1
|
Ayaz M, Zhao JT, Zhao W, Chi YK, Ali Q, Ali F, Khan AR, Yu Q, Yu JW, Wu WC, Qi RD, Huang WK. Biocontrol of plant parasitic nematodes by bacteria and fungi: a multi-omics approach for the exploration of novel nematicides in sustainable agriculture. Front Microbiol 2024; 15:1433716. [PMID: 39132133 PMCID: PMC11316259 DOI: 10.3389/fmicb.2024.1433716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Plant parasitic nematodes (PPNs) pose a significant threat to global crop productivity, causing an estimated annual loss of US $157 billion in the agriculture industry. While synthetic chemical nematicides can effectively control PPNs, their overuse has detrimental effects on human health and the environment. Biocontrol agents (BCAs), such as bacteria and fungi in the rhizosphere, are safe and promising alternatives for PPNs control. These BCAs interact with plant roots and produce extracellular enzymes, secondary metabolites, toxins, and volatile organic compounds (VOCs) to suppress nematodes. Plant root exudates also play a crucial role in attracting beneficial microbes toward infested roots. The complex interaction between plants and microbes in the rhizosphere against PPNs is mostly untapped which opens new avenues for discovering novel nematicides through multi-omics techniques. Advanced omics approaches, including metagenomics, transcriptomics, proteomics, and metabolomics, have led to the discovery of nematicidal compounds. This review summarizes the status of bacterial and fungal biocontrol strategies and their mechanisms for PPNs control. The importance of omics-based approaches for the exploration of novel nematicides and future directions in the biocontrol of PPNs are also addressed. The review highlighted the potential significance of multi-omics techniques in biocontrol of PPNs to ensure sustainable agriculture.
Collapse
Affiliation(s)
- Muhammad Ayaz
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Jing-Tian Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhao
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yuan-Kai Chi
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Qurban Ali
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Farman Ali
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdur Rashid Khan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qing Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing-Wen Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen-Cui Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ren-De Qi
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Wen-Kun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Comparison of the Rhizobacteria Serratia sp. H6 and Enterobacter sp. L7 on Arabidopsis thaliana Growth Promotion. Curr Microbiol 2023; 80:117. [PMID: 36853512 DOI: 10.1007/s00284-023-03227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
The genera Serratia and Enterobacter belong to the Enterobacteriaceae family and several members have been described as plant growth-promoting rhizobacteria (PGPR). However, how these bacteria influence growth and development is unclear. We performed in vitro interaction assays between either Serratia sp. H6 or Enterobacter sp. L7 with Arabidopsis thaliana seedlings to analyze their effects on plant growth. In experiments of co-cultivation distant from the root tip, Enterobacter sp. decreased root length, markedly increased lateral root number, and slightly increased plant biomass by 33%, 230%, and 69%, respectively, and relative to the control. The volatile organic compounds (VOCs) emitted from Serratia sp. H6 but not those from Enterobacter sp. L7 promoted Arabidopsis growth. A blend of volatile compounds from the two bacteria had effects on plant growth that were similar to those observed for volatile compounds from H6 only. At several densities, the direct contact of roots with Serratia sp. H6 had phytostimulant properties but Enterobacter sp. L7 had clear deleterious effects. Together, these results suggest that direct contact and VOCs of Serratia sp. H6 were the main mechanisms to promote plant growth of A. thaliana, while diffusible compounds of Enterobacter sp. L7 were predominant in their PGPR activity.
Collapse
|
3
|
Tian H, Koski TM, Zhao L, Liu Z, Sun J. Invasion History of the Pinewood Nematode Bursaphelenchus xylophilus Influences the Abundance of Serratia sp. in Pupal Chambers and Tracheae of Insect-Vector Monochamus alternatus. FRONTIERS IN PLANT SCIENCE 2022; 13:856841. [PMID: 35668811 PMCID: PMC9164154 DOI: 10.3389/fpls.2022.856841] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/30/2022] [Indexed: 06/01/2023]
Abstract
Pine wilt disease (PWD) has caused extensive mortality in pine forests worldwide. This disease is a result of a multi-species interaction among an invasive pinewood nematode (PWN) Bursaphelenchus xylophilus, its vector Monochamus sp. beetle, and the host pine tree (Pinus sp.). In other systems, microbes have been shown to attenuate negative impacts on invasive species after the invasion has reached a certain time point. Despite that the role of PWD associated microbes involved in the PWD system has been widely studied, it is not known whether similar antagonistic "hidden microbial players" exist in this system due to the lack of knowledge about the potential temporal changes in the composition of associated microbiota. In this study, we investigated the bacteria-to-fungi ratio and isolated culturable bacterial isolates from pupal chambers and vector beetle tracheae across five sampling sites in China differing in the duration of PWN invasion. We also tested the pathogenicity of two candidate bacteria strains against the PWN-vector beetle complex. A total of 118 bacterial species belonging to 4 phyla, 30 families, and 54 genera were classified based on 16S sequencing. The relative abundance of the genus Serratia was lower in pupal chambers and tracheae in newly PWN invaded sites (<10 years) compared to the sites that had been invaded for more than 20 years. Serratia marcescens strain AHPC29 was widely distributed across all sites and showed nematicidal activity against PWN. The insecticidal activity of this strain was dependent on the life stage of the vector beetle Monochamus alternatus: no insecticidal activity was observed against final-instar larvae, whereas S. marcescens was highly virulent against pupae. Our findings improved the understanding of the temporal variation in the microbial community associated with the PWN-vector beetle complex and the progress of PWD and can therefore facilitate the development of biological control agents against PWN and its vector beetle.
