1
|
Duarte LF, Carbone-Schellman J, Bueno SM, Kalergis AM, Riedel CA, González PA. Tackling cutaneous herpes simplex virus disease with topical immunomodulators-a call to action. Clin Microbiol Rev 2025; 38:e0014724. [PMID: 39982077 PMCID: PMC11917526 DOI: 10.1128/cmr.00147-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
SUMMARYAntivirals play important roles in restricting viral diseases. Nevertheless, they act on a relatively limited number of viruses and occasionally display partial effectiveness in some tissues or against escape variants. Although vaccination remains the most cost-effective approach for preventing microbial diseases, developing prophylactic or therapeutic solutions for pathogens, such as herpes simplex viruses (HSVs), that effectively reduce their clinical manifestations in the skin has proven exceptionally challenging despite extensive research. Alternatively, a less explored approach for tackling HSV skin infection involves using topical immunomodulatory molecules to potentiate the host's innate antiviral immune responses. When applied directly to herpetic skin lesions where viral antigen is present, this strategy has the potential to elicit virus-specific adaptive immunity. Based on currently available data, we foresee substantial potential for this approach in addressing HSV skin infections, along with additional prospects to advance understanding of skin biology and apply relevant new findings to other dermatological conditions. However, due to the limited number of case studies evaluating this method and its safety profile, particularly in immunocompromised individuals and pregnant women, further research is crucial, especially to assess the effects of immunomodulators in these vulnerable populations. Here, we revisit and discuss the use of immunomodulatory molecules for potentiating the host immune response against HSV skin infection and call for action for increased research and clinical trials regarding the possible benefits of this latter strategy for treating HSV cutaneous disease and recurrences. We also revisit and discuss antivirals and vaccine candidates against HSVs.
Collapse
Affiliation(s)
- Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana - Universidad del Desarrollo, Santiago, Chile
| | - Javier Carbone-Schellman
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Centro de Investigación para la Resilencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Banerjee A, Dass D, Mukherjee S, Kaul M, Harshithkumar R, Bagchi P, Mukherjee A. The 'Oma's of the Gammas-Cancerogenesis by γ-Herpesviruses. Viruses 2024; 16:1928. [PMID: 39772235 PMCID: PMC11680331 DOI: 10.3390/v16121928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/03/2025] Open
Abstract
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), which are the only members of the gamma(γ) herpesviruses, are oncogenic viruses that significantly contribute to the development of various human cancers, such as Burkitt's lymphoma, nasopharyngeal carcinoma, Hodgkin's lymphoma, Kaposi's sarcoma, and primary effusion lymphoma. Oncogenesis triggered by γ-herpesviruses involves complex interactions between viral genetics, host cellular mechanisms, and immune evasion strategies. At the genetic level, crucial viral oncogenes participate in the disruption of cell signaling, leading to uncontrolled proliferation and inhibition of apoptosis. These viral proteins can modulate several cellular pathways, including the NF-κB and JAK/STAT pathways, which play essential roles in cell survival and inflammation. Epigenetic modifications further contribute to EBV- and KSHV-mediated cancerogenesis. Both EBV and KSHV manipulate host cell DNA methylation, histone modification, and chromatin remodeling, the interplay of which contribute to the elevation of oncogene expression and the silencing of the tumor suppressor genes. Immune factors also play a pivotal role in the development of cancer. The γ-herpesviruses have evolved intricate immune evasion strategies, including the manipulation of the major histocompatibility complex (MHC) and the release of cytokines, allowing infected cells to evade immune detection and destruction. In addition, a compromised immune system, such as in HIV/AIDS patients, significantly increases the risk of cancers associated with EBV and KSHV. This review aims to provide a comprehensive overview of the genetic, epigenetic, and immune mechanisms by which γ-herpesviruses drive cancerogenesis, highlighting key molecular pathways and potential therapeutic targets.
Collapse
Affiliation(s)
- Anwesha Banerjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Debashree Dass
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Soumik Mukherjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Mollina Kaul
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - R. Harshithkumar
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Parikshit Bagchi
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anupam Mukherjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
- AcSIR—Academy of Scientific & Innovative Research, Ghaziabad 201002, UP, India
| |
Collapse
|
3
|
Kirby J, Standfest M, Binkley J, Barnes C, Brown E, Cairncross T, Cartwright A, Dadisman D, Mowat C, Wilmot D, Houseman T, Murphy C, Engelsman C, Haller J, Jones D. The dynamin inhibitor, dynasore, prevents zoledronate-induced viability loss in human gingival fibroblasts by partially blocking zoledronate uptake and inhibiting endosomal acidification. J Appl Oral Sci 2024; 32:e20240224. [PMID: 39356951 PMCID: PMC11464084 DOI: 10.1590/1678-7757-2024-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/21/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024] Open
Abstract
OBJECTIVE For treatment of medication-related osteonecrosis of the jaw, one proposed approach is the use of a topical agent to block entry of these medications in oral soft tissues. We tested the ability of phosphonoformic acid (PFA), an inhibitor of bisphosphonate entry through certain sodium-dependent phosphate contransporters (SLC20A1, 20A2, 34A1-3) as well as Dynasore, a macropinocytosis inhibitor, for their abilities to prevent zoledronate-induced (ZOL) death in human gingival fibroblasts (HGFs). METHODOLOGY MTT assay dose-response curves were performed to determine non-cytotoxic levels of both PFA and Dynasore. In the presence of 50 μM ZOL, optimized PFA and Dynasore doses were tested for their ability to restore HGF viability. To determine SLC expression in HGFs, total HGF RNA was subjected to quantitative real-time RT-PCR. Confocal fluorescence microscopy was employed to see if Dynasore inhibited macropinocytotic HGF entry of AF647-ZOL. Endosomal acidification in the presence of Dynasore was measured by live cell imaging utilizing LysoSensor Green DND-189. As a further test of Dynasore's ability to interfere with ZOL-containing endosomal maturation, perinuclear localization of mature endosomes containing AF647-ZOL or TRITC-dextran as a control were assessed via confocal fluorescence microscopy with CellProfiler™ software analysis of the resulting photomicrographs. RESULTS 0.5 mM PFA did not rescue HGFs from ZOL-induced viability loss at 72 hours while 10 and 30 μM geranylgeraniol did partially rescue. HGFs did not express the SLC transporters as compared to the expression in positive control tissues. 10 μM Dynasore completely prevented ZOL-induced viability loss. In the presence of Dynasore, AF647-ZOL and FITC-dextran co-localized in endosomes. Endosomal acidification was inhibited by Dynasore and perinuclear localization of both TRITC-dextran- and AF647-ZOL-containing endosomes was inhibited by 30 μM Dynasore. CONCLUSION Dynasore prevents ZOL-induced viability loss in HGFs by partially interfering with macropinocytosis and by inhibiting the endosomal maturation pathway thought to be needed for ZOL delivery to the cytoplasm.
