1
|
Chhabra R. Molecular and modular intricacies of precision oncology. Front Immunol 2024; 15:1476494. [PMID: 39507541 PMCID: PMC11537923 DOI: 10.3389/fimmu.2024.1476494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Precision medicine is revolutionizing the world in combating different disease modalities, including cancer. The concept of personalized treatments is not new, but modeling it into a reality has faced various limitations. The last decade has seen significant improvements in incorporating several novel tools, scientific innovations and governmental support in precision oncology. However, the socio-economic factors and risk-benefit analyses are important considerations. This mini review includes a summary of some commendable milestones, which are not just a series of successes, but also a cautious outlook to the challenges and practical implications of the advancing techno-medical era.
Collapse
Affiliation(s)
- Ravneet Chhabra
- Business Department, Biocytogen Boston Corporation, Waltham, MA, United States
| |
Collapse
|
2
|
O'Sullivan DE, Ruan Y, Farah E, Hutchinson JM, Hilsden RJ, Brenner DR. Risk factors for early-onset colorectal cancer: A Canadian prospective cohort study. Cancer Epidemiol 2024; 91:102578. [PMID: 38749340 DOI: 10.1016/j.canep.2024.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE The incidence of early-onset (<50 years of age) colorectal cancer (eoCRC) has been steadily increasing in high-income countries including Canada. Despite this increase in incidence, the etiology of eoCRC remains unclear and prospective cohort studies of potential risk factors are limited. METHODS We examined two prospective cohorts of healthy individuals (<50 years of age) who completed baseline questionnaires in the Ontario Health Study and Alberta's Tomorrow Project. We examined the associations between demographic characteristics, chronic health conditions, and lifestyle behaviours with the development of eoCRC using Cox proportional hazard models. Cohorts were analyzed separately and hazard ratios for each risk factor were pooled with random effects meta-analyses. RESULTS During an average follow-up of 6.63 years, 98 eoCRC cases occurred among study participants (n=127,852). A family history of CRC alone or with a history of other cancer types was associated with an increased risk of developing eoCRC (HR: 2.76, 95% CI: 1.43-5.32), but a family history of a non-CRC cancer only was not (HR: 1.18, 95% CI: 0.61-2.30). Heavy smokers (≥ 10 pack-years) at baseline had a higher risk of eoCRC compared to non-smokers (HR: 1.87, 95% CI: 1.00-3.52). Sex, socioeconomic factors, diabetes, alcohol consumption, among other factors were not significantly associated with the risk of eoCRC. CONCLUSION Our findings indicate that specific CRC risk factors are also associated with developing eoCRC. The data in the study offers valuable insights that could be integrated in future meta-analyses. Additional prospective cohort studies are required to understand the etiology of eoCRC.
Collapse
Affiliation(s)
- Dylan E O'Sullivan
- Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, Alberta T2N 1N4, Canada; Department of Oncology, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Yibing Ruan
- Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, Alberta T2N 1N4, Canada; Department of Oncology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Eliya Farah
- Department of Oncology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - John M Hutchinson
- Department of Oncology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Robert J Hilsden
- Department of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Darren R Brenner
- Department of Oncology, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
3
|
Li Y, Nelson R, Izem R, Broglio K, Mundayat R, Gamalo M, Wen Y, Pan H, Sun H, Ye J. Unlocking the Potential: A Systematic Review of Master Protocol in Pediatrics. Ther Innov Regul Sci 2024; 58:634-644. [PMID: 38653950 PMCID: PMC11169036 DOI: 10.1007/s43441-024-00656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
The use of master protocols allows for innovative approaches to clinical trial designs, potentially enabling new approaches to operations and analytics and creating value for patients and drug developers. Pediatric research has been conducted for many decades, but the use of novel designs such as master protocols in pediatric research is not well understood. This study aims to provide a systematic review on the utilization of master protocols in pediatric drug development. A search was performed in September 2022 using two data sources (PubMed and ClinicalTrials.gov) and included studies conducted in the past10 years. General study information was extracted such as study type, study status, therapeutic area, and clinical trial phase. Study characteristics that are specific to pediatric studies (such as age of the participants and pediatric drug dosing) and important study design elements (such as number of test drug arms and whether randomization and/or concurrent control was used) were also collected. Our results suggest that master protocol studies are being used in pediatrics, with platform and basket trials more common than umbrella trials. Most of this experience is in oncology and early phase studies. There is a rise in the use starting in 2020, largely in oncology and COVID-19 trials. However, adoption of master protocols in pediatric clinical research is still on a small scale and could be substantially expanded. Work is required to further understand the barriers in implementing pediatric master protocols, from setting up infrastructure to interpreting study findings.
Collapse
Affiliation(s)
- Yimei Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 3501 Civic Center Blvd, Colket Translational Research Building Room 4032, 19034, Philadelphia, PA, USA.
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | | | - Rima Izem
- Statistical Methodology, Novartis Pharma AG, Basel, Switzerland
| | | | | | | | - Yansong Wen
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Haitao Pan
- Department of Biostatistics, St. Jude Children's Hospital, Memphis, TN, USA
| | - Hengrui Sun
- Food & Drug Administration, Silver Spring, MD, USA
| | | |
Collapse
|
4
|
De Wachter E, De Boeck K, Sermet-Gaudelus I, Simmonds NJ, Munck A, Naehrlich L, Barben J, Boyd C, Veen SJ, Carr SB, Fajac I, Farrell PM, Girodon E, Gonska T, Grody WW, Jain M, Jung A, Kerem E, Raraigh KS, van Koningsbruggen-Rietschel S, Waller MD, Southern KW, Castellani C. ECFS standards of care on CFTR-related disorders: Towards a comprehensive program for affected individuals. J Cyst Fibros 2024; 23:388-397. [PMID: 38388234 DOI: 10.1016/j.jcf.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
After three publications defining an updated guidance on the diagnostic criteria for people with cystic fibrosis transmembrane conductance regulator (CFTR)-related disorders (pwCFTR-RDs), establishing its relationship to CFTR-dysfunction and describing the individual disorders, this fourth and last paper in the series addresses some critical challenges facing health care providers and pwCFTR-RD. Topics included are: 1) benefits and obstacles to collect data from pwCFTR-RD are discussed, together with the opportunity to integrate them into established CF-registries; 2) the potential of infants designated CRMS/CFSPID to develop a CFTR-RD and how to communicate this information; 3) a description of the challenges in genetic counseling, with particular regard to phenotypic variability, unknown long-term evolution, CFTR testing and pregnancy termination 4) a proposal for the assessment of potential barriers to the implementation and dissemination of the produced documents to health care professionals involved in the care of pwCFTR-RD and a process to monitor the implementation of the CFTR-RD recommendations; 5) clinical trials investigating the efficacy of CFTR modulators in CFTR-RD and how endpoints and outcomes might be adapted to the heterogeneity of these disorders.
