1
|
R de O Stremel T, da Silva CP, E Domingues C, Lucia Voigt C, Raphael Pedroso C, Magno de Sousa Vidal C, X Campos S. Assessment of organochlorine pesticide contamination in Astyanax altiparanae from the Alagados Dam, Southern Brazil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:725-736. [PMID: 39484824 DOI: 10.1080/03601234.2024.2422219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
Organochlorine pesticides (OCPs) are persistent pollutants previously used in agriculture, known for their ability to bioaccumulate and pose health risks. This study analyzed samples of roe, viscera, and muscle from Astyanax altiparanae fish collected from the Alagados reservoir in Paraná, Brazil. Samples were prepared through extraction and purification, then analyzed using gas chromatography with an electron capture detector (GC/ECD), chosen for its sensitivity in detecting OCPs. The method was validated for precision, accuracy, and detection limits. Detected OCPs included Aldrin (17.1 to 50.6 ng/g in roe), α-endosulfan (3.4 to 23.5 ng/g), p, p'-DDE (4.2 to 134.7 ng/g), Dieldrin (84.7 to 183.1 ng/g), β-endosulfan (6.0 to 51.6 ng/g), and p, p'-DDT (56.6 to 286.8 ng/g). In viscera, concentrations ranged from Aldrin (19.8 to 93.3 ng/g) to p, p'-DDT (52.3 to 89.2 ng/g). Muscle samples showed similar trends. Principal component analysis indicated a link between higher OCP concentrations and increased abdominal width of the fish. While OCP levels were below FAO and WHO limits, risk quotient calculations suggest potential health risks from consuming these fish.
Collapse
Affiliation(s)
- Tatiana R de O Stremel
- Research Group on Environmental and Sanitary Analytical Chemistry, Ponta Grossa State University (UEPG), Ponta Grossa, Brazil
| | - Cleber Pinto da Silva
- Research Group on Environmental and Sanitary Analytical Chemistry, Ponta Grossa State University (UEPG), Ponta Grossa, Brazil
| | - Cinthia E Domingues
- Research Group on Environmental and Sanitary Analytical Chemistry, Ponta Grossa State University (UEPG), Ponta Grossa, Brazil
| | - Carmem Lucia Voigt
- Research Group on Environmental and Sanitary Analytical Chemistry, Ponta Grossa State University (UEPG), Ponta Grossa, Brazil
| | - Carlos Raphael Pedroso
- Laboratory of Sanitary and Environmental Engineering, State University of Centro-Oeste (UNICENTRO), Irati, Brazil
| | - Carlos Magno de Sousa Vidal
- Laboratory of Sanitary and Environmental Engineering, State University of Centro-Oeste (UNICENTRO), Irati, Brazil
| | - Sandro X Campos
- Research Group on Environmental and Sanitary Analytical Chemistry, Ponta Grossa State University (UEPG), Ponta Grossa, Brazil
| |
Collapse
|
2
|
Kim M, Kim TH, Park JW, Lee Y, Jo MR, Moon YS, Im MH. A Robust Method for Simultaneous Determination and Risk Assessment of Multiresidual Pesticides in Fishery Products. TOXICS 2024; 12:633. [PMID: 39330561 PMCID: PMC11435745 DOI: 10.3390/toxics12090633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
In this study, we developed and validated a multiresidue analytical method for the simultaneous detection of 24 pesticides in fishery products. Using the EN15662 extraction method and C18 as the adsorbent for purification, the validation results complied with Codex guidelines, achieving recovery rates between 70% and 120% and relative standard deviation values (%RSD) within 20%, indicating excellent performance. The limit of detection ranged from 0.25 to 0.8 ng/kg, and the limit of quantification was between 3 and 10 ng/g, providing sufficient sensitivity to comply with future regulatory standards. The calibration curves for all 24 pesticides exhibited great linearity (R2 > 0.98), also satisfying the Codex requirements. The matrix effect was less than 30% for some pesticides-within ±20%-indicating minimal interference from impurities. An analysis of 300 fishery samples from nine regions across South Korea detected lufenuron at 10 ng/g in eels; however, the risk assessment was below 0.19%, posing no significant hazard to public health. This newly developed analytical method proved effective for the multi-analysis of pesticide residues in fishery products, offering rapid and reliable monitoring of the import and export safety of fishery products.