Collapse
Affiliation(s)
- Haokai Tian
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Tuuli-Marjaana Koski
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ziying Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
4
|
The Role of Serratomolide-like Amino Lipids Produced by Bacteria of Genus Serratia in Nematicidal Activity. Pathogens 2022; 11:pathogens11020198. [PMID: 35215141 PMCID: PMC8880026 DOI: 10.3390/pathogens11020198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/13/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Bursaphelenchus xylophilus, also known as pinewood nematode (PWN), is the pathogenic agent of pine wilt disease (PWD), which affects pine trees around the world. Infection spread globally through international wood commerce and locally by vector beetles, threatening the wood world economy. As climate changes, more countries are becoming susceptible to PWD and, to prevent disease spread and limit economic and ecological losses, better knowledge about this pathogenic agent is needed. Serratia strains, present in the endophytic community of pine trees and carried by PWN, may play an important role in PWD. This work aimed to better understand the interaction between Serratia strains and B. xylophilus and to assess the nematicidal potential of serratomolide-like molecules produced by Serratia strains. Serrawettin gene presence was evaluated in selected Serratia strains. Mortality tests were performed with bacteria supernatants, and extracted amino lipids, against Caenorhabditis elegans (model organism) and B. xylophilus to determine their nematicidal potential. Attraction tests were performed with C. elegans. Concentrated supernatants of Serratia strains with serratamolide-like lipopeptides were able to kill more than 77% of B. xylophilus after 72 h. Eight specific amino lipids showed a high nematicidal activity against B. xylophilus. We conclude that, for some Serratia strains, their supernatants and specific amino lipids showed nematicidal activity against B. xylophilus.
Collapse
|
5
|
Jahn L, Storm-Johannsen L, Seidler D, Noack J, Gao W, Schafhauser T, Wohlleben W, van Berkel WJH, Jacques P, Kar T, Piechulla B, Ludwig-Müller J. The Endophytic Fungus Cyanodermella asteris Influences Growth of the Nonnatural Host Plant Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:49-63. [PMID: 34615362 DOI: 10.1094/mpmi-03-21-0072-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cyanodermella asteris is a fungal endophyte from Aster tataricus, a perennial plant from the northern part of Asia. Here, we demonstrated an interaction of C. asteris with Arabidopsis thaliana, Chinese cabbage, rapeseed, tomato, maize, or sunflower resulting in different phenotypes such as shorter main roots, massive lateral root growth, higher leaf and root biomass, and increased anthocyanin levels. In a variety of cocultivation assays, it was shown that these altered phenotypes are caused by fungal CO2, volatile organic compounds, and soluble compounds, notably astins. Astins A, C, and G induced plant growth when they were individually included in the medium. In return, A. thaliana stimulates the fungal astin C production during cocultivation. Taken together, our results indicate a bilateral interaction between the fungus and the plant. A stress response in plants is induced by fungal metabolites while plant stress hormones induced astin C production of the fungus. Interestingly, our results not only show unidirectional influence of the fungus on the plant but also vice versa. The plant is able to influence growth and secondary metabolite production in the endophyte, even when both organisms do not live in close contact, suggesting the involvement of volatile compounds.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Linda Jahn
- Plant Physiology, Faculty of Biology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Lisa Storm-Johannsen
- Plant Physiology, Faculty of Biology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Diana Seidler
- Plant Physiology, Faculty of Biology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Jasmin Noack
- Plant Physiology, Faculty of Biology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Wei Gao
- Biopsychology, Faculty of Psychology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Thomas Schafhauser
- Plant Physiology, Faculty of Biology, Technische Universität Dresden, 01062 Dresden, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Microbiology and Biotechnology, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Wolfgang Wohlleben