Collapse
Affiliation(s)
- E De Wachter
- Cystic Fibrosis Center, Pediatric Pulmonology department, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.
| | - K De Boeck
- Department of Pediatrics, University of Leuven, Leuven, Belgium
| | - I Sermet-Gaudelus
- INSERM U1151, Institut Necker Enfants Malades, Paris, France; Université de Paris, Paris, France; Centre de référence Maladies Rares, Mucoviscidose et maladies apparentées. Hôpital Necker Enfants malades, Paris, France
| | - N J Simmonds
- Adult Cystic Fibrosis Centre, Royal Brompton Hospital and Imperial College, London, UK
| | - A Munck
- Paediatric Cystic Fibrosis centre, Hôpital Necker Enfants Malades, AP-HP Paris, France
| | - L Naehrlich
- Department of Pediatrics, Justus-Liebig-University Giessen, Germany
| | - J Barben
- Paediatric Pulmonology & CF Centre, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | | | | | - S B Carr
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, and Imperial College, London, UK
| | - I Fajac
- Assistance Publique-Hôpitaux de Paris, Thoracic Department and National Cystic Fibrosis Reference Centre, Cochin Hospital, 75014 Paris, France; Université Paris Cité, Inserm U1016, Institut Cochin, 75014 Paris, France
| | - P M Farrell
- Departments of Pediatrics and Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - E Girodon
- Service de Médecine Génomique des Maladies de Système et d'Organe, APHP.Centre - Université de Paris Cité, Hôpital Cochin, Paris, France
| | - T Gonska
- Division of Pediatric Gastroenterology, Hepatology, Nutrition, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; Program of Translational Medicine, Research institute, Hospital for Sick Children, Toronto, Canada
| | - W W Grody
- Departments of Pathology & Laboratory Medicine, Pediatrics, and Human Genetics, UCLA School of Medicine, Los Angeles, California 90095-1732, USA
| | - M Jain
- Northwestern University Feinberg School of Medicine, Pulmonary Critical Care, Chicago, Illinois, United States
| | - A Jung
- University Children`s Hospital Zurich, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | - E Kerem
- Department of Pediatrics and CF Center, Hadassah Hebrew University medical Center, Jerusalem, Israel
| | - K S Raraigh
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | - M D Waller
- Department of Adult Cystic Fibrosis and Respiratory Medicine, King's College Hospital NHS Foundation Trust, London, United Kingdom; Centre for Human & Applied Physiological Sciences, King's College London, London, United Kingdom
| | - K W Southern
- Department of Women's and Children's Health, University of Liverpool, Alder Hey Children's Hospital, Liverpool, UK
| | - C Castellani
- IRCCS Istituto Giannina Gaslini, Cystic Fibrosis Center, Genoa, Italy
| |
Collapse
|
5
|
Mack DP, Upton J, Patel N, Turner PJ. Flex-IT! Applying "Platform Trials" Methodology to Immunotherapy for Food Allergy in Research and Clinical Practice. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:554-561. [PMID: 38218449 DOI: 10.1016/j.jaip.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
There is an increasing trend in the management of food allergy toward active treatment using allergen immunotherapy (AIT). Although AIT is efficacious, treatment-related adverse events are common, particularly with oral immunotherapy in those with high levels of allergen-specific IgE sensitization. In clinical practice, these adverse events inevitably create challenges: clinicians and patients routinely face decisions whether to alter the dose itself, the frequency of dosing, and the pace of escalation, or indeed discontinue AIT altogether. Flexibility is therefore needed to adapt treatment, particularly in clinical practice, so that participants are "treated-to-target." For example, this may entail a significant change in the dosing protocol or even switching from one route of administration to another in response to frequent adverse events. We refer to this approach as flexible immunotherapy. However, there is little evidence to inform clinicians as to what changes to treatment are most likely to result in treatment success. Classical clinical trials rely, by necessity, on relatively rigid updosing protocols. To provide an evidence base to optimize AIT, the food allergy community should adopt adaptive platform trials, where a "master protocol" facilitates more efficient evaluation, including longer-term outcomes of multiple interventions. Within a single clinical trial, participants are able to switch between different treatment arms; interventions can be added or dropped without compromising the integrity of the trial. Developing platform trials for food AIT may initially be costly, but they represent a significant opportunity to grow the evidence base (with respect to both treatment outcomes and biomarker discovery) at scale. In addition, they could help understand longitudinal disease trajectories that are difficult to study in clinical trials for food allergy due to the time needed to demonstrate changes in efficacy. Finally, their adoption would achieve greater collaboration and consistency in approaches to proactive management of food allergy in routine clinical practice. As a community, we need to actively pursue this with funders and established research collaborations to deliver the very best outcomes for our patients and their families.
Collapse
Affiliation(s)
- Douglas P Mack
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Julia Upton
- SickKids Food Allergy and Anaphylaxis Programme, Division of Immunology and Allergy, Department of Pediatrics, the Hospital for Sick Children, Toronto, Ontario, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nandinee Patel
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Paul J Turner
- National Heart & Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
6
|
Chen J, Li XN, Lu CC, Yuan S, Yung G, Ye J, Tian H, Lin J. Considerations for master protocols using external controls. J Biopharm Stat 2024:1-23. [PMID: 38363805 DOI: 10.1080/10543406.2024.2311248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
There has been an increasing use of master protocols in oncology clinical trials because of its efficiency to accelerate cancer drug development and flexibility to accommodate multiple substudies. Depending on the study objective and design, a master protocol trial can be a basket trial, an umbrella trial, a platform trial, or any other form of trials in which multiple investigational products and/or subpopulations are studied under a single protocol. Master protocols can use external data and evidence (e.g. external controls) for treatment effect estimation, which can further improve efficiency of master protocol trials. This paper provides an overview of different types of external controls and their unique features when used in master protocols. Some key considerations in master protocols with external controls are discussed including construction of estimands, assessment of fit-for-use real-world data, and considerations for different types of master protocols. Similarities and differences between regular randomized controlled trials and master protocols when using external controls are discussed. A targeted learning-based causal roadmap is presented which constitutes three key steps: (1) define a target statistical estimand that aligns with the causal estimand for the study objective, (2) use an efficient estimator to estimate the target statistical estimand and its uncertainty, and (3) evaluate the impact of causal assumptions on the study conclusion by performing sensitivity analyses. Two illustrative examples for master protocols using external controls are discussed for their merits and possible improvement in causal effect estimation.
Collapse
Affiliation(s)
- Jie Chen
- Data Sciences, ECR Global, Shanghai, China
| | | | | | - Sammy Yuan
- Oncology Statistics, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Godwin Yung
- Product Development Data and Statistical Sciences, Genentech/Roche, South San Francisco, Cambridge, USA
| | - Jingjing Ye
- Global Statistics and Data Sciences, BeiGene, Fulton, Maryland, USA
| | - Hong Tian
- Global Statistics, BeiGene, Ridgefield Park, New Jersy, USA
| | - Jianchang Lin
- Statistical & Quantitative Sciences, Takeda, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Lu CC, Beckman RA, Li XN, Zhang W, Jiang Q, Marchenko O, Sun Z, Tian H, Ye J, Yuan SS, Yung G. Tumor-Agnostic Approvals: Insights and Practical Considerations. Clin Cancer Res 2024; 30:480-488. [PMID: 37792436 DOI: 10.1158/1078-0432.ccr-23-1340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/05/2023] [Accepted: 10/03/2023] [Indexed: 10/05/2023]
Abstract
Since the first approval of a tumor-agnostic indication in 2017, a total of seven tumor-agnostic indications involving six drugs have received approval from the FDA. In this paper, the master protocol subteam of the Statistical Methods in Oncology Scientific Working Group, Biopharmaceutical Session, American Statistical Association, provides a comprehensive summary of these seven tumor-agnostic approvals, describing their mechanisms of action; biomarker prevalence; study design; companion diagnostics; regulatory aspects, including comparisons of global regulatory requirements; and health technology assessment approval. Also discussed are practical considerations relating to the regulatory approval of tumor-agnostic indications, specifically (i) recommendations for the design stage to mitigate the risk that exceptions may occur if a treatment is initially hypothesized to be effective for all tumor types and (ii) because drug development continues after approval of a tumor-agnostic indication, recommendations for further development of tumor-specific indications in first-line patients in the setting of a randomized confirmatory basket trial, acknowledging the challenges in this area. These recommendations and practical considerations may provide insights for the future development of drugs for tumor-agnostic indications.