Collapse
Affiliation(s)
- Jacob Kirby
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Makayla Standfest
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Jessica Binkley
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Charles Barnes
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Evan Brown
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Tyler Cairncross
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Alex Cartwright
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Danielle Dadisman
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Colten Mowat
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Daniel Wilmot
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Theodore Houseman
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Conner Murphy
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Caleb Engelsman
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Josh Haller
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Daniel Jones
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| |
Collapse
|
4
|
Marschall M, Schütz M, Wild M, Socher E, Wangen C, Dhotre K, Rawlinson WD, Sticht H. Understanding the Cytomegalovirus Cyclin-Dependent Kinase Ortholog pUL97 as a Multifaceted Regulator and an Antiviral Drug Target. Cells 2024; 13:1338. [PMID: 39195228 PMCID: PMC11352327 DOI: 10.3390/cells13161338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Herpesviral protein kinases, such as the therapy-relevant pUL97 of human cytomegalovirus (HCMV), are important for viral replication efficiency as well as pathogenesis, and represent key antiviral drug targets. HCMV pUL97 is a viral cyclin-dependent kinase (CDK) ortholog, as it shares functional and structural properties with human CDKs. Recently, the formation of vCDK/pUL97-cyclin complexes and the phosphorylation of a variety of viral and cellular substrate proteins has been demonstrated. Genetic mapping and structural modeling approaches helped to define two pUL97 interfaces, IF1 and IF2, responsible for cyclin binding. In particular, the regulatory importance of interactions between vCDK/pUL97 and host cyclins as well as CDKs has been highlighted, both as determinants of virus replication and as a novel drug-targeting option. This aspect was substantiated by the finding that virus replication was impaired upon cyclin type H knock-down, and that such host-directed interference also affected viruses resistant to existing therapies. Beyond the formation of binary interactive complexes, a ternary pUL97-cyclin H-CDK7 complex has also been described, and in light of this, an experimental trans-stimulation of CDK7 activity by pUL97 appeared crucial for virus-host coregulation. In accordance with this understanding, several novel antiviral targeting options have emerged. These include kinase inhibitors directed to pUL97, to host CDKs, and to the pUL97-cyclin H interactive complexes. Importantly, a statistically significant drug synergy has recently been reported for antiviral treatment schemes using combinations of pharmacologically relevant CDK7 and vCDK/pUL97 inhibitors, including maribavir. Combined, such findings provide increased options for anti-HCMV control. This review focuses on regulatory interactions of vCDK/pUL97 with the host cyclin-CDK apparatus, and it addresses the functional relevance of these key effector complexes for viral replication and pathogenesis. On this basis, novel strategies of antiviral drug targeting are defined.
Collapse
Affiliation(s)
- Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - Markus Wild
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - Eileen Socher
- Institute of Anatomy, Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - Kishore Dhotre
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - William D. Rawlinson
- Serology and Virology Division, NSW Health Pathology Microbiology, Prince of Wales Hospital, and Schools of Biomedical Sciences, Women’s and Children’s Health, Medicine and Biotechnology and Biomolecular Sciences, University of New South Wales, High Street, Sydney 2050, Australia;
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, FAU, 91054 Erlangen, Germany;
| |
Collapse
|
5
|
Cui JJ, Zhang Y, Ju KS. Phosphonoalamides Reveal the Biosynthetic Origin of Phosphonoalanine Natural Products and a Convergent Pathway for Their Diversification. Angew Chem Int Ed Engl 2024; 63:e202405052. [PMID: 38780891 PMCID: PMC11867202 DOI: 10.1002/anie.202405052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Phosphonate natural products, with their potent inhibitory activity, have found widespread use across multiple industries. Their success has inspired development of genome mining approaches that continue to reveal previously unknown bioactive scaffolds and biosynthetic insights. However, a greater understanding of phosphonate metabolism is required to enable prediction of compounds and their bioactivities from sequence information alone. Here, we expand our knowledge of this natural product class by reporting the complete biosynthesis of the phosphonoalamides, antimicrobial tripeptides with a conserved N-terminal l-phosphonoalanine (PnAla) residue produced by Streptomyces. The phosphonoalamides result from the convergence of PnAla biosynthesis and peptide ligation pathways. We elucidate the biochemistry underlying the transamination of phosphonopyruvate to PnAla, a new early branchpoint in phosphonate biosynthesis catalyzed by an aminotransferase with evolved specificity for phosphonate metabolism. Peptide formation is catalyzed by two ATP-grasp ligases, the first of which produces dipeptides, and a second which ligates dipeptides to PnAla to produce phosphonoalamides. Substrate specificity profiling revealed a dramatic expansion of dipeptide and tripeptide products, while finding PnaC to be the most promiscuous dipeptide ligase reported thus far. Our findings highlight previously unknown transformations in natural product biosynthesis, promising enzyme biocatalysts, and unveil insights into the diversity of phosphonopeptide natural products.
Collapse
Affiliation(s)
- Jerry J. Cui
- Department of Microbiology, The Ohio State University, 318W. 12th Ave, Columbus, OH-43210 (USA)
| | - Yeying Zhang
- Department of Microbiology, The Ohio State University, 318W. 12th Ave, Columbus, OH-43210 (USA)
| | - Kou-San Ju
- Department of Microbiology, The Ohio State University, 318W. 12th Ave, Columbus, OH-43210 (USA)
- Division of Medicinal Chemistry and Pharmacognosy, Center for Applied Plant Sciences, Infectious Disease Institute, The Ohio State University, 318W. 12th Ave, Columbus, OH-43210 (USA)
| |
Collapse
|
6
|
Cheung J, Remiszewski S, Chiang LW, Ahmad E, Pal M, Rahman SA, Nikolovska-Coleska Z, Chan GC. Inhibition of SIRT2 promotes death of human cytomegalovirus-infected peripheral blood monocytes via apoptosis and necroptosis. Antiviral Res 2023; 217:105698. [PMID: 37562606 DOI: 10.1016/j.antiviral.2023.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Peripheral blood monocytes are the cells predominantly responsible for systemic dissemination of human cytomegalovirus (HCMV) and a significant cause of morbidity and mortality in immunocompromised patients. HCMV establishes a silent/quiescent infection in monocytes, which is defined by the lack of viral replication and lytic gene expression. The absence of replication shields the virus within infected monocytes from the current available antiviral drugs that are designed to suppress active replication. Our previous work has shown that HCMV stimulates a noncanonical phosphorylation of Akt and the subsequent upregulation of a distinct subset of prosurvival proteins in normally short-lived monocytes. In this study, we found that SIRT2 activity is required for the unique activation profile of Akt induced within HCMV-infected monocytes. Importantly, both therapeutic and prophylactic treatment with a novel SIRT2 inhibitor, FLS-379, promoted death of infected monocytes via both the apoptotic and necroptotic cell death pathways. Mechanistically, SIRT2 inhibition reduced expression of Mcl-1, an Akt-dependent antiapoptotic Bcl-2 family member, and enhanced activation of MLKL, the executioner kinase of necroptosis. We have previously reported HCMV to block necroptosis by stimulating cellular autophagy. Here, we additionally demonstrate that inhibition of SIRT2 suppressed Akt-dependent HCMV-induced autophagy leading to necroptosis of infected monocytes. Overall, our data show that SIRT2 inhibition can simultaneously promote death of quiescently infected monocytes by two distinct death pathways, apoptosis and necroptosis, which may be vital for limiting viral dissemination to peripheral organs in immunosuppressed patients.