Collapse
Affiliation(s)
- Myungheon Kim
- Department of Food Engineering, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Tae-Hwa Kim
- Analysis Technology and Tomorrow, Daegu 42703, Republic of Korea
| | - Jong-Woo Park
- Analysis Technology and Tomorrow, Daegu 42703, Republic of Korea
| | - Yoonmi Lee
- Food Safety and Processing Research Division, National Institute Fisheries Science, Busan 46083, Republic of Korea
| | - Mi-Ra Jo
- Food Safety and Processing Research Division, National Institute Fisheries Science, Busan 46083, Republic of Korea
| | - Yong-Sun Moon
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Moo-Hyeog Im
- Department of Food Engineering, Daegu University, Gyeongsan 38453, Republic of Korea
| |
Collapse
|
3
|
Eddy NO, Garg R, Garg R, Ukpe RA, Abugu H. Adsorption and photodegradation of organic contaminants by silver nanoparticles: isotherms, kinetics, and computational analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:65. [PMID: 38112987 DOI: 10.1007/s10661-023-12194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
In view of the widespread and distribution of several classes and types of organic contaminants, increased efforts are needed to reduce their spread and subsequent environmental contamination. Although several remediation approaches are available, adsorption and photodegradation technologies are presented in this review as one of the best options because of their environmental friendliness, cost-effectiveness, accessibility, less selectivity, and wider scope of applications among others. The bandgap, particle size, surface area, electrical properties, thermal stability, reusability, chemical stability, and other properties of silver nanoparticles (AgNPS) are highlighted to account for their suitability in adsorption and photocatalytic applications, concerning organic contaminants. Literatures have been reviewed on the application of various AgNPS as adsorbent and photocatalyst in the remediation of several classes of organic contaminants. Theories of adsorption have also been outlined while photocatalysis is seen to have adsorption as the initial mechanism. Challenges facing the application of silver nanoparticles have also been highlighted and possible solutions have been presented. However, current information is dominated by applications on dyes and the view of the authors supports the need to strengthen the usefulness of AgNPS in adsorption and photodegradation of more classes of organic contaminants, especially emerging contaminants. We also encourage the simultaneous applications of adsorption and photodegradation to completely convert toxic wastes to harmless forms.
Collapse
Affiliation(s)
- Nnabuk Okon Eddy
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Rajni Garg
- Department of Applied Science and Humanities, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Rishav Garg
- Department of Civil Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | | | - Hillary Abugu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
4
|
Ohoro CR, Wepener V. Review of scientific literature on available methods of assessing organochlorine pesticides in the environment. Heliyon 2023; 9:e22142. [PMID: 38045185 PMCID: PMC10692828 DOI: 10.1016/j.heliyon.2023.e22142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Organochlorine pesticides (OCPs) are persistent organic pollutants (POPs) widely used in agriculture and industry, causing serious health and ecological consequences upon exposure. This review offers a thorough overview of OCPs analysis emphasizing the necessity of ongoing work to enhance the identification and monitoring of these POPs in environmental and human samples. The benefits and drawbacks of the various OCPs analysis techniques including gas chromatography-mass spectrometry (GC-MS), gas chromatography-electron capture detector (GC-ECD), and liquid chromatography-mass spectrometry (LC-MS) are discussed. Challenges associated with validation and optimization criteria, including accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ), must be met for a method to be regarded as accurate and reliable. Suitable quality control measures, such as method blanks and procedural blanks, are emphasized. The LOD and LOQ are critical quality control measure for efficient quantification of these compounds, and researchers have explored various techniques for their calculation. Matrix interference, solubility, volatility, and partition coefficient influence OCPs occurrences and are discussed in this review. Validation experiments, as stated by European Commission in document SANTE/11813/2017, showed that the acceptance criteria for method validation of OCP analytes include ≤20 % for high precision, and 70-120 % for recovery. This may ultimately be vital for determining the human health risk effects of exposure to OCP and for formulating sensible environmental and public health regulations.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
5
|
