1
|
Zhao J, Fan Y, Cheng Z, Kennelly EJ, Long C. Ethnobotanical uses, phytochemistry and bioactivities of Cymbopogon plants: A review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118181. [PMID: 38608798 DOI: 10.1016/j.jep.2024.118181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cymbopogon (Poaceae) plants have been used for various purposes by many indigenous peoples in all continents. In particular, almost all species in the genus have traditionally been used as folk medicine to treat ailments. Traditional application records indicated that Cymbopogon might be used extensively to treat cold, dizziness, headache, loss of appetite, abdominal pain, rheumatism, diarrhea, whole grass for cold, sore throat, tracheitis and others. AIMS OF THE REVIEW Despite several research confirmed that Cymbopogon includes a range of active components, no review has been undertaken to consolidate information on its traditional uses, phytochemistry, pharmacology, and/or quality control. Thus this article aims to update a comprehensive review about the traditional uses, phytochemistry, pharmacology, cultivation techniques, economic benefits, trade, threats, and future conservation implications of Cymbopogon species. It may provide informative data for future development and further investigation of this important plant group. MATERIALS AND METHODS Traditional medicinal books and ethnomedicinal publications related to Cymbopogon from 1992 to 2023 were collated to investigate its ethnobotanical, phytochemical and pharmacological information. The online databases including Google Scholar, SciFinder, Web of Science, Scopus, Springer Link, PubMed, Wiley, China National Knowledge Infrastructure (CNKI), Baidu Scholar, and WanFang Database were screened. RESULTS Cymbopogon (Gramineae or Poaceae) plants have been grown worldwide. Traditional Chinese medicine and other medicinal systems believes that Cymbopogon has the effect of relieve a cough, analgesia, treating dizziness, traumatic injury and can relieve abdominal pain. A total of 153 compounds, including flavonoids, terpenoids, fatty acid and other compounds were isolated or identified from Cymbopogon species by phytochemical studies. The extracts or compounds from Cymbopogon have exhibited numerous biological activities such as antibacterial, antiinflammatory, antiviral, antineoplastic, antiarrhythmic, antidiabetic and other activities. The rich contents of citronellal, citronellol and geraniol found in Cymbopogon also provide significant nutritional benefits. CONCLUSION Based on their traditional uses, phytochemicals, and pharmacological activities, Cymbopogon plants are potential medicinal and edible resources with diverse pharmacological effects. Due to various advantages of this group, they possess huge application potential in food and pharmaceutical industries, and animal husbandry. Among them, citronella is very important in terms of economic development. Further comprehensive research to evaluate the medicinal properties of Cymbopogon species will be necessary for future development.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; School of Ethnology and Sociology, Minzu University of China, Beijing, 100081, China
| | - Yanxiao Fan
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China; Institute of National Security Studies, Minzu University of China, Beijing, 100081, China
| | - Zhuo Cheng
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China; Institute of National Security Studies, Minzu University of China, Beijing, 100081, China
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, 10468, USA
| | - Chunlin Long
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China; Institute of National Security Studies, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
2
|
Srivastava G, Mukherjee E, Mittal R, Ganjewala D. Geraniol and citral: recent developments in their anticancer credentials opening new vistas in complementary cancer therapy. Z NATURFORSCH C 2024; 79:163-177. [PMID: 38635829 DOI: 10.1515/znc-2023-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
About 10 million people are diagnosed with cancer each year. Globally, it is the second leading cause of death after heart disease, and by 2035, the death toll could reach 14.6 million. Several drugs and treatments are available to treat cancer, but survival rates remain low. Many studies in recent years have shown that plant-derived monoterpenes, particularly geraniol and citral, are effective against various cancers, including breast, liver, melanoma, endometrial, colon, prostate, and skin cancers. This trend has opened new possibilities for the development of new therapeutics or adjuvants in the field of cancer therapy. These monoterpenes can improve the efficacy of chemotherapy by modulating many signaling molecules and pathways within tumors. Analysis of reports on the anticancer effects published in the past 5 years provided an overview of the most important results of these and related properties. Also, the molecular mechanisms by which they exert their anticancer effects in cell and animal studies have been explained. Therefore, this review aims to highlight the scope of geraniol and citral as complementary or alternative treatment options in cancer therapy.
