1
|
Vasilakis G, Roidouli C, Karayannis D, Giannakis N, Rondags E, Chevalot I, Papanikolaou S. Study of Different Parameters Affecting Production and Productivity of Polyunsaturated Fatty Acids (PUFAs) and γ-Linolenic Acid (GLA) by Cunninghamella elegans Through Glycerol Conversion in Shake Flasks and Bioreactors. Microorganisms 2024; 12:2097. [PMID: 39458406 PMCID: PMC11510017 DOI: 10.3390/microorganisms12102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Microbial cultures repurposing organic industrial residues for value-added metabolite production is pivotal for sustainable resource use. Highlighting polyunsaturated fatty acids (PUFAs), particularly gamma-linolenic acid (GLA), renowned for their nutritional and therapeutic value. Notably, Zygomycetes' filamentous fungi harbor abundant GLA-rich lipid content, furthering their relevance in this approach. In this study, the strain C. elegans NRRL Y-1392 was evaluated for its capability to metabolize glycerol and produce lipids rich in GLA under different culture conditions. Various carbon-to-nitrogen ratios (C/N = 11.0, 110.0, and 220.0 mol/mol) were tested in batch-flask cultivations. The highest GLA production of 224.0 mg/L (productivity equal to 2.0 mg/L/h) was observed under nitrogen excess conditions, while low nitrogen content promoted lipid accumulation (0.59 g of lipids per g of dry biomass) without yielding more PUFAs and GLA. After improving the C/N ratio at 18.3 mol/mol, even higher PUFA (600 mg/L) and GLA (243 mg/L) production values were recorded. GLA content increased when the fungus was cultivated at 12 °C (15.5% w/w compared to 12.8% w/w at 28 °C), but productivity values decreased significantly due to prolonged cultivation duration. An attempt to improve productivity by increasing the initial spore population did not yield the expected results. The successful scale-up of fungal cultivations is evidenced by achieving consistent results (compared to flask experiments under corresponding conditions) in both laboratory-scale (Working Volume-Vw = 1.8 L; C/N = 18.3 mol/mol) and semi-pilot-scale (Vw = 15.0 L; C/N = 110.0 mol/mol) bioreactor experiments. To the best of our knowledge, cultivation of the fungus Cunninghamella elegans in glycerol-based substrates, especially in 20 L bioreactor experiments, has never been previously reported in the international literature. The successful scale-up of the process in a semi-pilot-scale bioreactor illustrates the potential for industrializing the bioprocess.
Collapse
Affiliation(s)
- Gabriel Vasilakis
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (G.V.); (C.R.); (D.K.); (N.G.)
- Laboratory of Reactions and Chemical Engineering, National School of Agronomy and Food Industries (E.N.S.A.I.A.), University of Lorraine, Cours Léopold 34, 54000 Nancy, France; (E.R.); (I.C.)
| | - Christina Roidouli
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (G.V.); (C.R.); (D.K.); (N.G.)
| | - Dimitris Karayannis
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (G.V.); (C.R.); (D.K.); (N.G.)
- Laboratory of Reactions and Chemical Engineering, National School of Agronomy and Food Industries (E.N.S.A.I.A.), University of Lorraine, Cours Léopold 34, 54000 Nancy, France; (E.R.); (I.C.)
| | - Nikos Giannakis
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (G.V.); (C.R.); (D.K.); (N.G.)
| | - Emmanuel Rondags
- Laboratory of Reactions and Chemical Engineering, National School of Agronomy and Food Industries (E.N.S.A.I.A.), University of Lorraine, Cours Léopold 34, 54000 Nancy, France; (E.R.); (I.C.)
| | - Isabelle Chevalot
- Laboratory of Reactions and Chemical Engineering, National School of Agronomy and Food Industries (E.N.S.A.I.A.), University of Lorraine, Cours Léopold 34, 54000 Nancy, France; (E.R.); (I.C.)
| | - Seraphim Papanikolaou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (G.V.); (C.R.); (D.K.); (N.G.)
- Laboratory of Reactions and Chemical Engineering, National School of Agronomy and Food Industries (E.N.S.A.I.A.), University of Lorraine, Cours Léopold 34, 54000 Nancy, France; (E.R.); (I.C.)
| |
Collapse
|
2
|
Priyanti I, Wongsawaeng D, Kongprawes G, Ngaosuwan K, Kiatkittipong W, Hosemann P, Sola P, Assabumrungrat S. Enhanced cold plasma hydrogenation with glycerol as hydrogen source for production of trans-fat-free margarine. Sci Rep 2024; 14:18468. [PMID: 39122825 PMCID: PMC11315688 DOI: 10.1038/s41598-024-68729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The quest for better nutritious foods has encouraged novel scientific investigations to find trans-fat reduction methods. This research proposes an innovative approach for the production of healthier trans-fat-free margarine from palm oil by the use of dielectric barrier discharge (DBD) plasma technology with glycerol serving as the principal source of hydrogen. The effectiveness of DBD plasma in hydrogenating palm olein was investigated. By employing a methodical series of experiments and thorough analytical approaches, examination of the saturated fatty acid conversion experienced its iodine value (IV) reduction from 67.16 ± 0.70 to 31.61 ± 1.10 under the optimal process parameters of 1 L min-1 He flow rate, 35 W plasma discharge power, 10 mm gap size, ambient initial temperature, and 12 h reaction time with solid texture. According to the method for producing trans-fat-free margarine in the absence of a catalyst and H2 gas, the hydrogenation rate of the prepared mixture of palm olein-glycerol was remarkably improved; the trans-fat content in the produced product was zero; the efficacy of incorporating cis- and trans-isomerization was lowered, and the method has a promising industrial application prospect.