Collapse
Affiliation(s)
- Jennifer Cheung
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Stacy Remiszewski
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | - Lillian W Chiang
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | - Ejaz Ahmad
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Mohan Pal
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sm Ashikur Rahman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Zaneta Nikolovska-Coleska
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gary C Chan
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
7
|
Mody PH, Marvin KN, Hynds DL, Hanson LK. Cytomegalovirus infection induces Alzheimer's disease-associated alterations in tau. J Neurovirol 2023; 29:400-415. [PMID: 37436577 DOI: 10.1007/s13365-022-01109-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 07/13/2023]
Abstract
Alzheimer's disease (AD) manifests with loss of neurons correlated with intercellular deposition of amyloid (amyloid plaques) and intracellular neurofibrillary tangles of hyperphosphorylated tau. However, targeting AD hallmarks has not as yet led to development of an effective treatment despite numerous clinical trials. A better understanding of the early stages of neurodegeneration may lead to development of more effective treatments. One underexplored area is the clinical correlation between infection with herpesviruses and increased risk of AD. We hypothesized that similar to work performed with herpes simplex virus 1 (HSV1), infection with the cytomegalovirus (CMV) herpesvirus increases levels and phosphorylation of tau, similar to AD tauopathy. We used murine CMV (MCMV) to infect mouse fibroblasts and rat neuronal cells to test our hypothesis. MCMV infection increased steady-state levels of primarily high molecular weight forms of tau and altered the patterns of tau phosphorylation. Both changes required viral late gene products. Glycogen synthase kinase 3 beta (GSK3β) was upregulated in the HSVI model, but inhibition with lithium chloride suggested that this enzyme is unlikely to be involved in MCMV infection mediated tau phosphorylation. Thus, we confirm that MCMV, a beta herpes virus, like alpha herpes viruses (e.g., HSV1), can promote tau pathology. This suggests that CMV infection can be useful as another model system to study mechanisms leading to neurodegeneration. Since MCMV infects both mice and rats as permissive hosts, our findings from tissue culture can likely be applied to a variety of AD models to study development of abnormal tau pathology.
Collapse
Affiliation(s)
- Prapti H Mody
- Division of Biology, Texas Woman's University, 304 Administration Drive, Denton, TX, 76204, USA
- Current affiliation: University of Texas Southwestern Medical Center, Dallas, USA
| | - Kelsey N Marvin
- Division of Biology, Texas Woman's University, 304 Administration Drive, Denton, TX, 76204, USA
| | - DiAnna L Hynds
- Division of Biology, Texas Woman's University, 304 Administration Drive, Denton, TX, 76204, USA
| | - Laura K Hanson
- Division of Biology, Texas Woman's University, 304 Administration Drive, Denton, TX, 76204, USA.
| |
Collapse
|
8
|
Bosetti D, Bernardi C, Maulini M, Giannotti F, Mamez AC, Masouridi-Levrat S, Chalandon Y, Neofytos D. Salvage Treatment of Refractory HSV Oral Lesions with Pritelivir in Allogeneic Hematopoietic Cell Transplant Recipients. Antimicrob Agents Chemother 2023; 67:e0173222. [PMID: 36971558 PMCID: PMC10112206 DOI: 10.1128/aac.01732-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/03/2023] [Indexed: 03/29/2023] Open
Abstract
We present two allogeneic hematopoietic cell transplantation recipients (HCTr) treated with pritelivir for acyclovir-resistant/refractory (r/r) HSV infection based on the expanded access program of the pritelivir manufacturer. Outpatient treatment with pritelivir was administered, with partial response by week 1 of treatment and complete response by week 4 of treatment in both patients. No adverse events were noted. Pritelivir appears to be an effective and safe option for the management of acyclovir-r/r HSV infections in highly immunocompromised patients in an outpatient setting.
Collapse
Affiliation(s)
- Davide Bosetti
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Chiara Bernardi
- Division of Hematology, Bone Marrow Transplant Unit, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marie Maulini
- Division of Hematology, Bone Marrow Transplant Unit, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Federica Giannotti
- Division of Hematology, Bone Marrow Transplant Unit, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anne-Claire Mamez
- Division of Hematology, Bone Marrow Transplant Unit, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stavroula Masouridi-Levrat
- Division of Hematology, Bone Marrow Transplant Unit, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yves Chalandon
- Division of Hematology, Bone Marrow Transplant Unit, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dionysios Neofytos
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
9
|
Labetoulle M, Boutolleau D, Burrel S, Haigh O, Rousseau A. Herpes simplex virus, varicella-zoster virus and cytomegalovirus keratitis: Facts for the clinician. Ocul Surf 2023; 28:336-350. [PMID: 34314898 DOI: 10.1016/j.jtos.2021.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 01/16/2023]
Abstract
Keratitis due to Herpes simplex virus (HSK), Varicella-Zoster virus (VZK) and Cytomegalovirus remains a frequent source of concern for many ophthalmologists. They are a frequent cause of emergency consultations at eye care centers and carry the risk of permanent loss of visual acuity or visual quality and/or chronic neurotrophic keratitis, resulting in a significant decrease in the quality of life. HSK and VZK can affect the corneal epithelium, stroma, or endothelium or a combination of layers. In contrast, most cases of CMV keratitis present as isolated endothelitis (CMVE), a clinical entity that has been described within the last 2 decades. These three types of viral keratitis are characterized by a high frequency of recurrences and each new episode increases the risk of sequelae. Hence, ophthalmologists must adapt the treatment to the clinical presentation of each recurrent episode in order to mitigate the immediate consequences of viral replication and the immune response on corneal transparency. In patients with frequent recurrences, preventive long-term antiviral treatment is strongly recommended. However, in some rare cases, continuous exposure to antivirals may promote the emergence of resistant viral strains, which can be difficult to manage. In the future, the introduction of new antiviral drugs, with differing modes of action compared to current medical therapy, could be an alternative until a truly effective preventive solution, such as a vaccine, is available.
Collapse
Affiliation(s)
- Marc Labetoulle
- Ophthalmologie Department, Hôpital Bicêtre, APHP, Université Paris Sud, 94275, Le Kremlin-Bicêtre, France; Center for Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Infrastructure, CEA, Université Paris Sud, Inserm U1184 18 Route Du Panorama, 92265, Fontenay-aux-Roses Cedex, France.
| | - David Boutolleau
- Virology Department, Hôpital Pitié-Salpétrière, APHP, National Reference Center for Herperviruses (Associated Laboratory), Paris, France; Sorbonne University, INSERM UMR-S 1136, Pierre Louis Institute of Epidemiology and Public Health (IPLESP), Paris, France
| | - Sonia Burrel
- Virology Department, Hôpital Pitié-Salpétrière, APHP, National Reference Center for Herperviruses (Associated Laboratory), Paris, France; Sorbonne University, INSERM UMR-S 1136, Pierre Louis Institute of Epidemiology and Public Health (IPLESP), Paris, France
| | - Oscar Haigh
- Center for Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Infrastructure, CEA, Université Paris Sud, Inserm U1184 18 Route Du Panorama, 92265, Fontenay-aux-Roses Cedex, France
| | - Antoine Rousseau
- Ophthalmologie Department, Hôpital Bicêtre, APHP, Université Paris Sud, 94275, Le Kremlin-Bicêtre, France; Center for Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Infrastructure, CEA, Université Paris Sud, Inserm U1184 18 Route Du Panorama, 92265, Fontenay-aux-Roses Cedex, France
| |
Collapse
|
10
|
Sharma D, Sharma S, Akojwar N, Dondulkar A, Yenorkar N, Pandita D, Prasad SK, Dhobi M. An Insight into Current Treatment Strategies, Their Limitations, and Ongoing Developments in Vaccine Technologies against Herpes Simplex Infections. Vaccines (Basel) 2023; 11:vaccines11020206. [PMID: 36851084 PMCID: PMC9966607 DOI: 10.3390/vaccines11020206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Herpes simplex virus (HSV) infection, the most prevalent viral infection that typically lasts for a lifetime, is associated with frequent outbreaks of oral and genital lesions. Oral herpes infection is mainly associated with HSV-1 through oral contact, while genital herpes originates due to HSV-2 and is categorized under sexually transmitted diseases. Immunocompromised patients and children are more prone to HSV infection. Over the years, various attempts have been made to find potential targets for the prevention of HSV infection. Despite the global distress caused by HSV infections, there are no licensed prophylactic and therapeutic vaccines available on the market against HSV. Nevertheless, there are numerous promising candidates in the pre-clinical and clinical stages of study. The present review gives an overview of two herpes viruses, their history, and life cycle, and different treatments adopted presently against HSV infections and their associated limitations. Majorly, the review covers the recent investigations being carried out globally regarding various vaccine strategies against oral and genital herpes virus infections, together with the recent and advanced nanotechnological approaches for vaccine development. Consequently, it gives an insight to researchers as well as people from the health sector about the challenges and upcoming solutions associated with treatment and vaccine development against HSV infections.
