Affiliation(s)
- M A Rakib
- Department of Disaster Management, Begum Rokeya University, Rangpur, Bangladesh; Graduate Program in Sustainability Science-Global Leadership Initiatives, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan.
| | - Shamshad B Quraishi
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Center, Dhaka 1000, Bangladesh
| | - Md Asif Newaz
- Environmental Science Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Jolly Sultana
- Department of Physics, Khulna University of Engineering and Technology, Khulna, Bangladesh
| | - Md Bodrud-Doza
- Climate Change Programme (CCP), BRAC, Dhaka 1212, Bangladesh
| | - Md Atiur Rahman
- Department of Geography and Environmental Science, Begum Rokeya University, Rangpur, Bangladesh
| | - Masum A Patwary
- Environmental Science and Disaster Management, Daffodil International University, Dhaka, Bangladesh
| | - Mohammad A H Bhuiyan
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| |
Collapse
|
10
|
Uranium: occurrence, distribution across India and its potential health effects. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08373-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Gandhi TP, Sampath PV, Maliyekkal SM. A critical review of uranium contamination in groundwater: Treatment and sludge disposal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153947. [PMID: 35189244 DOI: 10.1016/j.scitotenv.2022.153947] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Dissolved uranium in groundwater at high concentrations is an emerging global threat to human and ecological health due to its radioactivity and chemical toxicity. Uranium can enter groundwater by geochemical reactions, natural deposition from minerals, mining, uranium ore processing, and spent fuel disposal. Although much progress has been made in uranium remediation in recent years, most published reviews on uranium treatment have focused on specific methods, particularly adsorption. This article systematically reviews the major treatment technologies, explains their mechanism and progress of uranium removal, and compares their performance under various environmental conditions. Of all treatment methods, adsorption has received much attention due to its ease of use and adaptability under various conditions. However, salinity and competition from other ions limit its application in actual field conditions. Biosorption and bioremediation are also promising methods due to their low-cost and chemical-free operation. Strong base anion exchange resins are more effective at typical groundwater pH conditions. Advanced oxidation processes like photocatalysis produce less sludge and are effective even at low uranium concentrations. Electrocoagulation shows significantly improved performance when organic ligands are added prior to treatment. The significant advantages of membrane filtration are high removal efficiency and the ability to recover uranium. While each technology has its merits and demerits, no single technology is entirely suitable under all conditions. One major area of concern with all technologies is the need to dispose of liquid and solid waste generated after treatment safely. Future research must focus on developing hybrid and state-of-the-art technologies for effective and sustainable uranium removal from groundwater. Developing holistic management strategies for uranium removal will hinge on understanding its speciation, mechanisms of fate and transport, and socio-economic conditions of the affected areas.
Collapse
Affiliation(s)
- T Pushparaj Gandhi
- Department of Civil and Environmental Engineering, Indian Institute of Technology Tirupati, Yerpedu, 517619, India
| | - Prasanna Venkatesh Sampath
- Department of Civil and Environmental Engineering, Indian Institute of Technology Tirupati, Yerpedu, 517619, India
| | - Shihabudheen M Maliyekkal
- Department of Civil and Environmental Engineering, Indian Institute of Technology Tirupati, Yerpedu, 517619, India.
| |
Collapse
|
12
|
Mehra R, Kaur S, Chand S, Charan C, Mehta M. Dosimetric assessment of primordial radionuclides in soil and groundwater of Sikar district, Rajasthan. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|