Collapse
Affiliation(s)
- Ika Priyanti
- Research Unit on Plasma Technology for High-Performance Materials Development, Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathum Wan, Bangkok, 10330, Thailand
| | - Doonyapong Wongsawaeng
- Research Unit on Plasma Technology for High-Performance Materials Development, Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathum Wan, Bangkok, 10330, Thailand.
| | - Grittima Kongprawes
- Research Unit on Plasma Technology for High-Performance Materials Development, Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathum Wan, Bangkok, 10330, Thailand
| | - Kanokwan Ngaosuwan
- Division of Chemical Engineering, Faculty of Engineering, Rajamangala University of Technology Krungthep, Bangkok, 10120, Thailand
| | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Peter Hosemann
- Department of Nuclear Engineering, Faculty of Engineering, University of California at Berkeley, Berkeley, California, 94720, USA
| | - Phachirarat Sola
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, 26120, Thailand
| | - Suttichai Assabumrungrat
- Center of Excellence in Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Bio-Circular-Green-Economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
3
|
Severinsen MM, Bachleitner S, Modenese V, Ata Ö, Mattanovich D. Efficient production of itaconic acid from the single-carbon substrate methanol with engineered Komagataella phaffii. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:98. [PMID: 39010147 PMCID: PMC11251334 DOI: 10.1186/s13068-024-02541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Amidst the escalating carbon dioxide levels resulting from fossil fuel consumption, there is a pressing need for sustainable, bio-based alternatives to underpin future global economies. Single-carbon feedstocks, derived from CO2, represent promising substrates for biotechnological applications. Especially, methanol is gaining prominence for bio-production of commodity chemicals. RESULTS In this study, we show the potential of Komagataella phaffii as a production platform for itaconic acid using methanol as the carbon source. Successful integration of heterologous genes from Aspergillus terreus (cadA, mttA and mfsA) alongside fine-tuning of the mfsA gene expression, led to promising initial itaconic acid titers of 28 g·L-1 after 5 days of fed-batch cultivation. Through the combined efforts of process optimization and strain engineering strategies, we further boosted the itaconic acid production reaching titers of 55 g·L-1 after less than 5 days of methanol feed, while increasing the product yield on methanol from 0.06 g·g-1 to 0.24 g·g-1. CONCLUSION Our results highlight the potential of K. phaffii as a methanol-based platform organism for sustainable biochemical production.
Collapse
Affiliation(s)
- Manja Mølgaard Severinsen
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, 1190, Vienna, Austria
| | - Simone Bachleitner
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, 1190, Vienna, Austria
| | - Viola Modenese
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, 1190, Vienna, Austria
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Özge Ata
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, 1190, Vienna, Austria
- Austrian Centre of Industrial Biotechnology, 1190, Vienna, Austria
| | - Diethard Mattanovich
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, 1190, Vienna, Austria.
- Austrian Centre of Industrial Biotechnology, 1190, Vienna, Austria.
| |
Collapse
|
4
|
Keil L, Qoura FM, Breitsameter JM, Rieger B, Garbe D, Brück TB. Evaluation of Chemical and Physical Triggers for Enhanced Photosynthetic Glycerol Production in Different Dunaliella Isolates. Microorganisms 2024; 12:1318. [PMID: 39065087 PMCID: PMC11278730 DOI: 10.3390/microorganisms12071318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The salt-tolerant marine microalgae Dunaliella tertiolecta is reported to generate significant amounts of intracellular glycerol as an osmoprotectant under high salt conditions. This study highlights the phylogenetic distribution and comparative glycerol biosynthesis of seven new Dunaliella isolates compared to a D. tertiolecta reference strain. Phylogenetic analysis indicates that all Dunaliella isolates are newly discovered and do not relate to the D. tertiolecta reference. Several studies have identified light color and intensity and salt concentration alone as the most inducing factors impacting glycerol productivity. This study aims to optimize glycerol production by investigating these described factors singularly and in combination to improve the glycerol product titer. Glycerol production data indicate that cultivation with white light of an intensity between 500 and 2000 μmol m-2 s-1 as opposed to 100 μmol m-2 s-1 achieves higher biomass and thereby higher glycerol titers for all our tested Dunaliella strains. Moreover, applying higher light intensity in a cultivation of 1.5 M NaCl and an increase to 3 M NaCl resulted in hyperosmotic stress conditions, providing the highest glycerol titer. Under these optimal light intensity and salt conditions, the glycerol titer of D. tertiolecta could be doubled to 0.79 mg mL-1 in comparison to 100 μmol m-2 s-1 and salt stress to 2 M NaCl, and was higher compared to singularly optimized conditions. Furthermore, under the same conditions, glycerol extracts from new Dunaliella isolates did provide up to 0.94 mg mL-1. This highly pure algae-glycerol obtained under optimal production conditions can find widespread applications, e.g., in the pharmaceutical industry or the production of sustainable carbon fibers.
Collapse
Affiliation(s)
- Linda Keil
- Werner Siemens Laboratory of Synthetic Biotechnology, TUM-School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany;
| | - Farah Mitry Qoura
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany;
| | - Jonas Martin Breitsameter
- Wacker-Laboratory of Macromolecular Chemistry, TUM-School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany; (J.M.B.); (B.R.)
| | - Bernhard Rieger
- Wacker-Laboratory of Macromolecular Chemistry, TUM-School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany; (J.M.B.); (B.R.)
| | - Daniel Garbe
- Werner Siemens Laboratory of Synthetic Biotechnology, TUM-School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany;
| | - Thomas Bartholomäus Brück
- Werner Siemens Laboratory of Synthetic Biotechnology, TUM-School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany;
| |
Collapse
|
5
|
Mittra D, Mahalik S. Improving the production of recombinant L-Asparaginase-II in Escherichia coli by co-expressing catabolite repressor activator ( cra) gene. Prep Biochem Biotechnol 2024; 54:709-719. [PMID: 38692288 DOI: 10.1080/10826068.2023.2279097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Identification of a single genetic target for microbial strain improvement is difficult due to the complexity of the genetic regulatory network. Hence, a more practical approach is to identify bottlenecks in the regulatory networks that control critical metabolic pathways. The present work focuses on enhancing cellular physiology by increasing the metabolic flux through the central carbon metabolic pathway. Global regulator cra (catabolite repressor activator), a DNA-binding transcriptional dual regulator was selected for the study as it controls the expression of a large number of operons that modulate central carbon metabolism. To upregulate the activity of central carbon metabolism, the cra gene was co-expressed using a plasmid-based system. Co-expression of cra led to a 17% increase in the production of model recombinant protein L-Asparaginase-II. A pulse addition of 0.36% of glycerol every two hours post-induction, further increased the production of L-Asparaginase-II by 35% as compared to the control strain expressing only recombinant protein. This work exemplifies that upregulating the activity of central carbon metabolism by tuning the expression of regulatory genes like cra can relieve the host from cellular stress and thereby promote the growth as well as expression of recombinant hosts.
