1
|
Li X, Gao B, Gao B, Li X, Xia X. Transcriptome profiling reveals dysregulation of inflammatory and protein synthesis genes in PCOS. Sci Rep 2024; 14:16596. [PMID: 39025980 PMCID: PMC11258128 DOI: 10.1038/s41598-024-67461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
To analyze the differential expression genes of polycystic ovary syndrome (PCOS), clarify their functions and pathways, as well as the protein-protein interaction network, identify HUB genes, and explore the pathological mechanism. PCOS microarray datasets were screened from the GEO database. Common differentially expressed genes (co-DEGs) were obtained using GEO2R and Venn analysis. Enrichment and pathway analyses were conducted using the DAVID online tool, with results presented in bubble charts. Protein-protein interaction analysis was performed using the STRING tool. HUB genes were identified using Cytoscape software and further interpreted with the assistance of the GeneCards database. A total of two sets of co-DEGs (108 and 102), key proteins (15 and 55), and hub genes (10 and 10) were obtained. The co-DEGs: (1) regulated inflammatory responses and extracellular matrix, TNF, and IL-17 signaling pathways; (2) regulated ribosomes and protein translation, ribosome and immune pathways. The key proteins: (1) regulated inflammation, immunity, transcription, matrix metabolism, proliferation/differentiation, energy, and repair; (2) regulated ubiquitination, enzymes, companion proteins, respiratory chain components, and fusion proteins. The Hub genes: (1) encoded transcription factors and cytokines, playing vital roles in development and proliferation; (2) encoded ribosomes and protein synthesis, influencing hormone and protein synthesis, associated with development and infertility. The dysregulated expression of inflammation and protein synthesis genes in PCOS may be the key mechanism underlying its onset and progression.
Collapse
Affiliation(s)
- Xilian Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Biao Gao
- Teaching and Research Support Center, Naval Medical University, Shanghai, 200433, China.
| | - Bingsi Gao
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xin Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xian Xia
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| |
Collapse
|
2
|
Abbey CA, Duran CL, Chen Z, Chen Y, Roy S, Coffell A, Sveeggen TM, Chakraborty S, Wells GB, Chang J, Bayless KJ. Identification of New Markers of Angiogenic Sprouting Using Transcriptomics: New Role for RND3. Arterioscler Thromb Vasc Biol 2024; 44:e145-e167. [PMID: 38482696 PMCID: PMC11043006 DOI: 10.1161/atvbaha.123.320599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND New blood vessel formation requires endothelial cells to transition from a quiescent to an invasive phenotype. Transcriptional changes are vital for this switch, but a comprehensive genome-wide approach focused exclusively on endothelial cell sprout initiation has not been reported. METHODS Using a model of human endothelial cell sprout initiation, we developed a protocol to physically separate cells that initiate the process of new blood vessel formation (invading cells) from noninvading cells. We used this model to perform multiple transcriptomics analyses from independent donors to monitor endothelial gene expression changes. RESULTS Single-cell population analyses, single-cell cluster analyses, and bulk RNA sequencing revealed common transcriptomic changes associated with invading cells. We also found that collagenase digestion used to isolate single cells upregulated the Fos proto-oncogene transcription factor. Exclusion of Fos proto-oncogene expressing cells revealed a gene signature consistent with activation of signal transduction, morphogenesis, and immune responses. Many of the genes were previously shown to regulate angiogenesis and included multiple tip cell markers. Upregulation of SNAI1 (snail family transcriptional repressor 1), PTGS2 (prostaglandin synthase 2), and JUNB (JunB proto-oncogene) protein expression was confirmed in invading cells, and silencing JunB and SNAI1 significantly reduced invasion responses. Separate studies investigated rounding 3, also known as RhoE, which has not yet been implicated in angiogenesis. Silencing rounding 3 reduced endothelial invasion distance as well as filopodia length, fitting with a pathfinding role for rounding 3 via regulation of filopodial extensions. Analysis of in vivo retinal angiogenesis in Rnd3 heterozygous mice confirmed a decrease in filopodial length compared with wild-type littermates. CONCLUSIONS Validation of multiple genes, including rounding 3, revealed a functional role for this gene signature early in the angiogenic process. This study expands the list of genes associated with the acquisition of a tip cell phenotype during endothelial cell sprout initiation.