Collapse
Affiliation(s)
| | - Robert A Beckman
- Departments of Oncology and of Biostatistics, Bioinformatics, and Biomathematics, Lombardi Comprehensive Cancer Center and Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC
| | | | | | - Qi Jiang
- Biometrics, Seagen, Bothell, Washington
| | - Olga Marchenko
- Statistics and Data Insights, Bayer, Whippany, New Jersey
| | - Zhiping Sun
- Biostatistics and Research Decision Sciences, Merck & Co., Inc., Rahway, New Jersey
| | - Hong Tian
- Global Statistics and Data Sciences, BeiGene, Fulton, Maryland
| | - Jingjing Ye
- Global Statistics and Data Sciences, BeiGene, Fulton, Maryland
| | - Shuai Sammy Yuan
- Oncology Statistics, GlaxoSmithKline, Collegeville, Pennsylvania
| | | |
Collapse
|
8
|
Cheung SYA, Hay JL, Lin YW, de Greef R, Bullock J. Pediatric oncology drug development and dosage optimization. Front Oncol 2024; 13:1235947. [PMID: 38348118 PMCID: PMC10860405 DOI: 10.3389/fonc.2023.1235947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/29/2023] [Indexed: 02/15/2024] Open
Abstract
Oncology drug discovery and development has always been an area facing many challenges. Phase 1 oncology studies are typically small, open-label, sequential studies enrolling a small sample of adult patients (i.e., 3-6 patients/cohort) in dose escalation. Pediatric evaluations typically lag behind the adult development program. The pediatric starting dose is traditionally referenced on the recommended phase 2 dose in adults with the incorporation of body size scaling. The size of the study is also small and dependent upon the prevalence of the disease in the pediatric population. Similar to adult development, the dose is escalated or de-escalated until reaching the maximum tolerated dose (MTD) that also provides desired biological activities or efficacy. The escalation steps and identification of MTD are often rule-based and do not incorporate all the available information, such as pharmacokinetic (PK), pharmacodynamic (PD), tolerability and efficacy data. Therefore, it is doubtful if the MTD approach is optimal to determine the dosage. Hence, it is important to evaluate whether there is an optimal dosage below the MTD, especially considering the emerging complexity of combination therapies and the long-term tolerability and safety of the treatments. Identification of an optimal dosage is also vital not only for adult patients but for pediatric populations as well. Dosage-finding is much more challenging for pediatric populations due to the limited patient population and differences among the pediatric age range in terms of maturation and ontogeny that could impact PK. Many sponsors defer the pediatric strategy as they are often perplexed by the challenges presented by pediatric oncology drug development (model of action relevancy to pediatric population, budget, timeline and regulatory requirements). This leads to a limited number of approved drugs for pediatric oncology patients. This review article provides the current regulatory landscape, incentives and how they impact pediatric drug discovery and development. We also consider different pediatric cancers and potential clinical trial challenges/opportunities when designing pediatric clinical trials. An outline of how quantitative methods such as pharmacometrics/modelling & simulation can support the dosage-finding and justification is also included. Finally, we provide some reflections that we consider helpful to accelerate pediatric drug discovery and development.
Collapse
|
9
|
Zhou T, Ji Y. Bayesian Methods for Information Borrowing in Basket Trials: An Overview. Cancers (Basel) 2024; 16:251. [PMID: 38254740 PMCID: PMC10813856 DOI: 10.3390/cancers16020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Basket trials allow simultaneous evaluation of a single therapy across multiple cancer types or subtypes of the same cancer. Since the same treatment is tested across all baskets, it may be desirable to borrow information across them to improve the statistical precision and power in estimating and detecting the treatment effects in different baskets. We review recent developments in Bayesian methods for the design and analysis of basket trials, focusing on the mechanism of information borrowing. We explain the common components of these methods, such as a prior model for the treatment effects that embodies an assumption of exchangeability. We also discuss the distinct features of these methods that lead to different degrees of borrowing. Through simulation studies, we demonstrate the impact of information borrowing on the operating characteristics of these methods and discuss its broader implications for drug development. Examples of basket trials are presented in both phase I and phase II settings.
Collapse
Affiliation(s)
- Tianjian Zhou
- Department of Statistics, Colorado State University, Fort Collins, CO 80523, USA
| | - Yuan Ji
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Huml RA, Collyar D, Antonijevic Z, Beckman RA, Quek RGW, Ye J. Aiding the Adoption of Master Protocols by Optimizing Patient Engagement. Ther Innov Regul Sci 2023; 57:1136-1147. [PMID: 37615880 DOI: 10.1007/s43441-023-00570-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/24/2023] [Indexed: 08/25/2023]
Abstract
Master protocols (MPs) are an important addition to the clinical trial repertoire. As defined by the U.S. Food and Drug Administration (FDA), this term means "a protocol designed with multiple sub-studies, which may have different objectives (goals) and involve coordinated efforts to evaluate one or more investigational drugs in one or more disease subtypes within the overall trial structure." This means we now have a unique, scientifically based MP that describes how a clinical trial will be conducted using one or more potential candidate therapies to treat patients in one or more diseases. Patient engagement (PE) is also a critical factor that has been recognized by FDA through its Patient-Focused Drug Development (PFDD) initiative, and by the European Medicines Agency (EMA), which states on its website that it has been actively interacting with patients since the creation of the Agency in 1995. We propose that utilizing these PE principles in MPs can make them more successful for sponsors, providers, and patients. Potential benefits of MPs for patients awaiting treatment can include treatments that better fit a patient's needs; availability of more treatments; and faster access to treatments. These make it possible to develop innovative therapies (especially for rare diseases and/or unique subpopulations, e.g., pediatrics), to minimize untoward side effects through careful dose escalation practices and, by sharing a control arm, to lower the probability of being assigned to a placebo arm for clinical trial participants. This paper is authored by select members of the American Statistical Association (ASA)/DahShu Master Protocol Working Group (MPWG) People and Patient Engagement (PE) Subteam. DahShu is a 501(c)(3) non-profit organization, founded to promote research and education in data science. This manuscript does not include direct feedback from US or non-US regulators, though multiple regulatory-related references are cited to confirm our observation that improving patient engagement is supported by regulators. This manuscript represents the authors' independent perspective on the Master Protocol; it does not represent the official policy or viewpoint of FDA or any other regulatory organization or the views of the authors' employers. The objective of this manuscript is to provide drug developers, contract research organizations (CROs), third party capital investors, patient advocacy groups (PAGs), and biopharmaceutical executives with a better understanding of how including the patient voice throughout MP development and conduct creates more efficient clinical trials. The PE Subteam also plans to publish a Plain Language Summary (PLS) of this publication for clinical trial participants, patients, caregivers, and the public as they seek to understand the risks and benefits of MP clinical trial participation.