Collapse
Affiliation(s)
- Divya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
| | - Supriya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
| | - Natasha Akojwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Ayusha Dondulkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Nikhil Yenorkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Deepti Pandita
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| | - Satyendra K. Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| | - Mahaveer Dhobi
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| |
Collapse
|
11
|
Huntjens DW, Dijkstra JA, Verwiel LN, Slijkhuis M, Elbers P, Welkers MRA, Veldkamp AI, Kuijvenhoven MA, de Leeuw DC, Abdullah-Koolmees H, Kuipers MT, Bartelink IH. Optimizing Antiviral Dosing for HSV and CMV Treatment in Immunocompromised Patients. Pharmaceutics 2023; 15:pharmaceutics15010163. [PMID: 36678792 PMCID: PMC9863155 DOI: 10.3390/pharmaceutics15010163] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Herpes simplex virus (HSV) and cytomegalovirus (CMV) are DNA viruses that are common among humans. Severely immunocompromised patients are at increased risk of developing HSV or CMV disease due to a weakened immune system. Antiviral therapy can be challenging because these drugs have a narrow therapeutic window and show significant pharmacokinetic variability. Above that, immunocompromised patients have various comorbidities like impaired renal function and are exposed to polypharmacy. This scoping review discusses the current pharmacokinetic (PK) and pharmacodynamic (PD) knowledge of antiviral drugs for HSV and CMV treatment in immunocompromised patients. HSV and CMV treatment guidelines are discussed, and multiple treatment interventions are proposed: early detection of drug resistance; optimization of dose to target concentration by therapeutic drug monitoring (TDM) of nucleoside analogs; the introduction of new antiviral drugs; alternation between compounds with different toxicity profiles; and combinations of synergistic antiviral drugs. This research will also serve as guidance for future research, which should focus on prospective evaluation of the benefit of each of these interventions in randomized controlled trials.
Collapse
Affiliation(s)
- Daan W. Huntjens
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jacob A. Dijkstra
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-20-444-3524
| | - Lisanne N. Verwiel
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Mirjam Slijkhuis
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Paul Elbers
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence (LCCI), Amsterdam Medical Data Science (AMDS), Amsterdam Cardiovascular Science (ACS), Amsterdam Institute for Infection and Immunity (AII), Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Matthijs R. A. Welkers
- Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Agnes I. Veldkamp
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Marianne A. Kuijvenhoven
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - David C. de Leeuw
- Hematology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Heshu Abdullah-Koolmees
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Postbus 85500, 3508 GA Utrecht, The Netherlands
- Clinical Pharmacy, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Maria T. Kuipers
- Hematology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Imke H. Bartelink
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
12
|
Novel betulin dicarboxylic acid ester derivatives as potent antiviral agents: Design, synthesis, biological evaluation, structure-activity relationship and in-silico study. Eur J Med Chem 2021; 225:113738. [PMID: 34425312 DOI: 10.1016/j.ejmech.2021.113738] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/29/2021] [Accepted: 08/01/2021] [Indexed: 11/20/2022]
Abstract
The search for new methods of antiviral therapy is primarily focused on the use of substances of natural origin. In this context, a triterpene compound, betulin 1, proved to be a good starting point for derivatization. Thirty-eight betulin acid ester derivatives were synthetized, characterized, and tested against DNA and RNA viruses. Several compounds exhibited 4- to 11-fold better activity against Enterovirus E (compound 5 EC50: 10.3 μM) and 3- to 6-fold better activity against Human alphaherpesvirus 1 (HHV-1; compound 3c EC50: 17.2 μM). Time-of-addition experiments showed that most of the active compounds acted in the later steps of the virus replication cycle (e.g., nucleic acid/protein synthesis). Further in-silico analysis confirmed in-vitro data and demonstrated that interactions between HHV-1 DNA polymerase and the most active compound, 3c, were more stable than interactions with the parent non-active betulin 1.
Collapse
|
13
|
Ying M, Hu X, Wang M, Cheng X, Zhao B, Tao Y. Vitritis and retinal vasculitis caused by pseudorabies virus. J Int Med Res 2021; 49:3000605211058990. [PMID: 34851760 PMCID: PMC8647242 DOI: 10.1177/03000605211058990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pseudorabies virus (PRV) is a herpesvirus of swine. PRV is also called suid herpesvirus 1
and is a member of the Alphaherpesvirinae subfamily within the family Herpesviridae. The
number of PRV cases worldwide is small, but in susceptible individuals, infection with
this virus has a poor prognosis. Therefore, it is urgent to improve our understanding of
this disease in clinical practice to avoid misdiagnosis and to identify optimal
treatments. We report a patient with PRV infection who was admitted to hospital with viral
encephalitis and subsequently developed intraocular infection. Because to the lack of
relevant clinical experience in the treatment of this disease, we carried out experimental
treatment with good therapeutic effect. This case provides a basis for clinical diagnosis
and treatment of patients with PRV.
Collapse
Affiliation(s)
- Manman Ying
- Department of Ophthalmology, 12411Henan University, Huaihe Hospital, Henan University, Kaifeng, China
| | - Xin Hu
- Department of Ophthalmology, 12411Henan University, Huaihe Hospital, Henan University, Kaifeng, China
| | - Mengli Wang
- Department of Ophthalmology, 12411Henan University, Huaihe Hospital, Henan University, Kaifeng, China
| | - Xiangshu Cheng
- Department of Neurology, 12411Henan University, Huaihe Hospital, Henan University, Kaifeng, China
| | - Bo Zhao
- Department of Ophthalmology, 12411Henan University, Huaihe Hospital, Henan University, Kaifeng, China
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Wang S, Xu X, Sun C, Zhang J, He X, Zhang Z, Huang H, Yan J, Jin W, Mao G. Sulphated glucuronomannan tetramer and hexamer from Sargassum thunbergii exhibit anti-human cytomegalovirus activity by blocking viral entry. Carbohydr Polym 2021; 273:118510. [PMID: 34560939 DOI: 10.1016/j.carbpol.2021.118510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 11/19/2022]
Abstract
Human cytomegalovirus (HCMV) remains a major public health burden worldwide. The anti-HCMV activity of glucuronomannan oligosaccharides (Gs) and sulphated glucuronomannan oligosaccharides (SGs) was investigated. Among these Gs and SGs, G4S1 and G6S1 (higher sulphated glucuronomannan tetramer and hexamer) showed satisfactory anti-HCMV activity starting at 50 μg/mL and 10 μg/mL, respectively. The results of the morphology, western blotting, qPCR and TCID50 assay showed that they prevented lytic cytopathic changes, inhibited the expression of IE1/2 and UL44, and reduced the UL123 copy number and virus titre significantly. It was interesting to note that degree of sulphation and polymerization was more important for anti-HCMV activity. Moreover, the anti-HCMV activities of G4S1 and G6S1 were stable when stored at 4 °C, -20 °C, and -80 °C for at least three months and mainly occurred in the early stage of HCMV infection through the negative charge of the sulphate groups and the interaction between SGs and the host cells.