Collapse
Affiliation(s)
- Debashrita Mittra
- Post Graduate Department of Biosciences & Biotechnology, Fakir Mohan University, Nuapadhi, Balasore, India
| | - Shubhashree Mahalik
- Post Graduate Department of Biosciences & Biotechnology, Fakir Mohan University, Nuapadhi, Balasore, India
| |
Collapse
|
6
|
Ranieri R, Candeliere F, Sola L, Leonardi A, Rossi M, Amaretti A, Raimondi S. Production of arabitol from glycerol by immobilized cells of Wickerhamomyces anomalus WC 1501. Front Bioeng Biotechnol 2024; 12:1375937. [PMID: 38659644 PMCID: PMC11039890 DOI: 10.3389/fbioe.2024.1375937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Polyalcohols such as arabitol are among the main targets of biorefineries aiming to upcycle wastes and cheap substrates. In previous works Wickerhamomyces anomalus WC 1501 emerged as an excellent arabitol producer utilizing glycerol. Arabitol production by this strain is not growth associated, therefore, in this study, pre-grown cells were entrapped in calcium alginate beads (AB) and utilized for glycerol transformation to arabitol. Flasks experiments aimed to assess the medium composition (i.e., the concentration of inorganic and organic nitrogen sources and phosphates) and to establish the appropriate carrier-to-medium proportion. In flasks, under the best conditions of ammonium limitation and the carrier:medium ratio of 1:3 (w/v), 82.7 g/L glycerol were consumed in 168 h, yielding 31.2 g/L arabitol, with a conversion of 38% and volumetric productivity of 186 mg/mL/h. The process with immobilized cells was transferred to laboratory scale bioreactors with different configurations: stirred tank (STR), packed bed (PBR), fluidized bed (FBR), and airlift (ALR) bioreactors. The STR experienced oxygen limitation due to the need to maintain low stirring to preserve AB integrity and performed worse than flasks. Limitations in diffusion and mass transfer of oxygen and/or nutrients characterized also the PBR and the FBR and were partially relieved only in ALR, where 89.4 g/L glycerol were consumed in 168 h, yielding 38.1 g/L arabitol, with a conversion of 42% and volumetric productivity of 227 mg/mL/h. When the ALR was supplied with successive pulses of concentrated glycerol to replenish the glycerol as it was being consumed, 117 g/L arabitol were generated in 500 h, consuming a total of 285 g/L glycerol, with a 41% and 234 mg/L/h. The study strongly supports the potential of W. anomalus WC 1501 for efficient glycerol-to-arabitol conversion using immobilized cells. While the yeast shows promise by remaining viable and active for extended periods, further optimization is required, especially regarding mixing and oxygenation. Improving the stability of the immobilization process is also crucial for reusing pre-grown cells in multiple cycles, reducing dead times, biomass production costs, and enhancing the economic feasibility of the process.
Collapse
Affiliation(s)
- Raffaella Ranieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Candeliere
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Sola
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alan Leonardi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Biogest-Siteia, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Alberto Amaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Biogest-Siteia, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Biogest-Siteia, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
7
|
El Nagy HA, Mohamed MAEA. Stable diesel microemulsion using diammonium ionic liquids and their effects on fuel properties, particle size characteristics and combustion calculations. Sci Rep 2024; 14:7728. [PMID: 38565584 PMCID: PMC10987596 DOI: 10.1038/s41598-024-57955-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
Ecofriendly and stable Fuel Microemulsions based on renewable components were prepared through solubilizing ethanol in diesel and waste cooking oil blend (4:1). New diquaternary ammonium ionic liquids (3a & 3b) were synthesized through a quaternization reaction of the synthesized dihaloester with diethyl ethanolamine tridecantrioate and triethyl amine tridecantrioate, respectively. The chemical structures were elucidated by NMR spectroscopy. It was observed from DLS analyses that the ethanol particles in all samples have sizes between 4.77 to 11.22 nm. The distribution becomes narrower with the decrease in the ionic liquid concentrations. The fuel properties fall within the ASTM D975 acceptable specifications and are close to the neat diesel properties. The Cetane index were 53 and 53.5, heating values were 38.5 and 38.5 MJ/kg, viscosities were 2.91 and 2.98 mm2/s, densities were 8.26 and 8.29 g/mL and flash points were 49 °C and 48 °C for 3a1 and 3b1 microemulsions, respectively. The particle sizes of samples were examined by DLS for 160 days and they were significantly stable. The amount of ethanol solubilized increases with the increase in the amount of the synthesized ionic liquids and cosurfactant. The combustion calculations pointed out that the microemulsions 3a1 and 3b1 need 13.07 kg air/kg fuel and 12.79 kg air/kg fuel, respectively, which are less than the air required to combust the pure diesel. According to theoretical combustion, using ionic liquids saves the air consumption required for combustion and reduces the quantities of combustion products. The prepared microemulsions were successfully used as a diesel substitute due to their improved combustion properties than pure diesel and low pollution levels.
Collapse
Affiliation(s)
- H A El Nagy
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
| | | |
Collapse
|
8
|
Zuiderveen EAR, Caldeira C, Vries T, Schenk NJ, Huijbregts MAJ, Sala S, Hanssen SV, van Zelm R. Evaluating the Environmental Sustainability of Alternative Ways to Produce Benzene, Toluene, and Xylene. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:5092-5104. [PMID: 38577584 PMCID: PMC10988839 DOI: 10.1021/acssuschemeng.3c06996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
The petrochemical industry can reduce its environmental impacts by moving from fossil resources to alternative carbon feedstocks. Biomass and plastic waste-based production pathways have recently been developed for benzene, toluene, and xylene (BTX). This study evaluates the environmental impacts of these novel BTX pathways at a commercial and future (2050) scale, combining traditional life cycle assessment with absolute environmental sustainability assessment using the planetary boundary concept. We show that plastic waste-based BTX has lower environmental impacts than fossil BTX, including a 12% decrease in greenhouse gas (GHG) emissions. Biomass-based BTX shows greater GHG emission reductions (42%), but it causes increased freshwater consumption and eutrophication. Toward 2050, GHG emission reductions become 75 and 107% for plastic waste and biobased production, respectively, compared to current fossil-BTX production. When comparing alternative uses of plastic waste, BTX production has larger climate benefits than waste incineration with energy recovery with a GHG benefit of 1.1 kg CO2-equiv/kg plastic waste. For biomass (glycerol)-based BTX production, other uses of glycerol are favorable over BTX production. While alternative BTX production pathways can decrease environmental impacts, they still transgress multiple planetary boundaries. Further impact reduction efforts are thus required, such as using other types of (waste) biomass, increasing carbon recycling, and abatement of end-of-life emissions.
