1
|
Nashed MS, Hassanen EI, Issa MY, Tohamy AF, Prince AM, Hussien AM, Soliman MM. The mollifying effect of Sambucus nigra extract on StAR gene expression, oxidative stress, and apoptosis induced by fenpropathrin in male rats. Food Chem Toxicol 2024; 189:114744. [PMID: 38782235 DOI: 10.1016/j.fct.2024.114744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/03/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Fenpropathrin (FNP) is a man-made insecticide of to the pyrethroid class, commonly employed in agricultural and horticultural practices. However, it has a prolonged persistence in the environment. Sambucus nigra, also referred to as SN, is a botanical species recognized for its notable antioxidant characteristics. The objective of this study was to examine if SN extract could mitigate the reproductive toxicity induced by FNP in rats. A total of thirty rats were categorized into six distinct groups: a control group with no treatment, two groups getting SN extract at varying doses, a group receiving FNP, and two groups receiving both FNP and SN extract. The exposure to FNP led to a decline in the number and movement of sperm, lowered levels of testosterone, and reduced the activity of the StAR gene in the FNP group compared to the control group (p < 0.05). In addition, FNP resulted in a significant increase in malondialdehyde levels with a significant drop in GSH content compared to the control group (p < 0.05). Also, a significant increase in the expression of caspase 3. Nevertheless, the administration of SN extract alleviated these effects and reinstated spermatogenesis, thereby bringing the parameters closer to those observed in the control group. The data indicate that FNP can induce testicular harm and infertility, but SN extract can mitigate these detrimental consequences.
Collapse
Affiliation(s)
- Marsail S Nashed
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa Y Issa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Adel F Tohamy
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Abdelbary M Prince
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed M Hussien
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Maher M Soliman
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
2
|
Hassanen EI, Ahmed LI, Fahim KM, Shehata MG, Badr AN. Chitosan nanoparticle encapsulation increased the prophylactic efficacy of Lactobacillus plantarum RM1 against AFM 1-induced hepatorenal toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123925-123938. [PMID: 37995030 PMCID: PMC10746602 DOI: 10.1007/s11356-023-31016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
Aflatoxin M1 (AFM1) is a significant contaminant of food, particularly dairy products and can resist various industrial processes. Several probiotic strains like Lactobacillus plantarum are known to reduce aflatoxin availability in synthetic media and some food products. The current work investigated the possible chitosan coating prophylactic efficacy of Lactobacillus plantarum RM1 nanoemulsion (CS-RM1) against AFM1-induced hepatorenal toxicity in rats. Twenty-eight male Wistar rats were divided into four groups (n = 7) as follows: group 1 received normal saline, group 2 received CS-RM1 (1mL contains 6.7 × 1010 CFU), group 3 received AFM1 (60 µg/kg bwt), and group 4 received both CS-RM1(1 mL contains 6.7 × 1010 CFU) and AFM1 (60 µg/kg bwt). All receiving materials were given to rats daily via oral gavage for 28 days. AFM1 caused a significant elevation in serum levels of ALT, AST, ALP, uric acid, urea, and creatinine with marked alterations in protein and lipid profiles. Additionally, AFM1 caused marked pathological changes in the liver and kidneys, such as cellular necrosis, vascular congestion, and interstitial inflammation. AFM1 also increased the MDA levels and decreased several enzymatic and non-enzymatic antioxidants. Liver and kidney sections of the AFM1 group displayed strong caspase-3, TNF-α, and iNOS immunopositivity. Co-treatment of CS-RM1 with AFM1 significantly lowered the investigated toxicological parameter changes and markedly improved the microscopic appearance of liver and kidneys. In conclusion, AFM1 induces hepatorenal oxidative stress damage via ROS overgeneration, which induces mitochondrial caspase-3-dependent apoptosis and inflammation. Furthermore, CS-RM1 can reduce AFM1 toxicity in both the liver and kidneys. The study recommends adding CS-RM1 to milk and milk products for AFM1-elimination.