Collapse
Affiliation(s)
- Sanying Wang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China
| | - Xiaogang Xu
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China
| | - Chuan Sun
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China
| | - Jing Zhang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China
| | - Xinyue He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhongshan Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou 313000, PR China
| | - Hong Huang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China
| | - Jing Yan
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China.
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China.
| |
Collapse
|
15
|
Antiviral treatment causes a unique mutational signature in cancers of transplantation recipients. Cell Stem Cell 2021; 28:1726-1739.e6. [PMID: 34496298 PMCID: PMC8516432 DOI: 10.1016/j.stem.2021.07.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/11/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023]
Abstract
Genetic instability is a major concern for successful application of stem cells in regenerative medicine. However, the mutational consequences of the most applied stem cell therapy in humans, hematopoietic stem cell transplantation (HSCT), remain unknown. Here we characterized the mutation burden of hematopoietic stem and progenitor cells (HSPCs) of human HSCT recipients and their donors using whole-genome sequencing. We demonstrate that the majority of transplanted HSPCs did not display altered mutation accumulation. However, in some HSCT recipients, we identified multiple HSPCs with an increased mutation burden after transplantation. This increase could be attributed to a unique mutational signature caused by the antiviral drug ganciclovir. Using a machine learning approach, we detected this signature in cancer genomes of individuals who received HSCT or solid organ transplantation earlier in life. Antiviral treatment with nucleoside analogs can cause enhanced mutagenicity in transplant recipients, which may ultimately contribute to therapy-related carcinogenesis.
Collapse
|
16
|
Abstract
Magnesium (Mg2+) is the second most abundant intracellular and fourth extracellular cation found in the body and is involved in a wide range of functions in the human cell and human physiology. Its role in most of the enzyme processes (ATP-ases)-stabilisation of nucleic acids (DNA, RNA), regulation of calcium and potassium ion channels, proliferation, glucose metabolism and apoptosis-make it one of the most important cations in the cell. Three pathogenetic mechanisms are mainly implicated in the development of hypomagnesaemia: reduced food intake, decreased intestinal absorption and increased renal excretion of Mg2+. This review presents the function of Mg2+, how it is handled in the kidney and the drugs that cause hypomagnesaemia. The frequency and the number of drugs like diuretics and proton-pump inhibitors (PPIs) that are used daily in medical practice are discussed in order to prevent and treat adverse effects by providing an insight into Mg2+ homeostasis.
Collapse
Affiliation(s)
- Periklis Katopodis
- Department of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, London, UB8 3PH, UK.
| | - Emmanouil Karteris
- Department of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, London, UB8 3PH, UK
| | | |
Collapse
|
17
|
Rosenstiel PE, Markowitz GS, Amante B. An Unusual Cause of Kidney Allograft Dysfunction. KIDNEY360 2021; 2:1207-1208. [PMID: 35368358 PMCID: PMC8786097 DOI: 10.34067/kid.0001062021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 02/04/2023]
Affiliation(s)
- Paul E. Rosenstiel
- South Texas Pathology Associates, Methodist Specialty and Transplant Hospital, San Antonio, Texas
| | - Glen S. Markowitz
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Brigani Amante
- Texas Transplant Institute, Methodist Specialty and Transplant Hospital, San Antonio, Texas
| |
Collapse
|
18
|
Characteristics of Helicase-primase Inhibitor Amenamevir-resistant Herpes Simplex Virus. Antimicrob Agents Chemother 2021; 65:e0049421. [PMID: 34228537 DOI: 10.1128/aac.00494-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antiherpetic drug amenamevir (AMNV) inhibits the helicase-primase complex of herpes simplex virus type 1 (HSV-1), HSV-2 and varicella-zoster virus directly as well as inhibiting the replication of these viruses. Although several mutated HSV viruses resistant to helicase-primase inhibitors have been reported, the mutations contributing to the resistance remain unclear as recombinant viruses containing a single mutation have not been analyzed. We obtained AMNV-resistant viruses with amino acid substitutions by several passages under AMNV-treatment. Twenty HSV-1 and 19 HSV-2 mutants with mutation(s) in UL5 helicase and/or UL52 primase, but not in co-factor UL8, were isolated. The mutations in UL5 were located downstream of motif IV, with UL5 K356N in HSV-1 and K355N in HSV-2, in particular, identified as having the highest frequency: 9/20 and 9/19, respectively. We generated recombinant AMNV-resistant HSV-1 with a single amino acid substitution using BAC mutagenesis. As a result, G352C in UL5 helicase and F360C/V and N902T in UL52 primase were identified as novel mutations. The virus with K356N in UL5 showed 10-fold higher AMNV resistance than did other mutants, and showed equivalent viral growth in vitro and virulence in vivo as the parent HSV-1, although other mutants showed attenuated virulence. All recombinant viruses were susceptible to the other antiherpetic drugs, acyclovir and foscarnet. In conclusion, based on BAC mutagenesis, this study identified for the first time mutations in UL5 and UL52 that contributed to AMNV resistance, and found that a mutant with the most frequent K356N mutation in HSV-1 maintained viral growth and virulence equivalent to the parent virus.
Collapse
|
19
|
Current Drugs to Treat Infections with Herpes Simplex Viruses-1 and -2. Viruses 2021; 13:v13071228. [PMID: 34202050 PMCID: PMC8310346 DOI: 10.3390/v13071228] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex viruses-1 and -2 (HSV-1 and -2) are two of the three human alphaherpesviruses that cause infections worldwide. Since both viruses can be acquired in the absence of visible signs and symptoms, yet still result in lifelong infection, it is imperative that we provide interventions to keep them at bay, especially in immunocompromised patients. While numerous experimental vaccines are under consideration, current intervention consists solely of antiviral chemotherapeutic agents. This review explores all of the clinically approved drugs used to prevent the worst sequelae of recurrent outbreaks by these viruses.
Collapse
|
20
|
Trompet E, Temblador A, Gillemot S, Topalis D, Snoeck R, Andrei G. An MHV-68 Mutator Phenotype Mutant Virus, Confirmed by CRISPR/Cas9-Mediated Gene Editing of the Viral DNA Polymerase Gene, Shows Reduced Viral Fitness. Viruses 2021; 13:v13060985. [PMID: 34073189 PMCID: PMC8227558 DOI: 10.3390/v13060985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 12/04/2022] Open
Abstract
Drug resistance studies on human γ-herpesviruses are hampered by the absence of an in vitro system that allows efficient lytic viral replication. Therefore, we employed murine γ-herpesvirus-68 (MHV-68) that efficiently replicates in vitro as a model to study the antiviral resistance of γ-herpesviruses. In this study, we investigated the mechanism of resistance to nucleoside (ganciclovir (GCV)), nucleotide (cidofovir (CDV), HPMP-5azaC, HPMPO-DAPy) and pyrophosphate (foscarnet (PFA)) analogues and the impact of these drug resistance mutations on viral fitness. Viral fitness was determined by dual infection competition assays, where MHV-68 drug-resistant viral clones competed with the wild-type virus in the absence and presence of antivirals. Using next-generation sequencing, the composition of the viral populations was determined at the time of infection and after 5 days of growth. Antiviral drug resistance selection resulted in clones harboring mutations in the viral DNA polymerase (DP), denoted Y383SGCV, Q827RHPMP-5azaC, G302WPFA, K442TPFA, G302W+K442TPFA, C297WHPMPO-DAPy and C981YCDV. Without antiviral pressure, viral clones Q827RHPMP-5azaC, G302WPFA, K442TPFA and G302W+K442TPFA grew equal to the wild-type virus. However, in the presence of antivirals, these mutants had a growth advantage over the wild-type virus that was moderately to very strongly correlated with antiviral resistance. The Y383SGCV mutant was more fit than the wild-type virus with and without antivirals, except in the presence of brivudin. The C297W and C981Y changes were associated with a mutator phenotype and had a severely impaired viral fitness in the absence and presence of antivirals. The mutator phenotype caused by C297W in MHV-68 DP was validated by using a CRISPR/Cas9 genome editing approach.