Collapse
Affiliation(s)
- Emma A. R. Zuiderveen
- Department
of Environmental Science, Radboud Institute for Biological & Environmental
Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- European
Commission, Joint Research Centre, Via Enrico Fermi 2749, Ispra, 21027 Varese, Italy
| | - Carla Caldeira
- European
Commission, Joint Research Centre, Via Enrico Fermi 2749, Ispra, 21027 Varese, Italy
- Syensqo
Lyon Research and Innovation Center, 85 Avenue des Freres Perret, 69190 Saint-Fons, France
| | - Tijmen Vries
- BioBTX
B.V., Zernikelaan 17, 9747 AA Groningen, The Netherlands
| | - Niels J. Schenk
- BioBTX
B.V., Zernikelaan 17, 9747 AA Groningen, The Netherlands
| | - Mark A. J. Huijbregts
- Department
of Environmental Science, Radboud Institute for Biological & Environmental
Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Department
of Circularity & Sustainability Impacts, TNO, Princetonlaan 6, 3584CB Utrecht, The Netherlands
| | - Serenella Sala
- European
Commission, Joint Research Centre, Via Enrico Fermi 2749, Ispra, 21027 Varese, Italy
| | - Steef. V. Hanssen
- Department
of Environmental Science, Radboud Institute for Biological & Environmental
Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Rosalie van Zelm
- Department
of Environmental Science, Radboud Institute for Biological & Environmental
Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
9
|
Sun Z, Wu Y, Long S, Feng S, Jia X, Hu Y, Ma M, Liu J, Zeng B. Aspergillus oryzae as a Cell Factory: Research and Applications in Industrial Production. J Fungi (Basel) 2024; 10:248. [PMID: 38667919 PMCID: PMC11051239 DOI: 10.3390/jof10040248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024] Open
Abstract
Aspergillus oryzae, a biosafe strain widely utilized in bioproduction and fermentation technology, exhibits a robust hydrolytic enzyme secretion system. Therefore, it is frequently employed as a cell factory for industrial enzyme production. Moreover, A. oryzae has the ability to synthesize various secondary metabolites, such as kojic acid and L-malic acid. Nevertheless, the complex secretion system and protein expression regulation mechanism of A. oryzae pose challenges for expressing numerous heterologous products. By leveraging synthetic biology and novel genetic engineering techniques, A. oryzae has emerged as an ideal candidate for constructing cell factories. In this review, we provide an overview of the latest advancements in the application of A. oryzae-based cell factories in industrial production. These studies suggest that metabolic engineering and optimization of protein expression regulation are key elements in realizing the widespread industrial application of A. oryzae cell factories. It is anticipated that this review will pave the way for more effective approaches and research avenues in the future implementation of A. oryzae cell factories in industrial production.
Collapse
Affiliation(s)
- Zeao Sun
- College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Z.S.); (S.F.)
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (S.L.); (X.J.); (Y.H.); (M.M.)
| | - Yijian Wu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (S.L.); (X.J.); (Y.H.); (M.M.)
| | - Shihua Long
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (S.L.); (X.J.); (Y.H.); (M.M.)
| | - Sai Feng
- College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Z.S.); (S.F.)
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (S.L.); (X.J.); (Y.H.); (M.M.)
| | - Xiao Jia
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (S.L.); (X.J.); (Y.H.); (M.M.)
| | - Yan Hu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (S.L.); (X.J.); (Y.H.); (M.M.)
| | - Maomao Ma
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (S.L.); (X.J.); (Y.H.); (M.M.)
| | - Jingxin Liu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (S.L.); (X.J.); (Y.H.); (M.M.)
| | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (S.L.); (X.J.); (Y.H.); (M.M.)
| |
Collapse
|
10
|
Tomatis M, Kumar Jeswani H, Azapagic A. Environmental impacts of valorisation of crude glycerol from biodiesel production - A life cycle perspective. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 179:55-65. [PMID: 38460477 DOI: 10.1016/j.wasman.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Biodiesel production produces significant quantities of impure crude glycerol as a by-product. Recent increases in the global biodiesel production have led to a surplus of crude glycerol, rendering it a waste. As a result, different methods for its valorisation are currently being investigated. This paper assesses the life cycle environmental impacts of an emerging technology for purification of crude glycerol - a multi-step physico-chemical treatment - in comparison to incineration with energy recovery commonly used for its disposal. For the former, three different acids (H3PO4, H2SO4 and HCl) are considered for the acidification step in the purification process. The results suggest that the H2SO4-based treatment is the best option with 17 net-negative impacts out of the 18 categories considered; this is due to system credits for the production of purified glycerol, heat and potassium salts. In comparison to incineration with energy recovery, the H2SO4-based process has lower savings for the climate change impact (-311 versus -504 kg CO2 eq./t crude glycerol) but it performs better in ten other categories. Sensitivity analyses suggest that that the impacts of the physico-chemical treatment are highly dependent on crude glycerol composition, allocation of burdens to crude glycerol and credits for glycerol production. For example, treating crude glycerol with lower glycerol content would increase all impacts except climate change and fossil depletion due to the higher consumption of chemicals and lower production of purified glycerol. Considering crude glycerol as a useful product rather than waste and allocating to it burdens from biodiesel production would increase most impacts significantly, including climate change (22-40 %), while fossil depletion, freshwater and marine eutrophication would become net-positive. The findings of this research will be of interest to the biodiesel industry and other industrial sectors that generate crude glycerol as a by-product.
Collapse
Affiliation(s)
- Marco Tomatis
- Sustainable Industrial Systems, Department of Chemical Engineering, The University of Manchester, Manchester, UK
| | - Harish Kumar Jeswani
- Sustainable Industrial Systems, Department of Chemical Engineering, The University of Manchester, Manchester, UK
| | - Adisa Azapagic
- Sustainable Industrial Systems, Department of Chemical Engineering, The University of Manchester, Manchester, UK.