Collapse
Affiliation(s)
- Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Lamiaa I Ahmed
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Karima M Fahim
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed G Shehata
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Application, Alexandria, Egypt
| | - Ahmed N Badr
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, 12622, Cairo, Egypt
| |
Collapse
|
3
|
Nofal AE, Okdah YA, Rady MI, Hassaan HZ. Gum Acacia attenuates cisplatin toxic effect spermatogenesis dysfunction and infertility in rats. Int J Biol Macromol 2023; 240:124292. [PMID: 37030465 DOI: 10.1016/j.ijbiomac.2023.124292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
This study aimed to investigate the potential benefits Gum Arabic/Acacia senegal (GA) in mitigating the harmful effects of cisplatin (CP) on spermatogenesis and testicular health in male adult rats. A total of forty albino rats were used in the study and divided into four groups; control, GA, CP, and Co-treated group, which received both CP and GA concurrently. The results revealed that CP caused a significant increase in oxidative stress and a decrease in antioxidant activities (CAT, SOD, and GSH), which disturbed the testicular machinery. This caused significant histological and ultrastructural damage to the testicular structure, including atrophied seminiferous tubules with severely reduced germinal epithelium. Additionally, CP caused a decrease in reproductive hormones (testosterone and LH), a decline in nucleic proliferation PCNA immunoexpression, and an increase in cytoplasmic apoptotic Caspase-3 protein expression in testicular tissue, when compared to the control and GA groups. Moreover, the CP treatment impaired spermatogenesis and decreased sperm number and motility with abnormal morphology. However, co-administration of GA with CP mitigated the dysfunction in spermatogenesis and reversed testicular damage caused by CP through significantly (P < 0.01) reducing oxidative stress (MDA) and increasing the activities of CAT, SOD, and GSH. Additionally, co-administration of GA elevated the levels of testosterone and luteinizing hormone in blood sera, significantly (P < 0.01) improved the histometric measurements of seminiferous tubules diameter, their epithelial height, Johnsen's score of spermatogenesis, 4-level histological grading scale Cosentino's score, immunohistochemical expression of nucleic PCNA, and cytoplasmic Caspase-3 proteins. Furthermore, TEM examination confirmed the synergistic effect of GA in restoring the germinal epithelial cells ultrastructure, the elongated and transverse sections of spermatozoa in the lumen, and the interstitial tissue. All of these effects resulted in a significant improvement in sperm quality in the Co-treated animals compared with the CP group, as well as, a significant decline in the morphological abnormalities of sperm in Co-treated rats compared to those in the CP group. GA is a valuable agent for ameliorating chemotherapy-related infertility.
Collapse
Affiliation(s)
- Amany E Nofal
- Zoology Department, Faculty of Science, Menoufia University, Egypt
| | - Yosry A Okdah
- Zoology Department, Faculty of Science, Menoufia University, Egypt
| | - Mohamed I Rady
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Hamada Z Hassaan
- Zoology Department, Faculty of Science, Menoufia University, Egypt.
| |
Collapse
|
4
|
Gum Arabic nanoformulation rescues neuronal lesions in bromobenzene-challenged rats by its antioxidant, anti-apoptotic and cytoprotective potentials. Sci Rep 2022; 12:21213. [PMID: 36481816 PMCID: PMC9731957 DOI: 10.1038/s41598-022-24556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Bromobenzene (BB) is a hazardous environmental contaminant because of its multiple routes of exposure and the toxicity of its bio-derivates. It could elicit neuronal alterations by stimulating redox imbalance and apoptotic pathways. Gum Arabic (GA) protected the hippocampus of a type 2 diabetic rat model from cognitive decline. Whether gum Arabic nanoemulsion (GANE) can increase the neuroprotectant potency of GA in fighting BB-associated neurological lesions is the question to be answered. To accomplish this objective, 25 adult male Wistar rats were randomly and equally assigned into five groups. Control received olive oil (vehicle of BB). BB group received BB at a dose of 460 mg/kg BW. Blank nanoemulsion (BNE) group supplemented with BNE at 2 mL of 10% w/v aqueous suspension/kg BW. GANE group received GANE at a dose of 2 mL of 10% w/v aqueous suspension/kg BW. BB + GANE group exposed to BB in concomitant with GANE at the same previous doses. All interventions were carried out daily by oral gavage for ten consecutive days. BB caused a marked increase in malondialdehyde and succinate dehydrogenase together with a marked decrease in reduced glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase, and lactate dehydrogenase in the brain. BB was accompanied by pathological deteriorations, amyloidosis, and reduced immuno-expression of integrase interactor 1 in the hippocampal region. Administration of GANE was beneficial in reversing the aforementioned abnormalities. These results pave the road for further discovery of nano-formulated natural products to counter the threats of BB.