Collapse
|
21
|
Perera MR, Wills MR, Sinclair JH. HCMV Antivirals and Strategies to Target the Latent Reservoir. Viruses 2021; 13:817. [PMID: 34062863 PMCID: PMC8147263 DOI: 10.3390/v13050817] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human herpesvirus. In healthy people, primary infection is generally asymptomatic, and the virus can go on to establish lifelong latency in cells of the myeloid lineage. However, HCMV often causes severe disease in the immunosuppressed: transplant recipients and people living with AIDS, and also in the immunonaive foetus. At present, there are several antiviral drugs licensed to control HCMV disease. However, these are all faced with problems of poor bioavailability, toxicity and rapidly emerging viral resistance. Furthermore, none of them are capable of fully clearing the virus from the host, as they do not target latent infection. Consequently, reactivation from latency is a significant source of disease, and there remains an unmet need for treatments that also target latent infection. This review briefly summarises the most common HCMV antivirals used in clinic at present and discusses current research into targeting the latent HCMV reservoir.
Collapse
Affiliation(s)
| | | | - John H. Sinclair
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK; (M.R.P.); (M.R.W.)
| |
Collapse
|
22
|
Wu Z, Graf FE, Hirsch HH. Antivirals against human polyomaviruses: Leaving no stone unturned. Rev Med Virol 2021; 31:e2220. [PMID: 33729628 DOI: 10.1002/rmv.2220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/20/2022]
Abstract
Human polyomaviruses (HPyVs) encompass more than 10 species infecting 30%-90% of the human population without significant illness. Proven HPyV diseases with documented histopathology affect primarily immunocompromised hosts with manifestations in brain, skin and renourinary tract such as polyomavirus-associated nephropathy (PyVAN), polyomavirus-associated haemorrhagic cystitis (PyVHC), polyomavirus-associated urothelial cancer (PyVUC), progressive multifocal leukoencephalopathy (PML), Merkel cell carcinoma (MCC), Trichodysplasia spinulosa (TS) and pruritic hyperproliferative keratinopathy. Although virus-specific immune control is the eventual goal of therapy and lasting cure, antiviral treatments are urgently needed in order to reduce or prevent HPyV diseases and thereby bridging the time needed to establish virus-specific immunity. However, the small dsDNA genome of only 5 kb of the non-enveloped HPyVs only encodes 5-7 viral proteins. Thus, HPyV replication relies heavily on host cell factors, thereby limiting both, number and type of specific virus-encoded antiviral targets. Lack of cost-effective high-throughput screening systems and relevant small animal models complicates the preclinical development. Current clinical studies are limited by small case numbers, poorly efficacious compounds and absence of proper randomized trial design. Here, we review preclinical and clinical studies that evaluated small molecules with presumed antiviral activity against HPyVs and provide an outlook regarding potential new antiviral strategies.
Collapse
Affiliation(s)
- Zongsong Wu
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Fabrice E Graf
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Hans H Hirsch
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland.,Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland.,Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
23
|
Andronova VL, Galegov GA, Musiyak VV, Vozdvizhenskaya OA, Levit GL, Krasnov VP. [Antiviral effect of novel purine conjugate LAS-131 against Herpes simplex virus type 1 (Herpesviridae: Alphaherpesvirinae: Simplexvirus: Human alphaherpesvirus 1) in vitro]. Vopr Virusol 2021; 65:373-380. [PMID: 33533233 DOI: 10.36233/0507-4088-2020-65-6-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Herpes simplex viruses type 1 (HSV-1) are extremely widespread throughout the world and, similar to other herpesviruses, establish lifelong persistent infection in the host. Reactivating sporadically, HSV-1 elicits recurrences in both immunocompetent and immunocompromised individuals and can cause serious diseases (blindness, encephalitis, generalized infections). The currently available antiherpetic drugs that aimed mainly at suppressing replication of viral DNA are not always effective enough, for example, due to the development of drug resistance. As we showed earlier the newly discovered compound LAS-131 exhibits the strong and highly selective inhibitory activity against HSV‑1, including strain resistant to acyclovir (selective index, SI = 63). The presence of LAS-131 at a concentration of 20 μg/ml leads to a decrease in the titer of HSV-1 (strain L2) by 4 lg in a one round of HSV-1 replication. MATERIAL AND METHODS To establish the step(s) of the virus life cycle that is sensitive to the action of LAS-131, we have applied a widely used approach, that made it possible to determine how long the addition of a compound can be postponed before it loses its antiviral activity (time-of-addition assay), and to compare this indicator with the crucial time of application of inhibitors with a well-known mechanism of action (in cell culture). RESULTS It has been shown for the first time that LAS-131 retains a pronounced antiviral effect when introduced into the experimental system no later than 9 hours post-infection (p.i.). However, LAS-131 does not affect the release of HSV-1 from the cell. DISCUSSION Together with published data on the termination of the synthesis of viral DNA 9-12 h after the adsorption in a cell culture infected with HSV with a high multiplicity (≥1 PFU/cell), our results suggest that LAS-131 interferes the life cycle of HSV-1 during synthesis of viral DNA. Further studies of the mechanism of action are necessary to establish definitely the biological target for this compound,.
Collapse
Affiliation(s)
- V L Andronova
- FSBI «National Research Center of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya» of the Ministry of Health of Russia
| | - G A Galegov
- FSBI «National Research Center of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya» of the Ministry of Health of Russia
| | - V V Musiyak
- FSBIS I.Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences
| | - O A Vozdvizhenskaya
- FSBIS I.Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences
| | - G L Levit
- FSBIS I.Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences
| | - V P Krasnov
- FSBIS I.Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences; FSAEI HE «Ural Federal University named after the First President of Russia B.N. Yeltsin»
| |
Collapse
|
24
|
Jang Y, Kim JM, Moon J, Park KI, Lee ST, Jung KH, Lee SK, Chu K. Anti-N-methyl-D-aspartate receptor encephalitis 8 years after serial herpes simplex virus type 1 and human herpesvirus type 7 encephalitis. ENCEPHALITIS 2021; 1:25-29. [PMID: 37492495 PMCID: PMC10295876 DOI: 10.47936/encephalitis.2020.00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 07/27/2023] Open
Abstract
Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is triggered by herpesvirus encephalitis. Human herpesvirus type 7 (HHV-7) is a recently described herpesvirus for which neuroinvasion has been reported rarely. We report a case of anti-NMDAR encephalitis detected 8 years after recurrent herpes encephalitis associated with herpes simplex virus type 1 and HHV-7 in an immunocompetent host. Our case suggests that anti-NMDAR encephalitis may be triggered by HHV-7 meningoencephalitis in immunocompetent adults, and patients with a history of herpesvirus encephalitis should be vigilantly monitored.