| |
Collapse
|
11
|
Wang XL, Sun YQ, Pan DT, Xiu ZL. Kinetics-based development of two-stage continuous fermentation of 1,3-propanediol from crude glycerol by Clostridium butyricum. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:38. [PMID: 38454489 PMCID: PMC10921705 DOI: 10.1186/s13068-024-02486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Glycerol, as a by-product, mainly derives from the conversion of many crops to biodiesel, ethanol, and fatty ester. Its bioconversion to 1,3-propanediol (1,3-PDO) is an environmentally friendly method. Continuous fermentation has many striking merits over fed-batch and batch fermentation, such as high product concentration with easy feeding operation, long-term high productivity without frequent seed culture, and energy-intensive sterilization. However, it is usually difficult to harvest high product concentrations. RESULTS In this study, a three-stage continuous fermentation was firstly designed to produce 1,3-PDO from crude glycerol by Clostridium butyricum, in which the first stage fermentation was responsible for providing the excellent cells in a robust growth state, the second stage focused on promoting 1,3-PDO production, and the third stage aimed to further boost the 1,3-PDO concentration and reduce the residual glycerol concentration as much as possible. Through the three-stage continuous fermentation, 80.05 g/L 1,3-PDO as the maximum concentration was produced while maintaining residual glycerol of 5.87 g/L, achieving a yield of 0.48 g/g and a productivity of 3.67 g/(L·h). Based on the 14 sets of experimental data from the first stage, a kinetic model was developed to describe the intricate relationships among the concentrations of 1,3-PDO, substrate, biomass, and butyrate. Subsequently, this kinetic model was used to optimize and predict the highest 1,3-PDO productivity of 11.26 g/(L·h) in the first stage fermentation, while the glycerol feeding concentration and dilution rate were determined to be 92 g/L and 0.341 h-1, separately. Additionally, to achieve a target 1,3-PDO production of 80 g/L without the third stage fermentation, the predicted minimum volume ratio of the second fermenter to the first one was 11.9. The kinetics-based two-stage continuous fermentation was experimentally verified well with the predicted results. CONCLUSION A novel three-stage continuous fermentation and a kinetic model were reported. Then a simpler two-stage continuous fermentation was developed based on the optimization of the kinetic model. This kinetics-based development of two-stage continuous fermentation could achieve high-level production of 1,3-PDO. Meanwhile, it provides a reference for other bio-chemicals production by applying kinetics to optimize multi-stage continuous fermentation.
Collapse
Affiliation(s)
- Xiao-Li Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning, People's Republic of China
| | - Ya-Qin Sun
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning, People's Republic of China
| | - Duo-Tao Pan
- Institute of Information and Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, Liaoning, People's Republic of China
| | - Zhi-Long Xiu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning, People's Republic of China.
| |
Collapse
|
12
|
Bang S, Snoeckx R, Cha MS. Valorization of Glycerol through Plasma-Induced Transformation into Formic Acid. CHEMSUSCHEM 2024; 17:e202300925. [PMID: 37811907 DOI: 10.1002/cssc.202300925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/10/2023]
Abstract
To cope with climate change issues, a significant shift is required in worldwide energy sources. Hydrogen and bioenergy are being considered as alternatives toward a carbon neutral society, making formic acid - a hydrogen carrying product of glycerol - of interest for the valorization of glycerol. Here we investigate the plasma-induced transformation of glycerol in an aqueous nanosecond repetitively pulsed discharge reactor. We found that the water content in the aqueous mixture fulfilled a crucial role in both the gas phase (as a source of OH radicals) and the liquid phase (as a promotor of the dissolved OH radical's mobility and reactivity). The formic acid produced was linearly proportional to the specific input energy, and the most cost-effective production of formic acid was found with 10 % v/v glycerol in the aqueous mixture. A plausible reaction pathway was proposed, consisting of the OH radical-driven dehydrogenation and dehydration of glycerol. The results provide a fundamental understanding of plasma-induced transformation of glycerol to formic acid and insights for future practical applications.
Collapse
Affiliation(s)
- Seunghwan Bang
- CCRC, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Ramses Snoeckx
- CCRC, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Min Suk Cha
- CCRC, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
13
|
Anjana, Rawat S, Goswami S. Synergistic approach for enhanced production of polyhydroxybutyrate by Bacillus pseudomycoides SAS-B1: Effective utilization of glycerol and acrylic acid through fed-batch fermentation and its environmental impact assessment. Int J Biol Macromol 2024; 258:128764. [PMID: 38103666 DOI: 10.1016/j.ijbiomac.2023.128764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The continual rise in the consumption of petroleum-based synthetic polymers raised a significant environmental concern. Bacillus pseudomycoides SAS-B1 is a gram-positive rod-shaped halophilic bacterium capable of accumulating Polyhydroxybutyrate (PHB)-an intracellular biodegradable polymer. In the present study, the optimal conditions for cell cultivation in the seed media were developed. The optimal factors included a preservation age of 14 to 21 days (with 105 to 106 cells/mL), inoculum size of 0.1 % (w/v), 1 % (w/v) glucose, and growth temperature of 30 °C. The cells were then cultivated in a two-stage fermentation process utilizing glycerol and Corn Steep Liquor (CSL) as carbon and nitrogen sources, respectively. PHB yield was effectively increased from 2.01 to 9.21 g/L through intermittent feeding of glycerol and CSL, along with acrylic acid. FTIR, TGA, DSC, and XRD characterization studies were employed to enumerate the recovered PHB and determine its physicochemical properties. Additionally, the study assessed the cradle-to-gate Life Cycle Assessment (LCA) of PHB production, considering net CO2 generation and covering all major environmental impact categories. The production of 1000 kg of PHB resulted in lower stratospheric ozone depletion and comparatively reduced carbon dioxide emissions (2022.7 kg CO2 eq.) and terrestrial ecotoxicity (9.54 kg 1,4-DCB eq.) than typical petrochemical polymers.
Collapse
Affiliation(s)
- Anjana
- Division of Chemical Engineering, Centre of Innovative and Applied Bioprocessing, Knowledge City, Sector-81, Mohali, Punjab 140306, India; Department of Biotechnology, Regional Center for Biotechnology (RCB), Faridabad, Haryana 121001, India
| | - Shristhi Rawat
- Division of Chemical Engineering, Centre of Innovative and Applied Bioprocessing, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Saswata Goswami
- Division of Chemical Engineering, Centre of Innovative and Applied Bioprocessing, Knowledge City, Sector-81, Mohali, Punjab 140306, India; Department of Biotechnology, Regional Center for Biotechnology (RCB), Faridabad, Haryana 121001, India.