Collapse
Affiliation(s)
| | | | | | - Robert A Beckman
- Departments of Oncology and of Biostatistics, Bioinformatics, & Biomathematics, Lombardi Comprehensive Cancer Center and Innovation Center for Biomedical Informatics, Georgetown University Medical Center, District of Columbia (DC), Washington, USA
| | - Ruben G W Quek
- Health Economics & Outcomes Research, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Jingjing Ye
- Data Science and Operational Excellent, Global Statistics and Data Sciences, BeiGene, Ltd., Washington, DC, USA
| |
Collapse
|
11
|
Daniells L, Mozgunov P, Bedding A, Jaki T. A comparison of Bayesian information borrowing methods in basket trials and a novel proposal of modified exchangeability-nonexchangeability method. Stat Med 2023; 42:4392-4417. [PMID: 37614070 PMCID: PMC10962580 DOI: 10.1002/sim.9867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023]
Abstract
Recent innovation in trial design to improve study efficiency has led to the development of basket trials in which a single therapeutic treatment is tested on several patient populations, each of which forms a basket. In a common setting, patients across all baskets share a genetic marker and as such, an assumption can be made that all patients may have a homogeneous response to treatments. Bayesian information borrowing procedures utilize this assumption to draw on information regarding the response in one basket when estimating the response rate in others. This can improve power and precision of estimates particularly in the presence of small sample sizes, however, can come at a cost of biased estimates and an inflation of error rates, bringing into question validity of trial conclusions. We review and compare the performance of several Bayesian borrowing methods, namely: the Bayesian hierarchical model (BHM), calibrated Bayesian hierarchical model (CBHM), exchangeability-nonexchangeability (EXNEX) model and a Bayesian model averaging procedure. A generalization of the CBHM is made to account for unequal sample sizes across baskets. We also propose a modification of the EXNEX model that allows for better control of a type I error. The proposed method uses a data-driven approach to account for the homogeneity of the response data, measured through Hellinger distances. Through an extensive simulation study motivated by a real basket trial, for both equal and unequal sample sizes across baskets, we show that in the presence of a basket with a heterogeneous response, unlike the other methods discussed, this model can control type I error rates to a nominal level whilst yielding improved power.
Collapse
Affiliation(s)
- Libby Daniells
- STOR‐i Centre for Doctoral Training, Department of Mathematics and StatisticsLancaster UniversityLancasterUK
| | - Pavel Mozgunov
- MRC Biostatistics UnitUniversity of CambridgeCambridgeUK
| | | | - Thomas Jaki
- MRC Biostatistics UnitUniversity of CambridgeCambridgeUK
- Faculty of Informatics and Data ScienceUniversity of RegensburgRegensburgGermany
| |
Collapse
|
12
|
Hosack T, Thomas T, Ravindran R, Uhlig HH, Travis SPL, Buckley CD. Inflammation across tissues: can shared cell biology help design smarter trials? Nat Rev Rheumatol 2023; 19:666-674. [PMID: 37666996 DOI: 10.1038/s41584-023-01007-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 09/06/2023]
Abstract
Immune-mediated inflammatory diseases (IMIDs) are responsible for substantial global disease burden and associated health-care costs. Traditional models of research and service delivery silo their management within organ-based medical disciplines. Very often patients with disease in one organ have comorbid involvement in another, suggesting shared pathogenic pathways. Moreover, different IMIDs are often treated with the same drugs (including glucocorticoids, immunoregulators and biologics). Unlocking the cellular basis of these diseases remains a major challenge, leading us to ask why, if these diseases have so much in common, they are not investigated in a common manner. A tissue-based, cellular understanding of inflammation might pave the way for cross-disease, cross-discipline basket trials (testing one drug across two or more diseases) to reduce the risk of failure of early-phase drug development in IMIDs. This new approach will enable rapid assessment of the efficacy of new therapeutic agents in cross-disease translational research in humans.
Collapse
Affiliation(s)
- Tom Hosack
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Tom Thomas
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Rahul Ravindran
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Hans Holm Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Simon Piers Leigh Travis
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Christopher Dominic Buckley
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
- Biomedical Research Centre, University of Oxford, Oxford, UK.
- Institute for Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
13
|
Schoenmakers DH, Leferink PS, Vanderver A, Bonkowsky JL, Krägeloh-Mann I, Bernard G, Bertini E, Fatemi A, Fogel BL, Wolf NI, Skwirut D, Buck A, Holberg B, Saunier-Vivar EF, Rauner R, Dekker H, van Bokhoven P, Stellingwerff MD, Berkhof J, van der Knaap MS. Core protocol development for phase 2/3 clinical trials in the leukodystrophy vanishing white matter: a consensus statement by the VWM consortium and patient advocates. BMC Neurol 2023; 23:305. [PMID: 37592248 PMCID: PMC10433679 DOI: 10.1186/s12883-023-03354-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND The leukodystrophy "Vanishing White Matter" (VWM) is an orphan disease with neurological decline and high mortality. Currently, VWM has no approved treatments, but advances in understanding pathophysiology have led to identification of promising therapies. Several investigational medicinal products are either in or about to enter clinical trial phase. Clinical trials in VWM pose serious challenges, as VWM has an episodic disease course; disease phenotype is highly heterogeneous and predictable only for early onset; and study power is limited by the small patient numbers. To address these challenges and accelerate therapy delivery, the VWM Consortium, a group of academic clinicians with expertise in VWM, decided to develop a core protocol to function as a template for trials, to improve trial design and facilitate sharing of control data, while permitting flexibility regarding other trial details. Overall aims of the core protocol are to collect safety, tolerability, and efficacy data for treatment assessment and marketing authorization. METHODS To develop the core protocol, the VWM Consortium designated a committee, including clinician members of the VWM Consortium, family and patient group advocates, and experts in statistics, clinical trial design and alliancing with industries. We drafted three age-specific protocols, to stratify into more homogeneous patient groups, of ages ≥ 18 years, ≥ 6 to < 18 years and < 6 years. We chose double-blind, randomized, placebo-controlled design for patients aged ≥ 6 years; and open-label non-randomized natural-history-controlled design for patients < 6 years. The protocol describes study populations, age-specific endpoints, inclusion and exclusion criteria, study schedules, sample size determinations, and statistical considerations. DISCUSSION The core protocol provides a shared uniformity across trials, enables a pool of shared controls, and reduces the total number of patients necessary per trial, limiting the number of patients on placebo. All VWM clinical trials are suggested to adhere to the core protocol. Other trial components such as choice of primary outcome, pharmacokinetics, pharmacodynamics, and biomarkers are flexible and unconstrained by the core protocol. Each sponsor is responsible for their trial execution, while the control data are handled by a shared research organization. This core protocol benefits the efficiency of parallel and consecutive trials in VWM, and we hope accelerates time to availability of treatments for VWM. TRIAL REGISTRATION NA. From a scientific and ethical perspective, it is strongly recommended that all interventional trials using this core protocol are registered in a clinical trial register.