Collapse
Affiliation(s)
- Yoonhyuk Jang
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Seoul National University Hospital, Seoul, Korea
| | - Jeong-Min Kim
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Seoul National University Hospital, Seoul, Korea
| | - Jangsup Moon
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Seoul National University Hospital, Seoul, Korea
| | - Kyung-Il Park
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Seoul National University Hospital, Seoul, Korea
| | - Soon-Tae Lee
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Seoul National University Hospital, Seoul, Korea
| | - Keun-Hwa Jung
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Seoul National University Hospital, Seoul, Korea
| | - Sang Kun Lee
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Seoul National University Hospital, Seoul, Korea
| | - Kon Chu
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
25
|
Trompet E, Topalis D, Gillemot S, Snoeck R, Andrei G. Viral fitness of MHV-68 viruses harboring drug resistance mutations in the protein kinase or thymidine kinase. Antiviral Res 2020; 182:104901. [PMID: 32763314 DOI: 10.1016/j.antiviral.2020.104901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022]
Abstract
Murine γ-herpesvirus-68 (MHV-68), genetically and biologically related to human γ-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, can be easily propagated in vitro allowing drug resistance studies. Previously, we described specific changes in MHV-68 protein kinase (PK) or thymidine kinase (TK) associated with resistance to various purine or pyrimidine nucleoside analogues, respectively. To investigate how specific TK and PK mutations affect viral replication capacity, we performed dual infection competition assays in which wild-type and drug-resistant virus compete in absence or presence of antivirals in Vero cells. The composition of the mixed viral population was analyzed using next-generation sequencing and relative fitness of seven MHV-68 PK or TK mutants was calculated based on the frequency of viral variants at the time of infection and after 5-days growth. A MHV-68 mutant losing the PK function due to a 2-nucleotide deletion was less fit than the wild-type virus in absence of antivirals, consistent with the essential role of viral PKs during lytic replication, but overgrew the wild-type virus under pressure of purine nucleosides. TK mutant viruses, with frameshift or missense mutations, grew equal to wild-type virus in absence of antivirals, in accordance with the viral TK function only being essential in non-replicating or in TK-deficient cells, but were more fit when treated with pyrimidine nucleosides. Moreover, TK missense mutant viruses also increased fitness under pressure of antivirals other than pyrimidine nucleosides, indicating that MHV-68 TK mutations might influence viral fitness by acting on cellular and/or viral functions that are unrelated to nucleoside activation.
Collapse
Affiliation(s)
- Erika Trompet
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | | - Sarah Gillemot
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
26
|
Kayrouz CM, Zhang Y, Pham TM, Ju KS. Genome Mining Reveals the Phosphonoalamide Natural Products and a New Route in Phosphonic Acid Biosynthesis. ACS Chem Biol 2020; 15:1921-1929. [PMID: 32484327 DOI: 10.1021/acschembio.0c00256] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phosphonic acid natural products have potent inhibitory activities that have led to their application as antibiotics. Recent studies uncovered large collections of gene clusters encoding for unknown phosphonic acids across microbial genomes. However, our limited understanding of their metabolism presents a significant challenge toward accurately informing the discovery of new bioactive compounds directly from sequence information alone. Here, we use genome mining to identify a family of gene clusters encoding a conserved branch point unknown to bacterial phosphonic acid biosynthesis. The products of this gene cluster family are the phosphonoalamides, four new phosphonopeptides with l-phosphonoalanine as the common headgroup. Phosphonoalanine and phosphonoalamide A are antibacterials, with strongest inhibition observed against strains of Bacillus and Escherichia coli. Heterologous expression identified the gene required for transamination of phosphonopyruvate to phosphonoalanine, a new route for bacterial phosphonic acids encoded within genomes of diverse microbes. These results expand our knowledge of phosphonic acid diversity and pathways for their biosynthesis.
Collapse
Affiliation(s)
- Chase M. Kayrouz
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yeying Zhang
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tiffany M. Pham
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kou-San Ju
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
27
|
Álvarez DM, Castillo E, Duarte LF, Arriagada J, Corrales N, Farías MA, Henríquez A, Agurto-Muñoz C, González PA. Current Antivirals and Novel Botanical Molecules Interfering With Herpes Simplex Virus Infection. Front Microbiol 2020; 11:139. [PMID: 32117158 PMCID: PMC7026011 DOI: 10.3389/fmicb.2020.00139] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Herpes simplex viruses type 1 (HSV-1) and type 2 (HSV-2) are highly prevalent within the human population and are characterized by lifelong infections and sporadic recurrences due to latent neuron infection. Upon reactivations, HSVs may manifest either, symptomatically or asymptomatically and be shed onto others through mucosae body fluids. Although, HSVs can produce severe disease in humans, such as life-threatening encephalitis and blindness, the most common symptoms are skin and mucosal lesions in the oro-facial and the genital areas. Nucleoside analogs with antiviral activity can prevent severe HSV infection, yet they are not very effective for treating skin manifestations produced by these viruses, as they only reduce in a few days at most the duration of lesions. Additionally, HSV variants that are resistant to these antivirals may arise, especially in immunosuppressed individuals. Thus, new antivirals that can reduce the severity and duration of these cutaneous manifestations would certainly be welcome. Here, we review currently available anti-herpetic therapies, novel molecules being assessed in clinical trials and new botanical compounds reported in the last 20 years with antiviral activities against HSVs that might represent future treatments against these viruses.
Collapse
Affiliation(s)
- Diana M. Álvarez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Estefanía Castillo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luisa F. Duarte
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Arriagada
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Corrales
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A. Farías
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Adolfo Henríquez
- Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Cristian Agurto-Muñoz
- Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
- Departamento de Ciencia y Tecnología de Alimentos, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
28
|
Tyo KM, Lasnik AB, Zhang L, Mahmoud M, Jenson AB, Fuqua JL, Palmer KE, Steinbach-Rankins JM. Sustained-release Griffithsin nanoparticle-fiber composites against HIV-1 and HSV-2 infections. J Control Release 2020; 321:84-99. [PMID: 32035194 DOI: 10.1016/j.jconrel.2020.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus (HIV-1) and herpes simplex virus 2 (HSV-2) affect hundreds of millions of people worldwide. The antiviral lectin, Griffithsin (GRFT), has been shown to be both safe and efficacious against HSV-2 and HIV-1 infections in vivo. The goal of this work was to develop a multilayered nanoparticle (NP)-electrospun fiber (EF) composite to provide sustained-release of GRFT, and to examine its safety and efficacy in a murine model of lethal HSV-2 infection. Composites were fabricated from polycaprolactone (PCL) fibers surrounding polyethylene oxide (PEO) fibers that incorporated methoxy poly(ethylene glycol)-b-poly(lactide-co-glycolide) (mPEG-PLGA) GRFT NPs. GRFT loading and release were determined via ELISA, showing that NP-EF composites achieved high GRFT loading, and provided sustained-release of GRFT for up to 90 d. The in vitro efficacy of GRFT NP-EFs was assessed using HIV-1 pseudovirus assays, demonstrating complete in vitro protection against HIV-1 infection. Additionally, sustained-release NP-EFs, administered 24 h prior to infection, prevented against a lethal dose of HSV-2 infection in a murine model. In parallel, histology and cytokine expression from murine reproductive tracts and vaginal lavages collected 24 and 72 h post-administration were similar to untreated mice, suggesting that NP-EF composites may be a promising and safe sustained-delivery platform to prevent HSV-2 infection. Future work will evaluate the ability to provide prolonged protection against multiple virus challenges, and different administration times with respect to infection.