Collapse
Affiliation(s)
- Colette A. Abbey
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Camille L. Duran
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Zhishi Chen
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Yanping Chen
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Sukanya Roy
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
| | - Ashley Coffell
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Timothy M. Sveeggen
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Sanjukta Chakraborty
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
| | - Gregg B. Wells
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, TX
| | - Jiang Chang
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Kayla J. Bayless
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| |
Collapse
|
3
|
Luo L, Zhao L, Cui L, Peng C, Ou S, Zeng Y, Liu B. The roles of chromatin regulatory factors in endometriosis. J Assist Reprod Genet 2024; 41:863-873. [PMID: 38270747 PMCID: PMC11052748 DOI: 10.1007/s10815-024-03026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/07/2024] [Indexed: 01/26/2024] Open
Abstract
PURPOSE Endometriosis is an estrogen-dependent inflammatory disease and one of the most common gynecological diseases in women of reproductive age. The aim of the review was to explore the relationship between the chromatin regulatory factors and endometriosis. METHODS By searching for literature on chromatin regulators and endometriosis in PuMed. Finally, 98 documents were selected. RESULTS Chromatin regulators (CRs) are essential epigenetic regulatory factors that can regulate chromatin structure changes and are usually divided into three categories: DNA methylation compounds, histone modification compounds, and chromatin remodeling complexes. Noncoding RNAs are also chromatin regulators and can form heterochromatin by binding to protein complexes. Chromatin regulators cause abnormal gene expression by regulating chromatin structure, thereby affecting the occurrence and development of endometriosis. CONCLUSION This review summarizes the participation of chromatin regulators in the mechanisms of endometriosis, and these changes in related chromatin regulators provide a comprehensive reference for diagnosis and treatment of endometriosis.
Collapse
Affiliation(s)
- Liumei Luo
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ling Zhao
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lanyu Cui
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education; Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences,, Guangxi Medical University, Nanning, China
| | - Chuyu Peng
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanshan Ou
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Zeng
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bo Liu
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
4
|
Kurt I, Kulhan M, AlAshqar A, Borahay MA. Uterine Collagen Cross-Linking: Biology, Role in Disorders, and Therapeutic Implications. Reprod Sci 2024; 31:645-660. [PMID: 37907804 DOI: 10.1007/s43032-023-01386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
Collagen is an essential constituent of the uterine extracellular matrix that provides biomechanical strength, resilience, structural integrity, and the tensile properties necessary for the normal functioning of the uterus. Cross-linking is a fundamental step in collagen biosynthesis and is critical for its normal biophysical properties. This step occurs enzymatically via lysyl oxidase (LOX) or non-enzymatically with the production of advanced glycation end-products (AGEs). Cross-links found in uterine tissue include the reducible dehydro-dihydroxylysinonorleucine (deH-DHLNL), dehydro-hydroxylysinonorleucine (deH-HLNL), and histidinohydroxymerodesmosine (HHMD); and the non-reducible pyridinoline (PYD), deoxy-pyridinoline (DPD); and a trace of pentosidine (PEN). Collagen cross-links are instrumental for uterine tissue integrity and the continuation of a healthy pregnancy. Decreased cervical cross-link density is observed in preterm birth, whereas increased tissue stiffness caused by increased cross-link density is a pathogenic feature of uterine fibroids. AGEs disrupt embryo development, decidualization, implantation, and trophoblast invasion. Uterine collagen cross-linking regulators include steroid hormones, such as progesterone and estrogen, prostaglandins, proteoglycans, metalloproteinases, lysyl oxidases, nitric oxide, nicotine, and vitamin D. Thus, uterine collagen cross-linking presents an opportunity to design therapeutic targets and warrants further investigation in common uterine disorders, such as uterine fibroids, cervical insufficiency, preterm birth, dystocia, endometriosis, and adenomyosis.