- Interfaculty Institute of Microbiology and Infection Medicine, Microbiology and Biotechnology, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Philippe Jacques
- MiPI, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux, Belgium
| | - Tambi Kar
- Lipofabrik, Cité Scientifique, Bât. Polytech-Lille, Avenue Langevin 59 655, Villeneuve d'Ascq, France
| | - Birgit Piechulla
- Institute for Biological Science, Biochemistry, University of Rostock, 18059 Rostock, Germany
| | - Jutta Ludwig-Müller
- Plant Physiology, Faculty of Biology, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
6
|
Nordstedt NP, Jones ML. Genomic Analysis of Serratia plymuthica MBSA-MJ1: A Plant Growth Promoting Rhizobacteria That Improves Water Stress Tolerance in Greenhouse Ornamentals. Front Microbiol 2021; 12:653556. [PMID: 34046022 PMCID: PMC8144289 DOI: 10.3389/fmicb.2021.653556] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/14/2021] [Indexed: 12/26/2022] Open
Abstract
Water stress decreases the health and quality of horticulture crops by inhibiting photosynthesis, transpiration, and nutrient uptake. Application of plant growth promoting rhizobacteria (PGPR) can increase the growth, stress tolerance, and overall quality of field and greenhouse grown crops subjected to water stress. Here, we evaluated Serratia plymuthica MBSA-MJ1 for its ability to increase plant growth and quality of Petunia × hybrida (petunia), Impatiens walleriana (impatiens), and Viola × wittrockiana (pansy) plants recovering from severe water stress. Plants were treated weekly with inoculum of MBSA-MJ1, and plant growth and quality were evaluated 2 weeks after recovery from water stress. Application of S. plymuthica MBSA-MJ1 increased the visual quality and shoot biomass of petunia and impatiens and increased the flower number of petunia after recovery from water stress. In addition, in vitro characterizations showed that MBSA-MJ1 is a motile bacterium with moderate levels of antibiotic resistance that can withstand osmotic stress. Further, comprehensive genomic analyses identified genes putatively involved in bacterial osmotic and oxidative stress responses and the synthesis of osmoprotectants and vitamins that could potentially be involved in increasing plant water stress tolerance. This work provides a better understanding of potential mechanisms involved in beneficial plant-microbe interactions under abiotic stress using a novel S. plymuthica strain as a model.
Collapse
Affiliation(s)
- Nathan P Nordstedt
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Michelle L Jones
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
7
|
Migunova VD, Sasanelli N. Bacteria as Biocontrol Tool against Phytoparasitic Nematodes. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10020389. [PMID: 33670522 PMCID: PMC7922938 DOI: 10.3390/plants10020389] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/07/2021] [Accepted: 02/15/2021] [Indexed: 05/04/2023]
Abstract
Phytoparasitic nematodes cause severe damage and yield losses to numerous agricultural crops. Considering the revision of the EU legislation on the use of pesticides on agricultural crops, control strategies with low environmental impact are required. The approach based on the use of bacteria seems particularly promising as it also helps to reduce the applied amounts of chemicals and stabilize ecological changes. This paper gives an overview of the main types of bacteria that can be used as biological control agents against plant parasitic nematodes and their interrelationships with plants and other organisms. Many experiments have given positive results of phytoparasitic nematode control by bacteria, showing possible prospects for their application. In vitro, greenhouse and field experiments have shown that bacteria can regulate the development of ecto- and endoparasitic nematodes by different modes of action. Triggering the induction of plant defense mechanisms by bacteria is seen as the optimum tool because the efficacy of bacterial treatment can be higher than that of chemical pesticides or at least close to it. Moreover, bacterial application produces additional positive effects on growth stimulation, raises yields and suppresses other pathogenic microorganisms. Commercial formulations, both as single bacterial strains and bacterial complexes, are examined.
