2
|
Hamamah S, Barry F, Vannier S, Anahory T, Haahtela T, Antó JM, Chapron C, Ayoubi JM, Czarlewski W, Bousquet J. Infertility, IL-17, IL-33 and Microbiome Cross-Talk: The Extended ARIA-MeDALL Hypothesis. Int J Mol Sci 2024; 25:11981. [PMID: 39596052 PMCID: PMC11594021 DOI: 10.3390/ijms252211981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Infertility, defined as the inability to obtain pregnancy after 12 months of regular unprotected sexual intercourse, has increased in prevalence over the past decades, similarly to chronic, allergic, autoimmune, or neurodegenerative diseases. A recent ARIA-MeDALL hypothesis has proposed that all these diseases are linked to dysbiosis and to some cytokines such as interleukin 17 (IL-17) and interleukin 33 (IL-33). Our paper suggests that endometriosis, a leading cause of infertility, is linked to endometrial dysbiosis and two key cytokines, IL-17 and IL-33, which interact with intestinal dysbiosis. Intestinal dysbiosis contributes to elevated estrogen levels, a primary factor in endometriosis. Estrogens strongly activate IL-17 and IL-33, supporting the existence of a gut-endometrial axis as a significant contributor to infertility.
Collapse
Affiliation(s)
- Samir Hamamah
- Biologie de la Reproduction, Hôpital Arnaud de Villeneuve, 34295 Montpellier, France; (F.B.); (T.A.)
- INSERM DEFE, Université de Montpellier, 34090 Montpellier, France
| | - Fatima Barry
- Biologie de la Reproduction, Hôpital Arnaud de Villeneuve, 34295 Montpellier, France; (F.B.); (T.A.)
- INSERM DEFE, Université de Montpellier, 34090 Montpellier, France
| | - Sarah Vannier
- Gynécologie Médicale, Hôpital Arnaud de Villeneuve, 34295 Montpellier, France;
| | - Tal Anahory
- Biologie de la Reproduction, Hôpital Arnaud de Villeneuve, 34295 Montpellier, France; (F.B.); (T.A.)
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, 00250 Helsinki, Finland;
| | - Josep M. Antó
- ISGlobal, Barcelona Institute for Global Health, 08036 Barcelona, Spain;
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Departamento de Ciencias Experimentales y de la Salud, Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Charles Chapron
- Service de Gynécologie-Obs., Hôpital Cochin, 75014 Paris, France;
| | - Jean-Marc Ayoubi
- Gynécologie et médecine de la Reproduction, Hôpital Foch, 92150 Suresnes, France;
| | | | - Jean Bousquet
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany;
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| |
Collapse
|
3
|
Płaczkowska S, Kokot I, Gilowska I, Kratz EM. Screening of cytokine expression in human seminal plasma in associations with sperm disorders and markers of oxidative-antioxidant balance. Cytokine 2024; 182:156701. [PMID: 39089215 DOI: 10.1016/j.cyto.2024.156701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 01/07/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024]
Abstract
Among the many factors with a proven relation to semen quality and male fertility, the determination of seminal plasma cytokines provides a promising direction for research into the identification of factors connected with male infertility. The interleukins: IL-1α, -1β, -2, -4, -6, -8, -10, -12p40, -12p70, -18, IFNγ, and GM-CSF, total oxidant (TOS) and antioxidant (TAS) status, were simultaneously examined in seminal plasmas and blood sera in terato- (n = 32), asthenoterato- (n = 33), and oligoasthenoteratozoospermic (n = 29) infertile men and in normozoospermic fertile men (n = 20). Our research shows different cytokine composition of the sera and seminal plasmas in all studied groups, along with much higher concentrations of seminal plasma GM-CSF, IFNγ, IL-1α, IL-4, IL-6, and IL-8 and lower IL-18 and TOS in the comparison to their sera levels. The seminal plasma concentrations of GM-CSF, IFNγ, IL-1α, -4, and -6 differ significantly between fertile and infertile as well as between teratozoospermic, asthenoteratozoospermic, and oligoasthenoteratozoospermic groups. The indication of the cause of different concentrations of cytokines in seminal plasmas of infertile men, and their associations with semen parameters and oxidative status, may be a promising direction for the search for new therapeutic targets that would directly affect the cells and tissues of male reproductive organs.
Collapse
Affiliation(s)
- Sylwia Płaczkowska
- Teaching and Research Diagnostic Laboratory, Department of Laboratory Diagnostics, Wroclaw Medical University, Borowska 211a Street, 50-556 Wroclaw, Poland.
| | - Izabela Kokot
- Division of Laboratory Diagnostics, Department of Laboratory Diagnostics, Wroclaw Medical University, Borowska 211a Street, 50-556 Wroclaw, Poland.
| | - Iwona Gilowska
- Institute of Health Sciences, University of Opole, Katowicka Street 68, 45-060 Opole, Poland; Clinical Centre of Gynaecology, Obstetrics and Neonatology in Opole, Reference Centre for the Diagnosis and Treatment of Infertility, Reymonta Street 8, 45-066 Opole, Poland.
| | - Ewa Maria Kratz
- Division of Laboratory Diagnostics, Department of Laboratory Diagnostics, Wroclaw Medical University, Borowska 211a Street, 50-556 Wroclaw, Poland.