| |
Collapse
|
14
|
Gupta P, Sahoo PC, Sandipam S, Gupta RP, Kumar M. Fermentation of biodiesel-derived crude glycerol to 1,3-propanediol with bio-wastes as support matrices: Polynomial prediction model. Enzyme Microb Technol 2023; 170:110292. [PMID: 37536048 DOI: 10.1016/j.enzmictec.2023.110292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
Biodiesel production from used cooking oil is sustainable alternative, for bio-energy production. The process generates residual crude glycerol (RCG) as the major energy-rich waste which can be used to produce various bio-based chemicals like 1,3-propanediol (1,3-PDO) through biotechnological interventions. This RCG contains several impurities like methanol, soap, organic materials, salts non-transesterified fatty acids and metals in varied concentrations. These impurities significantly affect yield and productivity of the bio-process due to their marked microbial toxicity. In this work, previously isolated Clostridium butyricum L4 was immobilized on various abundantly available cheap bio-wastes (like rice straw, activated carbon and corn cob) to explore advantages offered and improve tolerance to various feed impurities. Amongst these, shredded rice straw was found most suitable candidate for immobilization and results in maximum improvement in 1,3-PDO production (18.4%) with highest porosity (89.28%), lowest bulk density (194.48Kg/m3), and highest cellular biofilm density (CFU/g-8.4 ×1010) amongst the three matrices. For practical purposes, recyclability was evaluated and it was concluded that even after reusing for five successive cycles the production retained to ∼82.4%. Subsequently, polynomial model was developed using 30 runs central composite factorial design experiments having coefficient of regression (R²) as 0.9520, in order to predict yields under different immobilization conditions for 1,3-PDO production. Plackett-Burman was employed (Accuracy= 99.17%) to screen significant toxic impurities. Based on statistical analysis six impurities were found to be significantly influential on PDO production in adverse manner. With negative coefficient of estimate (COE) varying in decreasing order: Linoleic acid >Oleic acid >Stearic acid >NaCl>K2SO4 >KCl. The study illustrates practical application for repurposing waste glycerol generated from biodiesel plants, thus developing improved agnostic process along with yield production models.
Collapse
Affiliation(s)
- Pragya Gupta
- Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - P C Sahoo
- Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - Srikanth Sandipam
- Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - Ravi Prakash Gupta
- Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - Manoj Kumar
- Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad 121007, Haryana, India.
| |
Collapse
|
15
|
Jugé A, Moreno-Villafranca J, Perez-Puyana VM, Jiménez-Rosado M, Sabino M, Capezza AJ. Porous Thermoformed Protein Bioblends as Degradable Absorbent Alternatives in Sanitary Materials. ACS APPLIED POLYMER MATERIALS 2023; 5:6976-6989. [PMID: 37705711 PMCID: PMC10497054 DOI: 10.1021/acsapm.3c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023]
Abstract
Protein-based porous absorbent structures can be processed and assembled into configurations suitable for single-use, biodegradable sanitary materials. In this work, a formulation based on a mixture of proteins available as industrial coproducts is processed into continuous porous structures using extrusion and assembled using conventional thermal methods. The experimental design led to formulations solely based on zein-gluten protein bioblends that could be manufactured as liquid absorbent pellets, compressed pads, and/or porous films. The processing versatility is attributed to the synergistic effect of zein as a low viscosity thermoformable protein with gluten as a readily cross-linkable high molecular weight protein. The capillary-driven sorption, the biodegradability of the materials, and the possibility to assemble the products as multilayer components provide excellent performance indicators for their use as microplastic-free absorbents. This work shows the potential of biopolymers for manufacturing sustainable alternatives to current nonbiodegradable and highly polluting disposable items such as pads and diapers.
Collapse
Affiliation(s)
- Agnès Jugé
- KTH
Royal Institute of Technology, Department of Fibre and Polymer Technology, Polymeric Materials Division,
School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm 10044, Sweden
| | | | | | | | - Marcos Sabino
- B5IDA
Research Group Chemistry Department, Universidad
Simón Bolívar, AP 89000, Caracas, Venezuela
| | - Antonio J. Capezza
- KTH
Royal Institute of Technology, Department of Fibre and Polymer Technology, Polymeric Materials Division,
School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm 10044, Sweden
| |
Collapse
|
16
|
Calderon MJP, Dumancas GG, Gutierrez CS, Lubguban AA, Alguno AC, Malaluan RM, Lubguban AA. Producing polyglycerol polyester polyol for thermoplastic polyurethane application: A novel valorization of glycerol, a by-product of biodiesel production. Heliyon 2023; 9:e19491. [PMID: 37662775 PMCID: PMC10472058 DOI: 10.1016/j.heliyon.2023.e19491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
The production of biodiesel generates glycerol as a by-product that needs valorization. Glycerol, when converted to polyglycerol, is a potential polyol for bio-based thermoplastic polyurethane (TPU) production. In this study, a novel polyglycerol polyester polyol (PPP) was developed from refined glycerol and coconut oil-based polyester polyol. Glycerol was first converted to glycerol acetate and then polymerized with coconut oil-based polyester polyol (CPP) as secondary polyol and phthalic anhydride. The resulting PPP polymerized at 220 °C and OH:COOH molar ratio of 2.5 exhibited an OH number of <100 mg KOH·g sample-1, an acid number of <10 mg KOH·g sample-1, and a molecular weight (MW) of 3697 g mol-1 meeting the polyol requirement properties for TPU (Handlin et al., 2001; Parcheta et al., 2020) [1-2]. Fourier-transform infrared (FTIR) spectroscopic characterization determined that higher reaction temperatures increase the polymerization rate and decrease the OH and acid numbers. Further, higher OH:COOH molar ratios decrease the polymerization rate and acid number, and increase the OH number. Gel permeation chromatography determined the molecular weight of PPP and suggested two distinct molecular structures which differ only in the number of moles of CPP in the structure. A differential scanning calorimetric (DSC) experiment on a sample of PPP-based polyurethane revealed that it was able to melt and remelt after 3 heating cycles which demonstrates its thermoplastic ability. The novel PPP derived from the glycerol by-product of biodiesel industries can potentially replace petroleum-derived polyols for TPU production.