Collapse
Affiliation(s)
- Gauri Srivastava
- Amity Institute of Biotechnology, 77282 Amity University , Sector-125, Noida 201303, Uttar Pradesh, India
| | - Esha Mukherjee
- Amity Institute of Biotechnology, 77282 Amity University , Sector-125, Noida 201303, Uttar Pradesh, India
| | - Ruchika Mittal
- Amity Institute of Biotechnology, 77282 Amity University , Sector-125, Noida 201303, Uttar Pradesh, India
| | - Deepak Ganjewala
- Amity Institute of Biotechnology, 77282 Amity University , Sector-125, Noida 201303, Uttar Pradesh, India
| |
Collapse
|
3
|
Venturi V, Presini F, Trapella C, Bortolini O, Giovannini PP, Lerin LA. Microwave-assisted enzymatic synthesis of geraniol esters in solvent-free systems: optimization of the reaction parameters, purification and characterization of the products, and biocatalyst reuse. Mol Divers 2024; 28:1665-1679. [PMID: 37368203 PMCID: PMC11269508 DOI: 10.1007/s11030-023-10682-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023]
Abstract
Various geraniol esters act as insect pheromones and display pharmacological activities, especially as neuroprotective agents. Therefore, the search for synthetic strategies alternative to traditional chemical synthesis could help designing ecofriendly routes for the preparation of such bioactive compounds. Hence, this work aims at the microwave-assisted enzymatic synthesis of geranyl esters in solvent-free systems. The process variables were optimized for the synthesis of geranyl acetoacetate, achieving 85% conversion after 60 min using a 1:5 substrates molar ratio (ester to geraniol), 80 °C and 8.4% of Lipozyme 435 lipase without removal of the co-produced methanol. On the other hand, a 95% conversion was reached after 30 min using 1:6 substrates molar ratio, 70 °C and 7% lipase in the presence of 5Å molecular sieves for the methanol capture. In addition, the lipase showed good reusability, maintaining the same activity for five reaction cycles. Finally, under the above optimized conditions, other geraniol esters were successfully synthetized such as the geranyl butyrate (98%), geranyl hexanoate (99%), geranyl octanoate (98%), and geranyl (R)-3-hydroxybutyrate (56%). These results demonstrate the microwave-assisted lipase-catalyzed transesterification in a solvent-free system as an excellent and sustainable catalytic methodology to produce geraniol esters.
Collapse
Affiliation(s)
- Valentina Venturi
- Department of Environment and Prevention Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy
| | - Francesco Presini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy
| | - Claudio Trapella
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy
| | - Olga Bortolini
- Department of Environment and Prevention Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy
| | - Pier Paolo Giovannini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy
| | - Lindomar Alberto Lerin
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy.
| |
Collapse
|
4
|
Barras BJ, Ling T, Rivas F. Recent Advances in Chemistry and Antioxidant/Anticancer Biology of Monoterpene and Meroterpenoid Natural Product. Molecules 2024; 29:279. [PMID: 38202861 PMCID: PMC10780832 DOI: 10.3390/molecules29010279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Monoterpenes and meroterpenes are two large classes of isoprene-based molecules produced by terrestrial plants and unicellular organisms as diverse secondary metabolites. The global rising incidence of cancer has led to a renewed interest in natural products. These monoterpenes and meroterpenes represent a novel source of molecular scaffolds that can serve as medicinal chemistry platforms for the development of potential preclinical leads. Furthermore, some of these natural products are either abundant, or their synthetic strategies are scalable as it will be indicated here, facilitating their derivatization to expand their scope in drug discovery. This review is a collection of representative updates (from 2016-2023) in biologically active monoterpene and meroterpenoid natural products and focuses on the recent findings of the pharmacological potential of these bioactive compounds as well as the newly developed synthetic strategies employed to access them. Particular emphasis will be placed on the anticancer and antioxidant potential of these compounds in order to raise knowledge for further investigations into the development of potential anti-cancer therapeutics. The mounting experimental evidence from various research groups across the globe regarding the use of these natural products at pre-clinical levels, renders them a fast-track research area worth of attention.