| |
Collapse
|
4
|
Yin T, Yue X, Li Q, Zhou X, Dong R, Chen J, Zhang R, Wang X, He S, Jiang T, Tao F, Cao Y, Ji D, Liang C. The Association Between the Levels of Oxidative Stress Indicators (MDA, SOD, and GSH) in Seminal Plasma and the Risk of Idiopathic Oligo-asthenotera-tozoospermia: Does Cu or Se Level Alter the Association? Biol Trace Elem Res 2024; 202:2941-2953. [PMID: 37803189 DOI: 10.1007/s12011-023-03888-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/24/2023] [Indexed: 10/08/2023]
Abstract
Epidemiological studies on the associations between the levels of oxidative stress (OS) indicators (MDA, SOD, and GSH) in seminal plasma and the risk of idiopathic oligo-asthenotera-tozoospermia (OAT) are still inconsistent. Additionally, whether the associations can be altered by the status of essential trace elements is still unknown. To investigate the relationship between MDA, SOD, and GSH levels in seminal plasma and the risk of idiopathic OAT, and further to examine whether levels of iron (Fe), copper (Cu), and selenium (Se) in seminal plasma can alter the associations. A total of 148 subjects (75 idiopathic OAT cases and 73 controls) were included in this study. Seminal plasma samples from all the participants were measured for levels of MDA, SOD, GSH, Fe, Cu, and Se. Unconditional logistic regression models were used to examine the associations between three oxidative stress indicators and the risk of idiopathic OAT. Bayesian kernel machine regression was performed to determine the joint effects of levels of three OS indicators on the risk of idiopathic OAT. Subgroup analyses were performed to explore whether the above associations can be different when Fe, Cu, and Se were in different levels. The level of MDA in seminal plasma was positively associated with the risk of idiopathic OAT, with adjusted odds ratio (OR) and 95% confidence interval (CI) of 2.38 (1.17, 4.83), and SOD and GSH levels were not associated with the risk of idiopathic OAT. In BKMR analyses, we found a significant positive association between the mixture of MDA, SOD, and GSH levels and the risk of idiopathic OAT at concentrations below the 65th percentile, while a negative association at concentrations above it. In subgroup analysis, a positive association was observed between MDA levels in seminal plasma and the risk of idiopathic OAT in the high-Cu group (adjusted OR = 3.66, 95%CI = 1.16, 11.57), while no significant association was found in the low-Cu group (adjusted OR = 1.43, 95%CI = 0.44, 4.58). Additionally, a negative association was found between GSH levels in seminal plasma and the risk of idiopathic OAT in the high-Se group (adjusted OR = 0.34, 95%CI = 0.11, 0.99), while no significant association was observed in the low-Se group (adjusted OR = 1.96, 95%CI = 0.46, 8.27). The levels of MDA, SOD, and GSH in seminal plasma were associated with the risk of idiopathic OAT, and the levels of Cu and Se in seminal plasma may alter the associations.
Collapse
Affiliation(s)
- Tao Yin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinyu Yue
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qian Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinyu Zhou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Rui Dong
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jiayi Chen
- The First Clinical School of Anhui Medical University, Anhui, China
| | - Runtao Zhang
- The First Clinical School of Anhui Medical University, Anhui, China
| | - Xin Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shitao He
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tingting Jiang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fangbiao Tao
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Chunmei Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
6
|
Stojilković N, Radović B, Vukelić D, Ćurčić M, Antonijević Miljaković E, Buha Đorđević A, Baralić K, Marić Đ, Bulat Z, Đukić-Ćosić D, Antonijević B. Involvement of toxic metals and PCBs mixture in the thyroid and male reproductive toxicity: In silico toxicogenomic data mining. ENVIRONMENTAL RESEARCH 2023; 238:117274. [PMID: 37797666 DOI: 10.1016/j.envres.2023.117274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Toxicological research is mostly limited to considering the effects of a single substance, even though the real exposure of people is reflected in their daily exposure to many different chemical substances in low-doses. This in silico toxicogenomic study aims to provide evidence for the selected environmental (organo)metals (lead, cadmium, methyl mercury) + polychlorinated biphenyls mixture involvement in the possible alteration of thyroid, and male reproductive system function, and furthermore to predict the possible toxic mechanisms of the environmental cocktail. The Comparative Toxicogenomic Database, GeneMANIA online software, and ToppGene Suite portal were used as the main tools for toxicogenomic data mining and gene ontology analysis. The results show that 35 annotated common genes between selected chemicals and endocrine system diseases can interact on the co-expression level. Our study highlighted the disruption of the cytokines, the cell's response to oxidative stress, and the influence of the transcription factors as the potential core of toxicological mechanisms of the discussed mixture's effects. The connected toxicological effects of the tested mixture were abnormal sperm cells, a disrupted level of testosterone, and thyroid hormones. The core mechanisms of these effects were inflammation, oxidative stress, disruption of androgen receptor signaling, and the alteration of the FOXO3-Keap-1/NRF2-HMOX1-NQO1 pathway signaling most likely controlled by the co-expression of overlapped genes among used chemicals. This in silico research can be used as a potential core for the determination of biomarkers that can be monitored in future further in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Nikola Stojilković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Biljana Radović
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Dragana Vukelić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia.
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Aleksandra Buha Đorđević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Đurđica Marić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| |
Collapse
|