Collapse
Affiliation(s)
- Mike Jhun P. Calderon
- Center for Sustainable Polymers, Mindanao State University - Iligan Institute of Technology, Iligan City, 9200, Philippines
- Department of Materials and Resources Engineering and Technology, Graduate School of Engineering, Mindanao State University - Iligan Institute of Technology, Iligan City, 9200, Philippines
| | - Gerard G. Dumancas
- Department of Chemistry, The University of Scranton, Scranton, PA, 18510, USA
| | - Carlo S. Gutierrez
- Comparative Asian Studies, National University of Singapore, Singapore, 11926
| | - Alona A. Lubguban
- Department of Mathematics, Statistics, and Computer Studies, University of the Philippines Rural High School, Paciano Rizal, Bay, Laguna, 4033, Philippines
| | - Arnold C. Alguno
- Center for Sustainable Polymers, Mindanao State University - Iligan Institute of Technology, Iligan City, 9200, Philippines
| | - Roberto M. Malaluan
- Center for Sustainable Polymers, Mindanao State University - Iligan Institute of Technology, Iligan City, 9200, Philippines
- Department of Chemical Engineering and Technology, Mindanao State University - Iligan Institute of Technology, Iligan City, 9200, Philippines
| | - Arnold A. Lubguban
- Center for Sustainable Polymers, Mindanao State University - Iligan Institute of Technology, Iligan City, 9200, Philippines
- Department of Chemical Engineering and Technology, Mindanao State University - Iligan Institute of Technology, Iligan City, 9200, Philippines
| |
Collapse
|
17
|
Bortolucci J, Guazzaroni ME, Schoch T, Dürre P, Reginatto V. Enhancing 1,3-Propanediol Productivity in the Non-Model Chassis Clostridium beijerinckii through Genetic Manipulation. Microorganisms 2023; 11:1855. [PMID: 37513028 PMCID: PMC10383064 DOI: 10.3390/microorganisms11071855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Biotechnological processes at biorefineries are considered one of the most attractive alternatives for valorizing biomasses by converting them into bioproducts, biofuels, and bioenergy. For example, biodiesel can be obtained from oils and grease but generates glycerol as a byproduct. Glycerol recycling has been studied in several bioprocesses, with one of them being its conversion to 1,3-propanediol (1,3-PDO) by Clostridium. Clostridium beijerinckii is particularly interesting because it can produce a range of industrially relevant chemicals, including solvents and organic acids, and it is non-pathogenic. However, while Clostridium species have many potential advantages as chassis for synthetic biology applications, there are significant limitations when considering their use, such as their limited genetic tools, slow growth rate, and oxygen sensitivity. In this work, we carried out the overexpression of the genes involved in the synthesis of 1,3-PDO in C. beijerinckii Br21, which allowed us to increase the 1,3-PDO productivity in this strain. Thus, this study contributed to a better understanding of the metabolic pathways of glycerol conversion to 1,3-PDO by a C. beijerinckii isolate. Also, it made it possible to establish a transformation method of a modular vector in this strain, therefore expanding the limited genetic tools available for this bacterium, which is highly relevant in biotechnological applications.
Collapse
Affiliation(s)
- Jonatã Bortolucci
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto 14040-030, SP, Brazil
| | - María-Eugenia Guazzaroni
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto 14040-030, SP, Brazil
| | - Teresa Schoch
- Institut für Mikrobiologie und Biotechnologie, Universität Ulm, Albert-Einstein-Allee, 11, D-89081 Ulm, Germany
| | - Peter Dürre
- Institut für Mikrobiologie und Biotechnologie, Universität Ulm, Albert-Einstein-Allee, 11, D-89081 Ulm, Germany
| | - Valeria Reginatto
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto 14040-030, SP, Brazil
| |
Collapse
|
18
|
Capêto AP, Azevedo-Silva J, Sousa S, Pintado M, Guimarães AS, Oliveira ALS. Synthesis of Bio-Based Polyester from Microbial Lipidic Residue Intended for Biomedical Application. Int J Mol Sci 2023; 24:4419. [PMID: 36901850 PMCID: PMC10003017 DOI: 10.3390/ijms24054419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
In the last decade, selectively tuned bio-based polyesters have been increasingly used for their clinical potential in several biomedical applications, such as tissue engineering, wound healing, and drug delivery. With a biomedical application in mind, a flexible polyester was produced by melt polycondensation using the microbial oil residue collected after the distillation of β-farnesene (FDR) produced industrially by genetically modified yeast, Saccharomyces cerevisiae. After characterization, the polyester exhibited elongation up to 150% and presented Tg of -51.2 °C and Tm of 169.8 °C. In vitro degradation revealed a mass loss of about 87% after storage in PBS solution for 11 weeks under accelerated conditions (40 °C, RH = 75%). The water contact angle revealed a hydrophilic character, and biocompatibility with skin cells was demonstrated. 3D and 2D scaffolds were produced by salt-leaching, and a controlled release study at 30 °C was performed with Rhodamine B base (RBB, 3D) and curcumin (CRC, 2D), showing a diffusion-controlled mechanism with about 29.3% of RBB released after 48 h and 50.4% of CRC after 7 h. This polymer offers a sustainable and eco-friendly alternative for the potential use of the controlled release of active principles for wound dressing applications.
Collapse
Affiliation(s)
- Ana P. Capêto
- Centro de Biotecnologia e Química Fina (CBQF)-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo de Botelho 1327, 4169-005 Porto, Portugal
| | - João Azevedo-Silva
- Centro de Biotecnologia e Química Fina (CBQF)-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo de Botelho 1327, 4169-005 Porto, Portugal
| | - Sérgio Sousa
- Centro de Biotecnologia e Química Fina (CBQF)-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo de Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- Centro de Biotecnologia e Química Fina (CBQF)-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo de Botelho 1327, 4169-005 Porto, Portugal
| | - Ana S. Guimarães
- CONSTRUCT, Faculdade de Engenharia do Porto (FEUP), Universidade do Porto, Rua Doutor Roberto Frias, 4200-465 Porto, Portugal
| | - Ana L. S. Oliveira
- Centro de Biotecnologia e Química Fina (CBQF)-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo de Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
19
|
Bîtcan I, Petrovici A, Pellis A, Klébert S, Károly Z, Bereczki L, Péter F, Todea A. Enzymatic route for selective glycerol oxidation using covalently immobilized laccases. Enzyme Microb Technol 2022; 163:110168. [DOI: 10.1016/j.enzmictec.2022.110168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
|
20
|
Jiménez MV, Ojeda-Amador AI, Puerta-Oteo R, Martínez-Sal J, Passarelli V, Pérez-Torrente JJ. Selective Oxidation of Glycerol via Acceptorless Dehydrogenation Driven by Ir(I)-NHC Catalysts. Molecules 2022; 27:7666. [PMID: 36431768 PMCID: PMC9696977 DOI: 10.3390/molecules27227666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Iridium(I) compounds featuring bridge-functionalized bis-NHC ligands (NHC = N-heterocyclic carbene), [Ir(cod)(bis-NHC)] and [Ir(CO)2(bis-NHC)], have been prepared from the appropriate carboxylate- or hydroxy-functionalized bis-imidazolium salts. The related complexes [Ir(cod)(NHC)2]+ and [IrCl(cod)(NHC)(cod)] have been synthesized from a 3-hydroxypropyl functionalized imidazolium salt. These complexes have been shown to be robust catalysts in the oxidative dehydrogenation of glycerol to lactate (LA) with dihydrogen release. High activity and selectivity to LA were achieved in an open system under low catalyst loadings using KOH as a base. The hydroxy-functionalized bis-NHC catalysts are much more active than both the carboxylate-functionalized ones and the unbridged bis-NHC iridium(I) catalyst with hydroxyalkyl-functionalized NHC ligands. In general, carbonyl complexes are more active than the related 1,5-cyclooctadiene ones. The catalyst [Ir(CO)2{(MeImCH2)2CHOH}]Br exhibits the highest productivity affording TONs to LA up to 15,000 at very low catalyst loadings.