Collapse
Affiliation(s)
- Irem Kurt
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Selcuk University Faculty of Medicine, 42000, Konya, Turkey
| | - Mehmet Kulhan
- Department of Gynecology and Obstetrics, Selcuk University Faculty of Medicine, 42000, Konya, Turkey
| | - Abdelrahman AlAshqar
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Wilson MR, Harkins S, Reske JJ, Siwicki RA, Adams M, Bae-Jump VL, Teixeira JM, Chandler RL. PIK3CA mutation in endometriotic epithelial cells promotes viperin-dependent inflammatory response to insulin. Reprod Biol Endocrinol 2023; 21:43. [PMID: 37170094 PMCID: PMC10173629 DOI: 10.1186/s12958-023-01094-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/30/2023] [Indexed: 05/13/2023] Open
Abstract
Endometrial epithelia are known to harbor cancer driver mutations in the absence of any pathologies, including mutations in PIK3CA. Insulin plays an important role in regulating uterine metabolism during pregnancy, and hyperinsulinemia is associated with conditions impacting fertility. Hyperinsulinemia also promotes cancer, but the direct action of insulin on mutated endometrial epithelial cells is unknown. Here, we treated 12Z endometriotic epithelial cells carrying the PIK3CAH1047R oncogene with insulin and examined transcriptomes by RNA-seq. While cells naively responded to insulin, the magnitude of differential gene expression (DGE) was nine times greater in PIK3CAH1047R cells, representing a synergistic effect between insulin signaling and PIK3CAH1047R expression. Interferon signaling and the unfolded protein response (UPR) were enriched pathways among affected genes. Insulin treatment in wild-type cells activated normal endoplasmic reticulum stress (ERS) response programs, while PIK3CAH1047R cells activated programs necessary to avoid ERS-induced apoptosis. PIK3CAH1047R expression alone resulted in overexpression (OE) of Viperin (RSAD2), which is involved in viral response and upregulated in the endometrium during early pregnancy. The transcriptional changes induced by insulin in PIK3CAH1047R cells were rescued by knockdown of Viperin, while Viperin OE alone was insufficient to induce a DGE response to insulin, suggesting that Viperin is necessary but not sufficient for the synergistic effect of PIK3CAH1047R and insulin treatment. We identified interferon signaling, viral response, and protein targeting pathways that are induced by insulin but dependent on Viperin in PIK3CAH1047R mutant cells. These results suggest that response to insulin signaling is altered in mutated endometriotic epithelial cells.
Collapse
Affiliation(s)
- Mike R Wilson
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Shannon Harkins
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Jake J Reske
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Rebecca A Siwicki
- Genomics Core Facility, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Marie Adams
- Genomics Core Facility, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Victoria L Bae-Jump
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jose M Teixeira
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Ronald L Chandler
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, 48824, USA.