Collapse
Affiliation(s)
- Varvara D. Migunova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
- Correspondence:
| | - Nicola Sasanelli
- Institute for Sustainable Plant Protection, CNR, Via G. Amendola 122/D, 70126 Bari, Italy;
| |
Collapse
|
8
|
Hennessy RC, Dichmann SI, Martens HJ, Zervas A, Stougaard P. Serratia inhibens sp. nov., a new antifungal species isolated from potato (Solanum tuberosum). Int J Syst Evol Microbiol 2020; 70:4204-4211. [DOI: 10.1099/ijsem.0.004270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A novel bacterial strain, S40T, with strong antifungal activity was isolated from the rhizosphere of green potato collected from Zealand, Denmark. Polyphasic analysis with a combined phenotypic, phylogenetic and genomic approach was used to characterize S40T. Phylogenetic analysis based on the 16S rRNA gene and MLSA (concatenated gyrB, rpoD, infB and atpD sequences) showed that strain S40T was affiliated with the genus
Serratia
and with
Serratia plymuthica
PRI-2C as the closest related strain [average nucleotide identity (ANI), 99.26 %; DNA–DNA hybridization (dDDH), 99.20%]. However, whole genome sequence analyses revealed that S40T and
S. plymuthica
PRI-2C genomes displayed lower similarities when compared to all other
S. plymuthica
strains (ANI ≤94.34 %; dDDH ≤57.6 % relatedness). The DNA G+C content of strain S40T was determined to be 55.9 mol%. Cells of the strain were Gram-negative, rod-shaped, facultative anaerobic and displayed growth at 10–37 °C (optimum, 25–30 °C) and at pH 6–9 (optimum, pH 6–7). Major fatty acids were C16 : 0 (27.9 %), summed feature (C16 : 1
ω6c/C16 : 1 ω7c; 18.0 %) and C17 : 0 cyclo (15.1 %). The respiratory quinone was determined to be Q8 (94 %) and MK8 (95 %) and the major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The results of phenotypic, phylogenetic and genomic analyses support the hypothesis that strain S40T represents a novel species of the genus
Serratia
, for which the name Serratia inhibens sp. nov. is proposed. The type strain is S40T (=LMG 31467T=NCIMB 15235T). In addition, we propose that
S. plymuthica
PRI-2C is reclassified and transferred to the species S. inhibens as S. inhibens PRI-2C.
Collapse
Affiliation(s)
- Rosanna C. Hennessy
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Søs I. Dichmann
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Helle Juel Martens
- Present address: HJM: University of Copenhagen, Department of Geosciences and Natural Resource Management, Nørregade 10, 1165 København, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Peter Stougaard
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
9
|
Khanna K, Sharma A, Ohri P, Bhardwaj R, Abd Allah EF, Hashem A, Ahmad P. Impact of Plant Growth Promoting Rhizobacteria in the Orchestration of Lycopersicon esculentum Mill. Resistance to Plant Parasitic Nematodes: A Metabolomic Approach to Evaluate Defense Responses Under Field Conditions. Biomolecules 2019; 9:E676. [PMID: 31683675 PMCID: PMC6920908 DOI: 10.3390/biom9110676] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 01/25/2023] Open
Abstract
The present study deals with biological control of Meloidogyne incognita in 45-days old Lycopersicon esculentum, inoculated with Pseudomonas aeruginosa(M1) and Burkholderia gladioli (M2). The improved plant growth and biomass of nematode infested Plant growth promoting rhizobacteria (PGPR) inoculated plants was observed. Remarkable reduction in the numbers of second stage juvenile (J2s), root galls was recorded after treatment of microbes relative to experimental controls. Moreover, the lowered activities of oxidative stress markers (H2O2 (hydrogen peroxide), O2- (superoxide anion), malondialdehyde (MDA)) was estimated in plants after rhizobacterial supplementation. Higher activities of enzymatic (SOD (Superoxide dismutase), POD (Guaiacol peroxidase), CAT (Catalase), GPOX (Glutathione peroxidase), APOX (Ascorbate peroxidase), GST (Glutathione-S-transferase), GR (Glutathione reductase), DHAR (Dehydroascorbate reductase), PPO (Polyphenol oxidase)) and non-enzymatic (glutathione, ascorbic acid, tocopherol) antioxidants were further determined in nematode infected plants following the addition of bacterial strains. The upregulation of photosynthetic activities were depicted by evaluating plant pigments and gas exchange attributes. An increase in the levels of phenolic compounds (total phenols, flavonoids, anthocyanins), osmoprotectants (total osmolytes, carbohydrates, reducing sugars, trehalose, proline, glycine betaine, free amino acids) and organic acids (fumaric, succinic, citric, malic acid) were reflected in infected plants, showing further enhancement after application of biocontrol agents. The study revealed the understanding of plant metabolism, along with the initiative to commercially exploit the biocontrol agents as an alternative to chemical nematicides in infected fields for sustainable agriculture.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| | - Anket Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India.
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar 143005, India.
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| | - Elsayed F Abd Allah
- Department of Plant Production, Faculty of Food & Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P. O. Box. 2460, Riyadh11451, Saudi Arabia.
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza 12511, Egypt.
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, P. O. Box. 2460, Riyadh11451, Saudi Arabia.
- Department of Botany, S.P. College, Srinagar, Jammu andKashmir190001, India.
| |
Collapse
|