Collapse
Affiliation(s)
- Daphne H Schoenmakers
- Department of Child Neurology, Emma's Children's Hospital, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Platform "Medicine for Society", Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Prisca S Leferink
- IXA Neuroscience, Amsterdam Neuroscience, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Adeline Vanderver
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Joshua L Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Primary Children's Hospital, Intermountain Healthcare, Salt Lake City, Utah, USA
| | - Ingeborg Krägeloh-Mann
- Department of Developmental and Child Neurology, Social Pediatrics, University Children's Hospital Tübingen, Tübingen, Germany
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University; Department Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, Canada
| | - Enrico Bertini
- Research Unit of Neuromuscular and Neurodegenerative Diseases, Translational Pediatrics and Clinical Genetics Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Ali Fatemi
- Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Brent L Fogel
- Los Angeles David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Nicole I Wolf
- Department of Child Neurology, Emma's Children's Hospital, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Donna Skwirut
- United Leukodystrophy Foundation, DeKalb Illinois, USA
- VWM Families Foundation, Greenwhich, CT, USA
| | | | | | - Elise F Saunier-Vivar
- Research Department, European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France
| | - Robert Rauner
- United Leukodystrophy Foundation, DeKalb Illinois, USA
| | - Hanka Dekker
- Vereniging Volwassenen, Kinderen en Stofwisselingsziekten, Zwolle, The Netherlands
| | - Pieter van Bokhoven
- IXA Neuroscience, Amsterdam Neuroscience, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Menno D Stellingwerff
- Department of Child Neurology, Emma's Children's Hospital, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Johannes Berkhof
- Department of Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Emma's Children's Hospital, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands.
- Amsterdam Leukodystrophy Center, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands.
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Zhou T, Zhang J. Types and progress of clinical trial design for breast cancer: a narrative review. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2023; 4:20. [PMID: 38751463 PMCID: PMC11093090 DOI: 10.21037/tbcr-23-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/26/2023] [Indexed: 05/18/2024]
Abstract
Background and Objective In recent years, the field of breast cancer diagnosis and therapy has witnessed rapid technological advances. Concurrently, the emergence of molecular biology and novel detection methodologies has facilitated the transition of breast cancer management into the precision medicine era. The primary objective of this review is to discuss the transformation in the research and development paradigm for breast cancer therapies and strategies. Methods We systematically searched PubMed, EMBASE and Cochrane databases for relevant studies published over the past 20 years using keywords including "breast cancer", "clinical trial", "seamless", "master protocol", "umbrella", "basket", "platform", and "precision medicine". Articles were screened for eligibility and key data extracted. The search was limited to English-language publications. Key Content and Findings The review identifies three core innovations in breast cancer trial methodology: (I) in terms of research speed, the traditional three-stage drug development models are being substituted by "seamless designs" as exemplified by the immunotherapy combination study NCT0328056. (II) Addressing research breadth, "master protocols" such as basket trials (IMMU-132-01), umbrella trials (FUTURE), and platform trials (I-SPY 2) have been introduced, allowing the simultaneous assessment of multiple treatments or disease subtypes within a singular framework. (III) Pertaining to research precision, newer designs utilize biomarkers such as "enrichment" (seen in EMBRACA and OlympiA trials) and "marker stratification" (as in the SOLAR-1 trial), enabling the identification of appropriate patient subgroups and the provision of tailored therapy strategies, a stark contrast to traditional histopathology-based evaluations. Conclusions Clinical trial design in breast cancer research has been revolutionized, moving towards more efficient and targeted strategies. Despite the presence of ethical, logistical, and data complexities, it is anticipated that ongoing technological and regulatory enhancements will pave the way for even more refined research approaches, subsequently influencing future research, clinical practices, and policymaking in breast cancer care.
Collapse
Affiliation(s)
- Teng Zhou
- Phase I Clinical Trial Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Phase I Clinical Trial Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Ruiz-Palacios GM, Regalado-Pineda J, Montenegro-Liendo A, Guerra-de-Blas PDC, Smolskis M, Lane HC. International clinical research networks - a collaborative approach for pandemic preparedness and response: The case of The Mexican Emerging Infectious Disease Clinical Research Network (LaRed). J Glob Health 2023; 13:03031. [PMID: 37441774 PMCID: PMC10344459 DOI: 10.7189/jogh.13.03031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023] Open
Affiliation(s)
- Guillermo M Ruiz-Palacios
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Justino Regalado-Pineda
- Subdirección de Medicina, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | | | - Mary Smolskis
- Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - H Clifford Lane
- Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
16
|
Abdelnour C, Gonzalez MC, Gibson LL, Poston KL, Ballard CG, Cummings JL, Aarsland D. Dementia with Lewy Bodies Drug Therapies in Clinical Trials: Systematic Review up to 2022. Neurol Ther 2023; 12:727-749. [PMID: 37017910 PMCID: PMC10195935 DOI: 10.1007/s40120-023-00467-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023] Open
Abstract
INTRODUCTION Reviews of randomized clinical trials (RCTs) in dementia with Lewy bodies (DLB) are essential for informing ongoing research efforts of symptomatic therapies and potentially disease-modifying therapies (DMTs). METHODS We performed a systematic review of all clinical trials conducted until September 27, 2022, by examining 3 international registries: ClinicalTrials.gov, the European Union Drug Regulating Authorities Clinical Trials Database, and the International Clinical Trials Registry Platform, to identify drugs in trials in DLB. RESULTS We found 25 agents in 40 trials assessing symptomatic treatments and DMTs for DLB: 7 phase 3, 31 phase 2, and 2 phase 1 trials. We found an active pipeline for drug development in DLB, with most ongoing clinical trials in phase 2. We identified a recent trend towards including participants at the prodromal stages, although more than half of active clinical trials will enroll mild to moderate dementia patients. Additionally, repurposed agents are frequently tested, representing 65% of clinical trials. CONCLUSION Current challenges in DLB clinical trials include the need for disease-specific outcome measures and biomarkers, and improving representation of global and diverse populations.
Collapse
Affiliation(s)
- Carla Abdelnour
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - Maria Camila Gonzalez
- Department of Quality and Health Technology, Faculty of Health Sciences, University of Stavanger, Stavanger, Norway
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
- Centre for Age-Related Diseases, Stavanger University Hospital, Stavanger, Norway
| | - Lucy L Gibson
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Dag Aarsland
- Centre for Age-Related Diseases, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
17
|
Kaizer AM, Belli HM, Ma Z, Nicklawsky AG, Roberts SC, Wild J, Wogu AF, Xiao M, Sabo RT. Recent innovations in adaptive trial designs: A review of design opportunities in translational research. J Clin Transl Sci 2023; 7:e125. [PMID: 37313381 PMCID: PMC10260347 DOI: 10.1017/cts.2023.537] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/29/2023] [Accepted: 04/17/2023] [Indexed: 06/15/2023] Open
Abstract
Clinical trials are constantly evolving in the context of increasingly complex research questions and potentially limited resources. In this review article, we discuss the emergence of "adaptive" clinical trials that allow for the preplanned modification of an ongoing clinical trial based on the accumulating evidence with application across translational research. These modifications may include terminating a trial before completion due to futility or efficacy, re-estimating the needed sample size to ensure adequate power, enriching the target population enrolled in the study, selecting across multiple treatment arms, revising allocation ratios used for randomization, or selecting the most appropriate endpoint. Emerging topics related to borrowing information from historic or supplemental data sources, sequential multiple assignment randomized trials (SMART), master protocol and seamless designs, and phase I dose-finding studies are also presented. Each design element includes a brief overview with an accompanying case study to illustrate the design method in practice. We close with brief discussions relating to the statistical considerations for these contemporary designs.