- Department for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
6
|
Zheng W, Xiang D, Wen D, Luo M, Liang X, Cao L. Identification of key modules and candidate genes associated with endometriosis based on transcriptome data via bioinformatics analysis. Pathol Res Pract 2023; 244:154404. [PMID: 36996608 DOI: 10.1016/j.prp.2023.154404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUNDS Endometriosis is a common disease in women, but the signaling pathways and genes involved remain unclear. This study screened genes that were differentially expressed in ectopic endometrium (EC) and eutopic endometrium (EU) in endometriosis and provided clues for subsequent experimental verification. METHODS Endometriosis samples were harvested from inpatients that underwent surgery from 2017 to 2019 with pathological evidence of endometriosis. We assessed the mRNA expression profiles in endometriosis and further conducted gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, Gene Set Enrichment Analysis (GSEA) and weighted gene co-expression network analysis (WGCNA) to identify potential biomarkers in endometriosis. Finally, we further validated hub genes using public databases and immunohistochemistry assays. RESULTS The upregulated DEGs of ectopic endometrium from endometriosis patients were mainly involved in cell adhesion, MAPK signaling, PI3K-Akt signaling pathways, cytokine receptor interactions, and epithelial-mesenchymal transformation (EMT)-associated signaling pathways. The downregulated DEGs between ectopic endometrium and eutopic endometrium were related to decidualization-associated genes in endometriosis. The correlated gene modules in eutopic endometrial cells were mainly enriched in cell adhesion, embryo implantation and inflammation. The eutopic and ectopic endometrial lesions in endometriosis were involved in the EMT process. Furthermore, we identified 18 co-expression modules during WGCNA analysis. Hub genes in the pale turquoise module were FOSB, JUNB, ATF3, CXCL2, FOS, etc. Significantly enriched KEGG pathways included the TNF, MAPK, foxO, oxytocin, and p53 signaling pathways. Enrichment pathways were directly related to immune surveillance, stem cell self-renewal, and epithelial-mesenchymal transformation. Several pathways and modules of endometriosis are related to cancer-associated pathways, which substantiates the correlation between endometriosis and various gynecological tumors. CONCLUSIONS Endometriosis was tightly correlated with EMT and fibrosis mediated by inflammatory immunity, cytokines, estrogen, kinases and protooncogene through transcriptomics. Overall, our findings lay the groundwork for understanding the pathogenesis of endometriosis and its relationship with malignant transformation.
Collapse
Affiliation(s)
- Weilin Zheng
- Traditional Chinese Medicine Department, Guangdong Second Provincial General Hospital, Guangdong Provincial Emergency Hospital, Guangzhou, China
| | - Dongfang Xiang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danting Wen
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meicheng Luo
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuefang Liang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Lixing Cao
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
7
|
Wang L, Liang J, Bi S, Li Y, Zhang W, Xiwen W, Liu Y, Liu H. Role of GLI1 in Hypoxia-Driven Endometrial Stromal Cell Migration and Invasion in Endometriosis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6890790. [PMID: 36285283 PMCID: PMC9588377 DOI: 10.1155/2022/6890790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022]
Abstract
Endometriosis (EMs) is a benign disease with the characteristics of invasion and migration, and its pathogenesis is related to hypoxia. The abnormal activation of glioma-associated oncogene homolog 1 (GLI1) plays an important role in the metastasis of multiple types of tumors. However, it is not clear whether GLI1 regulates the migration and invasion of endometrial stromal cells under hypoxic condition. Therefore, we use comprehensive analysis to explore the effects of hypoxic on GLI1 expression and their regulation on the pathogenesis of EMs. In this study, from immunohistochemistry, RT-qPCR, and western blot analysis, we discovered that the expression of hypoxia-induced factor-1α (HIF-1α) and GLI1 was significantly increased in eutopic and ectopic endometrium of patients with EMs. In human primary eutopic endometrial stromal cells (ESCs), hypoxia can increase the expression of HIF-1α and GLI1 in a time-dependent manner. And hypoxia could promote GLI1 expression in a HIF-1α-dependent manner. Moreover, data from transwell assays manifested that the migration and invasion ability of ESCs was significantly enhanced under hypoxia, and this effect could be reversed by silencing GLI1. Furthermore, the expression of MMP2 and MMP9 was also increased under hypoxia, while silencing GLI1 could reverse this event. In summary, our research verified that GLI1, which activated by hypoxia, may contribute to the migration and invasion of ESCs through the upregulation of MMP2 and MMP9 and can be a novel therapeutic target in EMs.
Collapse
Affiliation(s)
- Lili Wang
- Department of Obstetrics and Gynecology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxin Liang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Siyi Bi
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yixuan Li
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Wang Xiwen
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hengwei Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| |
Collapse
|