Collapse
|
5
|
Mehanna S, Issa MY, Hassan NH, Hussien AM, Ibrahim MA, Hassanen EI. Origanum majorana essential oil improves the rat’s sexual behavior and testicular oxidative damage induced by imidacloprid via modulating the steroidogenesis pathways. Saudi Pharm J 2022; 30:1315-1326. [PMID: 36249946 PMCID: PMC9563047 DOI: 10.1016/j.jsps.2022.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/17/2022] [Indexed: 10/24/2022] Open
|
6
|
Morgan AM, Hassanen EI, Ogaly HA, Al Dulmani SA, Al-Zahrani FAM, Galal MK, Kamel S, Rashad MM, Ibrahim MA, Hussien AM. The ameliorative effect of N-acetylcysteine against penconazole induced neurodegenerative and neuroinflammatory disorders in rats. J Biochem Mol Toxicol 2021; 35:e22884. [PMID: 34392569 DOI: 10.1002/jbt.22884] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/24/2021] [Accepted: 08/06/2021] [Indexed: 11/07/2022]
Abstract
Penconazole (PEN) is a widely used systemic fungicide to treat various fungal diseases in plants but it leaves residues in crops and food products causing serious environmental and health problems. N-acetylcysteine (NAC) is a precursor of the antioxidant glutathione in the body and exerts prominent antioxidant and anti-inflammatory effects. The present study aimed to explore the mechanistic way of NAC to ameliorate the PEN neurotoxicity in male rats. Twenty-eight male rats were randomly divided into four groups (n = 7) and given the treated material via oral gavage for 10 days as the following: Group I (distilled water), Group II (50 mg/kg body weight [bwt] PEN), Group III (200 mg/kg bwt NAC), and Group IV (NAC + PEN). After 10 days all rats were subjected to behavioral assessment and then euthanized to collect brain tissues to perform oxidative stress, molecular studies, and pathological examination. Our results revealed that PEN exhibits neurobehavioral toxicity manifested by alteration in the forced swim test, elevated plus maze test, and Y-maze test. There were marked elevations in malondialdehyde levels with reduction in total antioxidant capacity levels, upregulation of messenger RNA levels of bax, caspase 3, and caspase 9 genes with downregulation of bcl2 genes. In addition, brain sections showed marked histopathological alteration in the cerebrum and cerebellum with strong bax and inducible nitric oxide synthetase protein expression. On the contrary, cotreatment of rats with NAC had the ability to improve all the abovementioned neurotoxic parameters. The present study can conclude that NAC has a neuroprotective effect against PEN-induced neurotoxicity via its antioxidant, anti-inflammatory, and antiapoptotic effect. We recommend using NAC as a preventive and therapeutic agent for a wide variety of neurodegenerative and neuroinflammatory disorders.
Collapse
Affiliation(s)
- Ashraf M Morgan
- Toxicology and Forensic Medicine Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman I Hassanen
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hanan A Ogaly
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Sharah A Al Dulmani
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Mona K Galal
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Shaimaa Kamel
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Maha M Rashad
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Marwa A Ibrahim
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Ahmed M Hussien
- Toxicology and Forensic Medicine Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Hassanen EI, Ibrahim MA, Hassan AM, Mehanna S, Aljuaydi SH, Issa MY. Neuropathological and Cognitive Effects Induced by CuO-NPs in Rats and Trials for Prevention Using Pomegranate Juice. Neurochem Res 2021; 46:1264-1279. [PMID: 33570729 DOI: 10.1007/s11064-021-03264-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/01/2021] [Accepted: 01/30/2021] [Indexed: 12/16/2022]
Abstract
Copper oxide nanoparticles (CuO-NPs) are extensively utilized in several industries and in pharmaceutical production. This excess exposure elevates the concern about its expected poisonous impacts on humans and animals. Pomegranate juice (PJ) is a natural source of polyphenols and exhibits potent antioxidant activities. Our experiment intended to explore the neurobehavioral and toxicopathological impacts of CuO-NPs and to explain the mechanistic role of PJ to reduce their toxicity. Thirty Wistar albino rats received the subsequent materials through oral gavage, every day for 28d: (1) normal saline, (2) 3 mL/kg bwt PJ, (3) 6 mL/kg bwt PJ, (4) 300 mg/kg bwt CuO-NPs, (5) CuO-NPs + 3 mL/kg bwt PJ, (6) CuO-NPs + 6 mL/kg bwt PJ. Continuous exposure to CuO-NPs caused a significant elevation of MDA levels and reduction of total antioxidant capacity associated with remarkable pathological alterations in all brain regions including cerebrum, hippocampus and cerebellum. Progressive decline of memory along with cognitive and psychiatric disturbances were observed in rats exposed to CuO-NPs not in PJ co-treated rats. Continuous exposure to CuO-NPs caused over expression of the immunohistochemical markers of caspase-3, iNOS and GFAP altogether with DAN fragmentation and down-regulation of HO-1 and Nrf2 gene in the whole brain tissues. Conversely, rats co-treated with PJ showed dose dependent improvements in the entire toxicological, behavioral, and pathological parameters. We showed that PJ had the ability to reduce the oxidative stress damage via up-regulation of HO-1 and Nrf2 genes in the brain. So that PJ had the ability to protect the brain and DNA from further damage.