Collapse
Affiliation(s)
- Alexander M. Kaizer
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hayley M. Belli
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Zhongyang Ma
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Andrew G. Nicklawsky
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Samantha C. Roberts
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica Wild
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Adane F. Wogu
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mengli Xiao
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Roy T. Sabo
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
18
|
Rahman R, Polley MYC, Alder L, Brastianos PK, Anders CK, Tawbi HA, Mehta M, Wen PY, Geyer S, de Groot J, Zadeh G, Piantadosi S, Galanis E, Khasraw M. Current drug development and trial designs in neuro-oncology: report from the first American Society of Clinical Oncology and Society for Neuro-Oncology Clinical Trials Conference. Lancet Oncol 2023; 24:e161-e171. [PMID: 36990614 PMCID: PMC10401610 DOI: 10.1016/s1470-2045(23)00005-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/11/2022] [Accepted: 01/05/2023] [Indexed: 03/29/2023]
Abstract
Successful drug development for people with cancers of the CNS has been challenging. There are multiple barriers to successful drug development including biological factors, rarity of the disease, and ineffective use of clinical trials. Based upon a series of presentations at the First Central Nervous System Clinical Trials Conference hosted by the American Society of Clinical Oncology and the Society for Neuro-Oncology, we provide an overview on drug development and novel trial designs in neuro-oncology. This Review discusses the challenges of therapeutic development in neuro-oncology and proposes strategies to improve the drug discovery process by enriching the pipeline of promising therapies, optimising trial design, incorporating biomarkers, using external data, and maximising efficacy and reproducibility of clinical trials.
Collapse
Affiliation(s)
- Rifaquat Rahman
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Mei-Yin C Polley
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Laura Alder
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Priscilla K Brastianos
- Massachusetts General Hospital, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carey K Anders
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | | | - Minesh Mehta
- Miami Cancer Institute, Baptist Hospital, Miami, FL, USA
| | - Patrick Y Wen
- Centre for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Susan Geyer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - John de Groot
- University of California San Francisco Brain Tumor Center, San Francisco, CA, USA
| | - Gelareh Zadeh
- Department of Neurological Surgery University of Toronto, Toronto, ON, Canada
| | - Steven Piantadosi
- Department of Surgery, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Evanthia Galanis
- Department of Oncology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, MN, USA
| | - Mustafa Khasraw
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
19
|
Liu J, Lu C, Jiang Z, Alemayehu D, Nie L, Chu H. Borrowing Concurrent Information from Non-Concurrent Control to Enhance Statistical Efficiency in Platform Trials. Curr Oncol 2023; 30:3964-3973. [PMID: 37185413 PMCID: PMC10137133 DOI: 10.3390/curroncol30040300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
A platform trial is a trial involving an innovative adaptive design with a single master protocol to efficiently evaluate multiple interventions. It offers flexible features such as dropping interventions for futility and adding new interventions to be evaluated during the course of a trial. Although there is a consensus that platform trials can identify beneficial interventions with fewer patients, less time, and a higher probability of success than traditional trials, there remains debate on certain issues, one of which is whether (and how) the non-concurrent control (NCC) (i.e., patients in the control group recruited prior to the new interventions) can be combined with the current control (CC) in the analysis, especially if there is a change of standard of care during the trial. Methods: In this paper, considering time-to-event endpoints under the proportional hazard model assumption, we introduce a new concept of NCC concurrent observation time (NCC COT), and propose to borrow NCC COT through left truncation. This assumes that the NCC COT and CC are comparable. If the protocol does not prohibit NCC patients to change the standard of care while on study, NCC COT and CC likely will share the same standard of care. A simulated example is provided to demonstrate the approach. Results: Using exponential distributions, the simulated example assumes that NCC COT and CC have the same hazard, and the treatment group has a lower hazard. The estimated HR comparing treatment to the pooled control group is 0.744 (95% CI 0.575, 0.962), whereas the comparison to the CC group alone is 0.755 (95% CI 0.566, 1.008), with corresponding p-values of 0.024 versus 0.057, respectively. This suggests that borrowing NCC COT can improve statistical efficiency when the exchangeability assumption holds. Conclusion: This article proposes an innovative approach of borrowing NCC COT to enhance statistical inference in platform trials under appropriate scenarios.
Collapse
|
20
|
Rebecca VW, Xiao M, Kossenkov A, Godok T, Brown GS, Fingerman D, Alicea GM, Wei M, Ji H, Bravo J, Chen Y, Fane ME, Villanueva J, Nathanson K, Liu Q, Gopal YNV, Davies MA, Herlyn M. Dasatinib Resensitizes MAPK Inhibitor Efficacy in Standard-of-Care Relapsed Melanomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524923. [PMID: 36711814 PMCID: PMC9882271 DOI: 10.1101/2023.01.20.524923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Resistance to combination BRAF/MEK inhibitor (BRAFi/MEKi) therapy arises in nearly every patient with BRAFV600E/K melanoma, despite promising initial responses. Achieving cures in this expanding BRAFi/MEKi-resistant cohort represents one of the greatest challenges to the field; few experience additional durable benefit from immunotherapy and no alternative therapies exist. To better personalize therapy in cancer patients to address therapy relapse, umbrella trials have been initiated whereby genomic sequencing of a panel of potentially actionable targets guide therapy selection for patients; however, the superior efficacy of such approaches remains to be seen. We here test the robustness of the umbrella trial rationale by analyzing relationships between genomic status of a gene and the downstream consequences at the protein level of related pathway, which find poor relationships between mutations, copy number amplification, and protein level. To profile candidate therapeutic strategies that may offer clinical benefit in the context of acquired BRAFi/MEKi resistance, we established a repository of patient-derived xenograft models from heavily pretreated patients with resistance to BRAFi/MEKi and/or immunotherapy (R-PDX). With these R-PDXs, we executed in vivo compound repurposing screens using 11 FDA-approved agents from an NCI-portfolio with pan-RTK, non-RTK and/or PI3K-mTOR specificity. We identify dasatinib as capable of restoring BRAFi/MEKi antitumor efficacy in ~70% of R-PDX tested. A systems-biology analysis indicates elevated baseline protein expression of canonical drivers of therapy resistance (e.g., AXL, YAP, HSP70, phospho-AKT) as predictive of MAPKi/dasatinib sensitivity. We therefore propose that dasatinib-based MAPKi therapy may restore antitumor efficacy in patients that have relapsed to standard-of-care therapy by broadly targeting proteins critical in melanoma therapy escape. Further, we submit that this experimental PDX paradigm could potentially improve preclinical evaluation of therapeutic modalities and augment our ability to identify biomarker-defined patient subsets that may respond to a given clinical trial.
Collapse
Affiliation(s)
- Vito W Rebecca
- The Wistar Institute, Philadelphia, PA, USA
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Min Xiao
- The Wistar Institute, Philadelphia, PA, USA
| | | | | | | | | | - Gretchen M Alicea
- The Wistar Institute, Philadelphia, PA, USA
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Meihan Wei
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hongkai Ji
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jeremy Bravo
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Mitchell E Fane
- The Wistar Institute, Philadelphia, PA, USA
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | - Qin Liu
- The Wistar Institute, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
21
|
Toledo JB, Abdelnour C, Weil RS, Ferreira D, Rodriguez-Porcel F, Pilotto A, Wyman-Chick KA, Grothe MJ, Kane JPM, Taylor A, Rongve A, Scholz S, Leverenz JB, Boeve BF, Aarsland D, McKeith IG, Lewis S, Leroi I, Taylor JP. Dementia with Lewy bodies: Impact of co-pathologies and implications for clinical trial design. Alzheimers Dement 2023; 19:318-332. [PMID: 36239924 PMCID: PMC9881193 DOI: 10.1002/alz.12814] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 02/01/2023]
Abstract
Dementia with Lewy bodies (DLB) is clinically defined by the presence of visual hallucinations, fluctuations, rapid eye movement (REM) sleep behavioral disorder, and parkinsonism. Neuropathologically, it is characterized by the presence of Lewy pathology. However, neuropathological studies have demonstrated the high prevalence of coexistent Alzheimer's disease, TAR DNA-binding protein 43 (TDP-43), and cerebrovascular pathologic cases. Due to their high prevalence and clinical impact on DLB individuals, clinical trials should account for these co-pathologies in their design and selection and the interpretation of biomarkers values and outcomes. Here we discuss the frequency of the different co-pathologies in DLB and their cross-sectional and longitudinal clinical impact. We then evaluate the utility and possible applications of disease-specific and disease-nonspecific biomarkers and how co-pathologies can impact these biomarkers. We propose a framework for integrating multi-modal biomarker fingerprints and step-wise selection and assessment of DLB individuals for clinical trials, monitoring target engagement, and interpreting outcomes in the setting of co-pathologies.