Metwally AA, Khalafallah MM, Dawood MAO. Water quality, human health risk, and pesticides accumulation in African catfish and Nile tilapia from the Kitchener Drain-Egypt. Sci Rep 2023; 13:18482. [PMID: 37898697 PMCID: PMC10613270 DOI: 10.1038/s41598-023-45264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Pesticides are toxic and could negatively impact humans and the ecosystem. The Kitchener Drain is among the longest drains in Egypt and carries a wide range of wastewater from the agriculture sector, which contains pesticides and may pollute the ecosystem. Thus, water quality, human health risk, and pesticide accumulation in African catfish and Nile tilapia from the Kitchener Drain-Egypt. The water and fish samples were collected from Kitchener Drain in Kafr Elsheikh Governorate, Egypt, during the four seasons. The results indicated that heptachlor and diazinon were undetected during the four seasons. However, endosulfan, chlorpyrifos, and dicofol were detected in winter and autumn. Only p,p'-DDT was detected during spring. Endosulfan, heptachlor, and aldrin were detected in Nile tilapia during winter. Only heptachlor and aldrin were detected during spring. Endosulfan, heptachlor, dicofol, p,p'-DDT, chlorpyrifos, and diazinon were detected in the autumn season. In summer, dicofol and p,p'-DDT were detected, while endosulfan, heptachlor p,p'-DDT, aldrin, chlorpyrifos, and diazinon were not detected. In African catfish, endosulfan, heptachlor, dicofol, and p,p'-DDT were detected during winter, while chlorpyrifos, aldrin, and chlorpyrifos, aldrin, and diazinon were not detected. In the spring season, endosulfan, heptachlor, and aldrin were detected. Endosulfan, heptachlor, dicofol, p,p'-DDT, aldrin, chlorpyrifos, and diazinon were detected in the autumn season. Similarly, in the summer season, endosulfan, heptachlor, dicofol, p,p'-DDT, aldrin, chlorpyrifos, and diazinon were detected. The sequence of estimated daily intake (EDI) in Nile tilapia during the four seasons is heptachlor > endosulfan > dicofol > p,p'-DDT > aldrin > diazinon > chlorpyrifos. The sequence of EDI in African catfish during the four seasons is endosulfan > p,p'-DDT > heptachlor > aldrin > dicofol > diazinon > chlorpyrifos. In conclusion, the results confirmed the absence of a hazard index for consuming Nile tilapia and African catfish collected from the Kitchener drain.
Collapse
Affiliation(s)
- Ahmed A Metwally
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El-Shaikh, 33516, Egypt.
| | - Malik M Khalafallah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El-Shaikh, 33516, Egypt
| | - Mahmoud A O Dawood
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, 33516, Egypt
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, Cairo, 11835, Egypt
| |
Collapse
|
6
|
Torres-Moreno AC, Mejia-Grau K, Puente-DelaCruz L, Codling G, Villa AL, Ríos-Marquez O, Patequiva-Chauta L, Cobo M, Johnson-Restrepo B. Polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) in human breast milk from Colombia: A probabilistic risk assessment approach. CHEMOSPHERE 2023; 339:139597. [PMID: 37487977 DOI: 10.1016/j.chemosphere.2023.139597] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/17/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs) are ubiquitous environmental contaminants. They were produced in relatively large volumes in the last century and are now subject to long-term monitoring and regulated under the United Nations Stockholm Convention (SC) on persistent organic pollutants (POPs). Though restricted, human exposure is still a concern and in some regions of the globe the information on the health risk is limited. Sixty breast milk samples from nursing mothers were collected between 2014 and 2015, residing in Bogota, Cartagena, and Medellin, which are industrialized cities in Colombia. This is the first comprehensive study to determine the concentrations in breast milk of PBDEs (n = 7), PCBs (n = 29), and OCPs (n = 28) in Colombia. The detection frequency of POPs, including BDE-47, CB-138, CB-153, CB-156, and CB-180, as well as several OCPs such as chloroneb, aldrins, HCHs, DDTs, and heptachlor, was found to be 100% in all samples tested. The mean concentrations of the analyzed legacy POPs were ∑3DDTs (423 ng/g lw) > chloroneb (50.1 ng/g lw) > ∑2permetrins (17.5 ng/g lw) > ∑2aldrins (16.7 ng/g lw) > 29 PCBs (15.04 ng/g lw) > ∑2chlordanes (CHLs) (11.2 ng/g lw) ≈ ∑3endosulfans (11.1 ng/g lw) > ∑2heptachlors (2.43 ng/g lw) > 7PBDEs (2.1 ng/g lw) > ∑4HCHs (0.58 ng/g lw). The results of this study suggest that the concentrations of DDTs were present in breast milk samples from Colombia at levels comparable to those found in previous studies conducted in other countries such as Brazil, Uruguay, Chile, and various Asian countries. The concentrations of PBDE and PCB congeners, as well as many pesticides, were found to be significantly correlated with each other. This suggests that these substances may have similar sources of exposure. The strength of the pair correlation among concentrations of POPs was assessed using Spearman's correlation coefficients, which varied from r = 0.62 for the association between BDE-47 and CB-153, to a high correlation of 0.99 for the correlation between γ-Chlordane and heptachlor. This suggests that these POPs may share similar sources, such as diet. An exposure assessment model obtained by Monte Carlo simulation showed that infants were exposed to low concentrations of POPs with exception of p,p'-DDE and Aldrin, in which 25th, 50th and 95th percentiles were greater than the threshold reference values of non-carcinogenic effects suggested by US-EPA regulations while the 90th percentile of pg TEQ/Kg-bw/day for dl-PCBs was above of the tolerable daily intake (TDI) proposed by the World Health Organization (WHO). Therefore, the health risk of infants exposed to OCPs and dl-PCBs should be exanimated continually through biomonitoring programs in the Colombian population.