Collapse
Affiliation(s)
| | - Taotao Ling
- Department of Chemistry, Louisiana State University, 133 Choppin Hall, Baton Rouge, LA 70803, USA;
| | - Fatima Rivas
- Department of Chemistry, Louisiana State University, 133 Choppin Hall, Baton Rouge, LA 70803, USA;
| |
Collapse
|
5
|
de Quadros APO, Baraldi IB, Petreanu M, Niero R, Mantovani MS, De Mascarenhas Gaivão IO, Maistro EL. Cytogenotoxic evaluations of leaves and stems extracts of Rubus rosifolius in primary metabolically noncompetent cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:361-371. [PMID: 37096566 DOI: 10.1080/15287394.2023.2203190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants with medicinal potential may also produce adverse effects in humans. This seems to be the case for the species Rubus rosifolius, where preliminary studies demonstrated genotoxic effects attributed to extracts obtained from leaves and stems of this plant using on HepG2/C3A human hepatoma cells as a model. Considering the beneficial properties of this plant as an antidiarrheal, analgesic, antimicrobial, and antihypertensive and its effects in the treatment of gastrointestinal diseases, the present study was developed with the aim of determining the cytotoxic and genotoxic potential of extracts of leaves and stems of R. rosifolius in primary without metabolic competence in human peripheral blood mononuclear cells (PBMC). Cell viability analyses at concentrations of between 0.01 and 100 µg/ml of both extracts did not markedly affect cell viability. In contrast, assessment of the genotoxic potential using the comet assay demonstrated significant damage to DNA within PBMC from a concentration of 10 µg/ml in the stem extract, and a clastogenic/aneugenic response without cytokinesis-block proliferation index (CBPI) alterations at concentrations of 10, 20, or 100 µg/ml for both extracts. Under our experimental conditions, the data obtained demonstrated genotoxic and mutagenic effects attributed to extracts from leaves and stems of R. rosifolius in cells in the absence of hepatic metabolism.
Collapse
Affiliation(s)
- Ana Paula Oliveira de Quadros
- Post-Graduate Program on General and Applied Biology, São Paulo State University - UNESP - Biosciences Institute, Botucatu, SP, Brazil
| | - Isabel Bragança Baraldi
- Speech and Hearing Therapy Department, São Paulo State University - UNESP - Faculty of Philosophy and Sciences, Marília, SP, Brazil
| | - Marcel Petreanu
- Department of Biological Sciences, Vale do Itajaí University (UNIVALI), Itajaí, SC, Brazil
| | - Rivaldo Niero
- Department of Biological Sciences, Vale do Itajaí University (UNIVALI), Itajaí, SC, Brazil
| | | | | | - Edson Luis Maistro
- Post-Graduate Program on General and Applied Biology, São Paulo State University - UNESP - Biosciences Institute, Botucatu, SP, Brazil
- Speech and Hearing Therapy Department, São Paulo State University - UNESP - Faculty of Philosophy and Sciences, Marília, SP, Brazil
| |
Collapse
|
6
|
Wang YF, Zheng Y, Feng Y, Chen H, Dai SX, Wang Y, Xu M. Comparative Analysis of Active Ingredients and Potential Bioactivities of Essential Oils from Artemisia argyi and A. verlotorum. Molecules 2023; 28:molecules28093927. [PMID: 37175336 PMCID: PMC10180244 DOI: 10.3390/molecules28093927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Artemisia argyi H. Lév. and Vaniot is a variety of Chinese mugwort widely cultured in central China. A. verlotorum Lamotte, another variety of Chinese mugwort, has been used in the southern region of China since ancient times. Despite their similar uses in traditional medicine, little is known about the differences in their active ingredients and potential benefits. Herein, the chemical compositions of the essential oils (EOs) from both varieties were analyzed using chromatography-mass spectrometry (GC-MS). A series of databases, such as the Traditional Chinese Medicine Systems Pharmacology database (TCMSP), SuperPred database and R tool, were applied to build a networking of the EOs. Our results revealed significant differences in the chemical compositions of the two Artemisia EOs. However, we found that they shared similar ingredient-target-pathway networking with diverse bioactivities, such as neuroprotective, anti-cancer and anti-inflammatory. Furthermore, our protein connection networking analysis showed that transcription factor p65 (RELA), phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1) and mitogen-activated protein kinase 1 (MAPK1) are crucial for the biological activity of Artemisia EOs. Our findings provided evidence for the use of A. verlotorum as Chinese mugwort in southern China.
Collapse
Affiliation(s)
- Yun-Fen Wang
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming 650500, China
| | - Yang Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yang Feng
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming 650500, China
| | - Hao Chen
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming 650500, China
| | - Shao-Xing Dai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Min Xu
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming 650500, China
| |
Collapse
|