Collapse
Affiliation(s)
- M. Victoria Jiménez
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | | | | | | | | | - Jesús J. Pérez-Torrente
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| |
Collapse
|
21
|
Mota MN, Múgica P, Sá-Correia I. Exploring Yeast Diversity to Produce Lipid-Based Biofuels from Agro-Forestry and Industrial Organic Residues. J Fungi (Basel) 2022; 8:687. [PMID: 35887443 PMCID: PMC9315891 DOI: 10.3390/jof8070687] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Exploration of yeast diversity for the sustainable production of biofuels, in particular biodiesel, is gaining momentum in recent years. However, sustainable, and economically viable bioprocesses require yeast strains exhibiting: (i) high tolerance to multiple bioprocess-related stresses, including the various chemical inhibitors present in hydrolysates from lignocellulosic biomass and residues; (ii) the ability to efficiently consume all the major carbon sources present; (iii) the capacity to produce lipids with adequate composition in high yields. More than 160 non-conventional (non-Saccharomyces) yeast species are described as oleaginous, but only a smaller group are relatively well characterised, including Lipomyces starkeyi, Yarrowia lipolytica, Rhodotorula toruloides, Rhodotorula glutinis, Cutaneotrichosporonoleaginosus and Cutaneotrichosporon cutaneum. This article provides an overview of lipid production by oleaginous yeasts focusing on yeast diversity, metabolism, and other microbiological issues related to the toxicity and tolerance to multiple challenging stresses limiting bioprocess performance. This is essential knowledge to better understand and guide the rational improvement of yeast performance either by genetic manipulation or by exploring yeast physiology and optimal process conditions. Examples gathered from the literature showing the potential of different oleaginous yeasts/process conditions to produce oils for biodiesel from agro-forestry and industrial organic residues are provided.
Collapse
Affiliation(s)
- Marta N. Mota
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Paula Múgica
- BIOREF—Collaborative Laboratory for Biorefineries, Rua da Amieira, Apartado 1089, São Mamede de Infesta, 4465-901 Matosinhos, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| |
Collapse
|
22
|
Abstract
Polyphenolic esters (PEs) are valuable chemical compounds that display a wide spectrum of activities (e.g., anti-oxidative effects). As a result, their production through catalytic routes is an attractive field of research. The present review aims to discuss recent studies from the literature regarding the catalytic production of PEs from biomass feedstocks, namely, naturally occurred polyphenolic compounds. Several synthetic approaches are reported in the literature, mainly bio-catalysis and to a lesser extent acid catalysis. Immobilized lipases (e.g., Novozym 435) are the preferred enzymes thanks to their high reactivity, selectivity and reusability. Acid catalysis is principally investigated for the esterification of polyphenolic acids with fatty alcohols and/or glycerol, using both homogeneous (p-toluensulfonic acid, sulfonic acid and ionic liquids) and heterogeneous (strongly acidic cation exchange resins) catalysts. Based on the reviewed publications, we propose some suggestions to improve the synthesis of PEs with the aim of increasing the greenness of the overall production process. In fact, much more attention should be paid to the use of new and efficient acid catalysts and their reuse for multiple reaction cycles.
Collapse
|
23
|
Mechanistic Kinetic Modelling Framework for the Conversion of Waste Crude Glycerol to Value-Added Hydrogen-Rich Gas. Catalysts 2022. [DOI: 10.3390/catal12020200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The kinetics for crude glycerol autothermal reforming was studied over S/C ratio of 2.6 and O2/C ratio of 0.125 using 5% Ni/CeZrCa catalyst. Both power law and mechanistic kinetic models were studied. The overall power law model for crude glycerol autothermal reforming was investigated with a pre-exponential factor of 4.3 × 1010 mol/gcat.min and activation energy of 8.78 × 104 J/mol. The reaction orders with respect to crude glycerol, water and oxygen are 1.04, 0.54 and 1.78 respectively. The power law model presented an absolute average deviation of 5.84%, which showed a good correlation between the predicted and experimental rate. Mechanistic models were developed for crude glycerol autothermal reforming. For steam reforming, the Eley–Rideal approach best described the reaction rate with the surface reaction being the rate-determining step (AAD < 10%). The kinetics of the total oxidation reaction was best described by the power law model with an AAD of less than 1%, whereas for the TOR process, the molecular adsorption of crude glycerol with an AAD of 14.6% via Langmuir Hinshelwood Hougen-Watson approach was best. CO2 methanation resulted in an AAD of 5.8% for the adsorption of carbon dioxide (CO2) by the Eley–Rideal mechanism.
Collapse
|
24
|
Chilakamarry CR, Mimi Sakinah AM, Zularisam AW, Sirohi R, Khilji IA, Ahmad N, Pandey A. Advances in solid-state fermentation for bioconversion of agricultural wastes to value-added products: Opportunities and challenges. BIORESOURCE TECHNOLOGY 2022; 343:126065. [PMID: 34624472 DOI: 10.1016/j.biortech.2021.126065] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The increase in solid waste has become a common problem and causes environmental pollution worldwide. A green approach to valorise solid waste for sustainable development is required. Agricultural residues are considered suitable for conversion into profitable products through solid-state fermentation (SSF). Agricultural wastes have high organic content that is used as potential substrates to produce value-added products through SSF. The importance of process variables used in solid-phase fermentation is described. The applications of SSF developed products in the food industry as flavouring agents, acidifiers, preservatives and flavour enhancers. SSF produces secondary metabolites and essential enzymes. Wastes from agricultural residues are used as bioremediation agents, biofuels and biocontrol agents through microbial processing. In this review paper, the value addition of agricultural wastes by SSF through green processing is discussed with the current knowledge on the scenarios, sustainability opportunities and future directions of a circular economy for solid waste utilisation.
Collapse
Affiliation(s)
- Chaitanya Reddy Chilakamarry
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang, Kuantan, Pahang 26300, Malaysia
| | - A M Mimi Sakinah
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang, Kuantan, Pahang 26300, Malaysia.
| | - A W Zularisam
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, Gambang, Kuantan, Pahang 26300, Malaysia
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Irshad Ahamad Khilji
- Faculty of Manufacturing and Mechatronics Engineering Technology, Universiti Malaysia Pahang, Kuantan, Pahang 26300, Malaysia
| | - Noormazlinah Ahmad
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang, Kuantan, Pahang 26300, Malaysia
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| |
Collapse
|