Collapse
Affiliation(s)
- Eman I Hassanen
- Faculty of Veterinary Medicine, Pathology Department, Cairo University, P.O. Box 12211, Giza, Egypt.
| | - Marwa A Ibrahim
- Faculty of Veterinary Medicine, Biochemistry Department, Cairo University, Giza, Egypt
| | - Azza M Hassan
- Faculty of Veterinary Medicine, Pathology Department, Cairo University, P.O. Box 12211, Giza, Egypt
| | - Sally Mehanna
- Faculty of Veterinary Medicine, Department of Animal Hygiene and Management, Cairo University, Giza, Egypt
| | - Samira H Aljuaydi
- Faculty of Veterinary Medicine, Biochemistry Department, Cairo University, Giza, Egypt
| | - Marwa Y Issa
- Faculty of Pharmacy, Pharmacognosy Department, Cairo University, Giza, Egypt
| |
Collapse
|
8
|
Antioxidant Role of Carvacrol Against Hepatotoxicity and Nephrotoxicity Induced by Propiconazole in Rats. ACTA ACUST UNITED AC 2021. [DOI: 10.1007/s43450-021-00127-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Hassanen EI, Korany RMS, Bakeer AM. Cisplatin-conjugated gold nanoparticles-based drug delivery system for targeting hepatic tumors. J Biochem Mol Toxicol 2021; 35:e22722. [PMID: 33484050 DOI: 10.1002/jbt.22722] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/01/2020] [Accepted: 01/09/2021] [Indexed: 01/19/2023]
Abstract
Cisplatin is a highly cytotoxic anticarcinogenic drug used to treat several kinds of solid tumors such as liver tumors. With the increase in the incidences associated with hepatic tumors and a lack of selectivity of cisplatin to cancer cells, it is important to explore new therapeutic strategies against them. The present study was designed to verify the ability of gold nanoparticles (GNPs) to improve the hepatotherapeutic effect of cisplatin against DENA-induced hepatic tumors and to declare its ability to reduce the renal toxicity induced by cisplatin. Forty male Wistar rats were divided into two groups (n = 20): Group (A)-negative control and group (B)-model of hepatocellular tumor induction. After 4 months, each group was subdivided into four subgroups as the following: Group (1) received normal saline, Group (2) was treated by cisplatin, Group (3) was treated by GNPs, Group (4) was treated by GNPs-cisplatin conjugates. Our results revealed a marked elevation in liver and kidney function tests and oxidant levels with a reduction in antioxidant levels in the DENA-administrated group. Remarkable histopathological alterations in the liver and kidney tissue sections were observed and confirmed by the overexpression of the immunohistochemical staining of placental glutathione S-transferase, Hep Par 1, and proliferating cell nuclear antigen. Noticeable improvements in all the measurable toxicological parameters were recorded in the group treated with either GNPs or GNPs-cisplatin conjugate not observed in the group treated with cisplatin. We can conclude that GNPs not only improve the distribution of cisplatin, targeting it to the site of tumors, but it also reduces the renal toxicity induced by cisplatin, which are the primary concerns in cancer therapy.
Collapse
Affiliation(s)
| | | | - Adel M Bakeer
- Department of Pathology, Cairo University, Giza, Egypt
| |
Collapse
|