Collapse
Affiliation(s)
- Jon B Toledo
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, Texas, USA
| | - Carla Abdelnour
- Fundació ACE. Barcelona Alzheimer Treatment and Research Center, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Rimona S Weil
- Dementia Research Centre, Wellcome Centre for Human Neuroimaging, Movement Disorders Consortium, National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer's Research, Karolinska Institutet, Stockholm, Sweden
| | | | - Andrea Pilotto
- Department of Clinical and Experimental Sciences, University of Brescia, Parkinson's Disease Rehabilitation Centre, FERB ONLUS-S, Isidoro Hospital, Trescore Balneario (BG), Italy
| | - Kathryn A Wyman-Chick
- HealthPartners Center for Memory and Aging and Struthers Parkinson's Center, Saint Paul, Minnesota, USA
| | - Michel J Grothe
- Instituto de Biomedicina de Sevilla (IBiS), Unidad de Trastornos del Movimiento, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Joseph P M Kane
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Angela Taylor
- Lewy Body Dementia Association, Lilburn, Georgia, USA
| | - Arvid Rongve
- Department of Research and Innovation, Institute of Clinical Medicine (K1), Haugesund Hospital, Norway and The University of Bergen, Bergen, Norway
| | - Sonja Scholz
- Department of Neurology, National Institute of Neurological Disorders and Stroke, Neurodegenerative Diseases Research Unit, Johns Hopkins University Medical Center, Baltimore, Maryland, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, Ohio, USA
| | - Bradley F Boeve
- Department of Neurology and Center for Sleep Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Ian G McKeith
- Newcastle University Translational and Clinical Research Institute (NUTCRI, Newcastle upon Tyne, UK
| | - Simon Lewis
- ForeFront Parkinson's Disease Research Clinic, School of Medical Sciences, Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Iracema Leroi
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - John P Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
22
|
Broglio K, Niewczas J, Wathen K. Who wants to go first? A simulation study of accrual in a stand-alone trial versus starting a platform trial. Contemp Clin Trials 2022; 123:107000. [PMID: 36372160 DOI: 10.1016/j.cct.2022.107000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Others have quantified the efficiency of the platform approach as compared to a sequence of independent two-arm trials and have shown the platform approach more efficiently evaluates a set of candidate therapies. However, a practical barrier to initiating a platform trial is incentivizing the first candidate therapies to enter the platform. A platform trial is more complex and will take longer to design and operationalize than a traditional trial. For the first therapy, this additional up-front planning time must be considered along with the ability to enroll. There is a common concern that accrual in a platform setting would take longer than for a single stand-alone trial because intuition suggests that a two-arm trial with a smaller total sample size should complete accrual more quickly than a multi-armed trial. We focus on the accrual duration for the first therapy as a particular barrier to initiating a platform trial strategy. We simulate accrual into a platform trial versus a stand-alone trial in the setting of a large clinical trial network. Accrual duration in the platform strategy dominates that of a single stand-alone trial if the platform leverages a large enough fraction of the site network. Patient preference for a particular stand-alone trial has little impact on the ability of a stand-alone trial to enroll more quickly.
Collapse
Affiliation(s)
- Kristine Broglio
- AstraZeneca, Oncology Statistical Innovation, Gaithersburg, MD, USA.
| | - Julia Niewczas
- Janssen, Statistical Modeling and Methodology, Gothenburg, Sweden.
| | - Kyle Wathen
- Cytel, Scientific Strategy and Innovation, Waltham, MA, USA.
| |
Collapse
|
23
|
Mellinghoff IK, Cloughesy TF. Balancing Risk and Efficiency in Drug Development for Rare and Challenging Tumors: A New Paradigm for Glioma. J Clin Oncol 2022; 40:3510-3519. [PMID: 35201903 PMCID: PMC10166355 DOI: 10.1200/jco.21.02166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/15/2021] [Accepted: 01/26/2022] [Indexed: 12/14/2022] Open
Abstract
The process of developing cancer therapies is well established and has enabled the incorporation of many new drugs and classes of agents into the standard of care for common cancers. Clinical drug development is fundamentally different for rare and difficult-to-treat solid tumors, such as glioma or pancreatic cancer. The failure to develop effective new agents for the latter diseases has discouraged the development of therapeutics for these cancers. Using glioma as an example, we describe a process toward obtaining more reliable early-stage signals of drug activity and a process toward translating those signals into clinical benefits with more efficient late-stage development. If linked together, these processes should increase the likelihood of benefit in late-stage settings at a lower cost and encourage more drug development for patients with rare and difficult-to-treat cancers.
Collapse
Affiliation(s)
- Ingo K. Mellinghoff
- Department of Neurology and Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Timothy F. Cloughesy
- Department of Neurology, Ronald Reagan UCLA Medical Center, University of California, Los Angeles, CA
| |
Collapse
|
24
|
The Role of Master Protocols in Pediatric Drug Development. Ther Innov Regul Sci 2022; 56:895-902. [PMID: 36045315 PMCID: PMC9433127 DOI: 10.1007/s43441-022-00448-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/09/2022] [Indexed: 12/27/2022]
Abstract
Master protocols are innovative clinical trial designs that enable new approaches to analytics and operations, creating value for patients and drug developers. To date, the use of master protocols in pediatric drug development has been limited, focused primarily on pediatric oncology with limited experience in rare and ultra-rare pediatric diseases. This article explores the application of master protocols to pediatric programs required by FDA and EMA based on adult developmental programs. These required programs involve multiple assets developed in limited pediatric populations for registrational purposes. However, these required programs include the possibility for extrapolation of efficacy and safety from the adult population. The use of master protocols is a potential solution to the challenge of conducting clinical trials in small pediatric populations provided that such use would improve enrollment or reduce the required sample size. Toward that end, Janssen and Lilly have been working on a collaborative cross-company pediatric platform trial in pediatric Crohn's disease using an innovative Bayesian analysis. We describe how two competing companies can work together to design and execute the proposed platform, focusing on selected aspects-the usefulness of a single infrastructure, the regulatory submission process, the choice of control group, and the use of pediatric extrapolation. Master protocols offer the potential for great benefit in pediatrics by streamlining clinical development, with the goal of reducing the delay in pediatric marketing approvals when compared to adults so that children have timelier access to safe and effective medications.