Collapse
Affiliation(s)
- Adriana C Torres-Moreno
- Environmental Chemistry Research Group, School of Exact and Natural Sciences, Campus of San Pablo, University of Cartagena. Zaragocilla, Carrera 50 No. 24-99, Cartagena, Colombia
| | - Karen Mejia-Grau
- Environmental Chemistry Research Group, School of Exact and Natural Sciences, Campus of San Pablo, University of Cartagena. Zaragocilla, Carrera 50 No. 24-99, Cartagena, Colombia
| | - Laura Puente-DelaCruz
- Environmental Chemistry Research Group, School of Exact and Natural Sciences, Campus of San Pablo, University of Cartagena. Zaragocilla, Carrera 50 No. 24-99, Cartagena, Colombia
| | - Garry Codling
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University. Kotlářská 267/2, 611 37, Brno, Czech Republic; Centre for Resilience in Environment, Water and Waste (CREWW), Exeter University, Exeter, UK
| | - Aída Luz Villa
- Environmental Catalysis Research Group, Chemical Engineering Department, Engineering Faculty, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Oscar Ríos-Marquez
- Environmental Catalysis Research Group, Chemical Engineering Department, Engineering Faculty, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Laura Patequiva-Chauta
- Energy, Materials and Environment Laboratory, Faculty of Engineering, Universidad de La Sabana, Campus Universitario Puente Del Común, Km. 7 Autopista Norte, Bogotá, Colombia
| | - Martha Cobo
- Energy, Materials and Environment Laboratory, Faculty of Engineering, Universidad de La Sabana, Campus Universitario Puente Del Común, Km. 7 Autopista Norte, Bogotá, Colombia
| | - Boris Johnson-Restrepo
- Environmental Chemistry Research Group, School of Exact and Natural Sciences, Campus of San Pablo, University of Cartagena. Zaragocilla, Carrera 50 No. 24-99, Cartagena, Colombia.
| |
Collapse
|
7
|
Nag SK, M SA, Sahu SK, Das Sarkar S, Samanta S, Saha K, Bandyopadhyay S. Assessment of environmental and human health risk from pesticide residues in river Gomti, Northern India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83341-83355. [PMID: 37340160 DOI: 10.1007/s11356-023-28222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Rivers get polluted with diverse types of hazardous and toxic substances, pesticides being one of them. The water and sediment of rivers get contaminated with pesticide residues coming through the run-off of vast agricultural fields along the catchment area and also from domestic sewage water. The residues get bio-concentrated and bio-accumulated in different aquatic organisms and animals including fishes along the food chain. Fish, one of the important and chief sources of proteins, are consumed by humans. The presence of toxic substances like pesticides in any food item is undesirable for the fear of health hazards. We have monitored the status of pesticide residue in river Gomti, a tributary of River Ganga that passes through the Uttar Pradesh state of India. Water, sediment, and fish samples collected from the different locations along the river stretch were analyzed for 34 targeted pesticide compounds belonging to organochlorines (OC), organophosphates (OP), and synthetic pyrethroids (SP) groups. In 52% of water, 30% of sediment, and 43% of fish samples residues of OCs were detected while the OPs were present in 33%, 25%, and 39% of samples respectively. However, none of the SPs could be recorded in any sample. The concentrations of the pesticides in water indicate stress conditions to some extent to aquatic life, but based on the human health risk assessment it can be concluded that consumption of fishes from the river contaminated with different OC or OP residues would not pose any direct risk to the consumers.
Collapse
Affiliation(s)
- Subir Kumar Nag
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India.
| | - Sajina A M
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Sanjeev Kumar Sahu
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Soma Das Sarkar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Srikanta Samanta
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Keya Saha
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | | |
Collapse
|
8
|
Hasan GA, Das AK, Satter MA. Multi residue analysis of organochlorine pesticides in fish, milk, egg and their feed by GC-MS/MS and their impact assessment on consumers health in Bangladesh. NFS JOURNAL 2022. [DOI: 10.1016/j.nfs.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|