Collapse
|
25
|
Cummings J, Montes A, Kamboj S, Cacho JF. The role of basket trials in drug development for neurodegenerative disorders. Alzheimers Res Ther 2022; 14:73. [PMID: 35614479 PMCID: PMC9131689 DOI: 10.1186/s13195-022-01015-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/09/2022] [Indexed: 11/23/2022]
Abstract
Background Drug development for neurodegenerative disorders (NDDs) is a long, complex, and expensive enterprise. Methods to optimize drug development for NDDs are needed. Basket trials have been widely used in oncology and have been promoted by the Food and Drug Administration as a means of enhancing the efficiency of drug development. Discussion We reviewed clinical trials for NDDs registered on clinicaltrials.gov in the past 10 years. We identified 59 basket trials assessing the impact of treatment on more than one NDD in the trial. Forty-one of the trials were for 25 agents addressing symptoms of NDD such as motor impairment, hypotension, or psychosis. Eighteen of the trials assessed 14 disease-modifying therapies; the principal targets were mitochondrial function, tau biology, or alpha-synuclein aggregation. Basket trials are most common in phase 2 but have been conducted in phase 1, phase 3, and phase 4. The duration and size of the basket trials are highly variable depending on their developmental phase and the intent of the trial. Parkinson’s disease was the most common disorder included in basket trials of symptomatic agents, and Alzheimer’s disease was the most common disorder included in basket trials of disease-modifying therapies. Most of the basket trials of symptomatic agents were sponsored by pharmaceutical companies (29 of 41 trials); similarly, most of the basket trials investigating DMTs in basket trials were sponsored by the biopharmaceutical industry (11/17 trials). Conclusions Basket trials may increase drug development efficiency by reducing redundancy in trial implementation, enhancing recruitment, sharing placebo groups, and using biomarkers relevant to the mechanism of action of the treatment across NDDs. There have been relatively few basket trials including multiple NDDs in the same trial conducted over the past 10 years. The use of the basket trial strategy may represent an opportunity to increase the efficiency of development programs for agents to treat NDDs.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA. .,, Henderson, NV, 89052, USA.
| | - Arturo Montes
- Kirk Kerkorian School of Medicine, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Sana Kamboj
- Department of Neurosurgery, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jorge Fonseca Cacho
- Department of Computer Science, Howard Hughes School of Engineering, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| |
Collapse
|
26
|
van der Knaap MS, Bonkowsky JL, Vanderver A, Schiffmann R, Krägeloh-Mann I, Bertini E, Bernard G, Fatemi SA, Wolf NI, Saunier-Vivar E, Rauner R, Dekker H, van Bokhoven P, van de Ven P, Leferink PS. Therapy Trial Design in Vanishing White Matter: An Expert Consortium Opinion. Neurol Genet 2022; 8:e657. [PMID: 35128050 PMCID: PMC8811717 DOI: 10.1212/nxg.0000000000000657] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/21/2021] [Indexed: 01/04/2023]
Abstract
Vanishing white matter (VWM) is a leukodystrophy caused by recessive variants in the genes EIF2B1-EIF2B5. It is characterized by chronic neurologic deterioration with superimposed stress-provoked episodes of rapid decline. Disease onset spans from the antenatal period through senescence. Age at onset predicts disease evolution for patients with early onset, whereas disease evolution is unpredictable for later onset; patients with infantile and early childhood onset consistently have severe disease with rapid neurologic decline and often early death, whereas patients with later onset have highly variable disease. VWM is rare, but likely underdiagnosed, particularly in adults. Apart from measures to prevent stressors that could provoke acute deteriorations, only symptomatic care is currently offered. With increased insight into VWM disease mechanisms, opportunities for treatment have emerged. EIF2B1-EIF2B5 encode the 5-subunit eukaryotic initiation factor 2B complex, which is essential for translation of mRNAs into proteins and is a principal regulator of the integrated stress response (ISR). ISR deregulation is central to VWM pathology. Targeting components of the ISR has proven beneficial in mutant VWM mouse models, and several drugs are now in clinical development. However, clinical trials in VWM pose considerable challenges: low numbers of known patients with VWM, unpredictable disease course for patients with onset after early childhood, absence of intermediate biomarkers, and novel first-in-human molecular targets. Given these challenges and considering the critical need to offer therapies, we have formulated recommendations for enhanced diagnosis, drug trial setup, and patient selection, based on our expert evaluation of molecular, laboratory, and clinical data.
Collapse
Affiliation(s)
- Marjo S. van der Knaap
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Joshua L. Bonkowsky
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Adeline Vanderver
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Raphael Schiffmann
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Ingeborg Krägeloh-Mann
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Enrico Bertini
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Genevieve Bernard
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Seyed Ali Fatemi
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Nicole I. Wolf
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Elise Saunier-Vivar
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Robert Rauner
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Hanka Dekker
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Pieter van Bokhoven
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Peter van de Ven
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Prisca S. Leferink
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|
27
|
Orzetti S, Tommasi F, Bertola A, Bortolin G, Caccin E, Cecco S, Ferrarin E, Giacomin E, Baldo P. Genetic Therapy and Molecular Targeted Therapy in Oncology: Safety, Pharmacovigilance, and Perspectives for Research and Clinical Practice. Int J Mol Sci 2022; 23:ijms23063012. [PMID: 35328435 PMCID: PMC8951339 DOI: 10.3390/ijms23063012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
The impressive advances in the knowledge of biomarkers and molecular targets has enabled significant progress in drug therapy for crucial diseases such as cancer. Specific areas of pharmacology have contributed to these therapeutic outcomes—mainly targeted therapy, immunomodulatory therapy, and gene therapy. This review focuses on the pharmacological profiles of these therapeutic classes and intends, on the one hand, to provide a systematic definition and, on the other, to highlight some aspects related to pharmacovigilance, namely the monitoring of safety and the identification of potential toxicities and adverse drug reactions. Although clinicians often consider pharmacovigilance a non-priority area, it highlights the risk/benefit ratio, an essential factor, especially for these advanced therapies, which represent the most innovative and promising horizon in oncology.
Collapse
Affiliation(s)
- Sabrina Orzetti
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
- Department of Hospital Pharmacy, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy
| | - Federica Tommasi
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
| | - Antonella Bertola
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
| | - Giorgia Bortolin
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
| | - Elisabetta Caccin
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
| | - Sara Cecco
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
| | - Emanuela Ferrarin
- Scientific and Patients Library of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy;
| | - Elisa Giacomin
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
| | - Paolo Baldo
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
- Correspondence: ; Tel.: +39-0434-659221
| |
Collapse
|
28
|
Molloy SF, White IR, Nunn AJ, Hayes R, Wang D, Harrison TS. Multiplicity adjustments in parallel-group multi-arm trials sharing a control group: Clear guidance is needed. Contemp Clin Trials 2021; 113:106656. [PMID: 34906747 PMCID: PMC8844584 DOI: 10.1016/j.cct.2021.106656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/03/2022]
Abstract
Multi-arm, parallel-group clinical trials are an efficient way of testing several new treatments, treatment regimens or doses. However, guidance on the requirement for statistical adjustment to control for multiple comparisons (type I error) using a shared control group is unclear. We argue, based on current evidence, that adjustment is not always necessary in such situations. We propose that adjustment should not be a requirement in multi-arm, parallel-group trials testing distinct treatments and sharing a control group, and we call for clearer guidance from stakeholders, such as regulators and scientific journals, on the appropriate settings for adjustment of multiplicity.
Collapse
Affiliation(s)
- Síle F Molloy
- Institute for Infection and Immunity, St George's University of London, London, UK.
| | - Ian R White
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Andrew J Nunn
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Richard Hayes
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Duolao Wang
- Global Health Trials Unit, Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Thomas S Harrison
- Institute for Infection and Immunity, St George's University of London, London, UK
| |
Collapse
|