Collapse
Affiliation(s)
- Kevin M Tyo
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States
| | - Amanda B Lasnik
- Center for Predictive Medicine, Louisville, KY, United States
| | - Longyun Zhang
- Center for Predictive Medicine, Louisville, KY, United States; Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, United States
| | - Mohamed Mahmoud
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States
| | - Alfred B Jenson
- James Graham Brown Cancer Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY, United States
| | - Joshua L Fuqua
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States
| | - Kenneth E Palmer
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States; James Graham Brown Cancer Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY, United States; Department of Microbiology and Immunology, School of Medicine, University of Louisville, KY, United States
| | - Jill M Steinbach-Rankins
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States; James Graham Brown Cancer Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY, United States; Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, United States; Department of Microbiology and Immunology, School of Medicine, University of Louisville, KY, United States.
| |
Collapse
|
29
|
Dyrka K, Miedziaszczyk M, Szałek E, Łącka K. Drugs used in viral diseases – their mechanism of action, selected adverse effects and safety during pregnancy and lactation. POSTEP HIG MED DOSW 2019. [DOI: 10.5604/01.3001.0013.5249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Viruses cause many diseases in humans, from self-resolving diseases to acute fatal diseases. New antiviral drugs are registered and the efficacy and safety of other medicines are evaluated in clinical trials. Antiviral therapy significantly reduces the morbidity and mortality of patients, but may cause numerous adverse effects. The aim of this study is to discuss the mechanism, selected adverse effects of available antivirals and their safety during pregnancy and lactation. The authors refer to the classification of drugs used during pregnancy and recommendations for breastfeeding, which, for example, definitely prohibit the use of ribavirin. The authors also pay attention to the monitoring of selected diagnostic parameters to improve the treatment results. Clinicians should limit adverse effects through an individual, specific to the patient treatment regimen. Physicians should pay special attention to the use of antiviral drugs in pregnant and breast-feeding women. Clinical trials should be continued to increase knowledge about the adverse effects of antiviral medicines.
Collapse
Affiliation(s)
- Kamil Dyrka
- Endocrinological Student’s Scientific Group of Department of Endocrinology, Metabolism and Internal Diseases, Poznań University of Medical Sciences, Poznań, Polska
| | - Miłosz Miedziaszczyk
- Student’s Scientific Group of Clinical Pharmacy of Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, Poznań, Polska
| | - Edyta Szałek
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, Poznań, Poland
| | - Katarzyna Łącka
- Department of Endocrinology, Metabolism and Internal Diseases, Poznań University of Medical Sciences, Poznań, Polska
| |
Collapse
|
30
|
Gerna G, Lilleri D, Baldanti F. An overview of letermovir: a cytomegalovirus prophylactic option. Expert Opin Pharmacother 2019; 20:1429-1438. [PMID: 31282759 DOI: 10.1080/14656566.2019.1637418] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Human cytomegalovirus (HCMV) or human herpesvirus 5 (HHV-5) is a β-herpesvirus that causes widespread infection in nearly all members of the human population worldwide. Its persistence in humans after primary infection in a latent phase as well as a partial non-protective immune response is the basis for repeated re-activation/re-infection episodes occurring both in immunocompetent and immunocompromised subjects. In the latter patient populations, which include hematopoietic stem cell transplant (HSCT) recipients, HCMV reactivation episodes may be particularly severe, leading to both systemic and end-organ diseases. Since the 90s, at least four antiviral drugs targeting the DNA polymerase complex have been developed for the prevention and treatment of HCMV infections in transplant recipients, used as first-line (ganciclovir and valganciclovir) and second-line therapy (foscarnet and cidofovir). However, due to their toxicity and drug-resistance induction, new drugs with different targets were needed. Areas covered: In 2017, a new drug named letermovir (LTV), which targets the HCMV DNA terminase complex, was licensed for prophylaxis of HCMV infections in HSCT recipients. This is the focus of this review. Expert opinion: LTV safety and efficacy are promising. However, long-term adverse events and the emergence of drug-resistant HCMV strains must be investigated in extended clinical trials prior to drawing final conclusions.
Collapse
Affiliation(s)
- Giuseppe Gerna
- Laboratories of Genetics, Transplantology and Cardiovascular Diseases, and Biotechnology Laboratories, Fondazione IRCCS Policlinico San Matteo , Pavia , Italy
| | - Daniele Lilleri
- Laboratories of Genetics, Transplantology and Cardiovascular Diseases, and Biotechnology Laboratories, Fondazione IRCCS Policlinico San Matteo , Pavia , Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo , Pavia , Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia , Pavia , Italy
| |
Collapse
|
31
|
Adalja A, Inglesby T. Broad-Spectrum Antiviral Agents: A Crucial Pandemic Tool. Expert Rev Anti Infect Ther 2019; 17:467-470. [PMID: 31216912 PMCID: PMC7103698 DOI: 10.1080/14787210.2019.1635009] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/19/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Amesh Adalja
- Center for Health Security, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Thomas Inglesby
- Center for Health Security, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
32
|
Poole CL, Kimberlin DW. Antiviral Approaches for the Treatment of Herpes Simplex Virus Infections in Newborn Infants. Annu Rev Virol 2019; 5:407-425. [PMID: 30265626 DOI: 10.1146/annurev-virology-092917-043457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herpes simplex virus (HSV) infections in newborns are associated with severe disease and death. Trials conducted by the Collaborative Antiviral Study Group have established the standard of care for the treatment of neonatal HSV disease with marked improvements in morbidity and mortality. We review the studies that have contributed to our understanding of the epidemiology and clinical course of neonatal HSV disease and discuss the landmark trials that have resulted in safe and effective treatment together with improved diagnostics. Although significant advances have been made, neonatal HSV disease continues to have an unacceptably high mortality rate with significant sequelae in survivors. Further research is urgently needed for prevention.
Collapse
Affiliation(s)
- Claudette L Poole
- Division of Pediatric Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA; ,
| | - David W Kimberlin
- Division of Pediatric Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA; ,
| |
Collapse
|
33
|
Monjo ALA, Pringle ES, Thornbury M, Duguay BA, Monro SMA, Hetu M, Knight D, Cameron CG, McFarland SA, McCormick C. Photodynamic Inactivation of Herpes Simplex Viruses. Viruses 2018; 10:v10100532. [PMID: 30274257 PMCID: PMC6213367 DOI: 10.3390/v10100532] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 02/04/2023] Open
Abstract
Herpes simplex virus (HSV) infections can be treated with direct acting antivirals like acyclovir and foscarnet, but long-term use can lead to drug resistance, which motivates research into broadly-acting antivirals that can provide a greater genetic barrier to resistance. Photodynamic inactivation (PDI) employs a photosensitizer, light, and oxygen to create a local burst of reactive oxygen species that inactivate microorganisms. The botanical plant extract OrthoquinTM is a powerful photosensitizer with antimicrobial properties. Here we report that Orthoquin also has antiviral properties. Photoactivated Orthoquin inhibited herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2) infection of target cells in a dose-dependent manner across a broad range of sub-cytotoxic concentrations. HSV inactivation required direct contact between Orthoquin and the inoculum, whereas pre-treatment of target cells had no effect. Orthoquin did not cause appreciable damage to viral capsids or premature release of viral genomes, as measured by qPCR for the HSV-1 genome. By contrast, immunoblotting for HSV-1 antigens in purified virion preparations suggested that higher doses of Orthoquin had a physical impact on certain HSV-1 proteins that altered protein mobility or antigen detection. Orthoquin PDI also inhibited the non-enveloped adenovirus (AdV) in a dose-dependent manner, whereas Orthoquin-mediated inhibition of the enveloped vesicular stomatitis virus (VSV) was light-independent. Together, these findings suggest that the broad antiviral effects of Orthoquin-mediated PDI may stem from damage to viral attachment proteins.
Collapse
Affiliation(s)
- Andrea L-A Monjo
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Eric S Pringle
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Mackenzie Thornbury
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
- Department of Pathology and Cell Biology, University of Montreal, V-541 Pavillon Roger Gaudry, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3C 3J7, Canada.
| | - Brett A Duguay
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Susan M A Monro
- Department of Chemistry, Acadia University, 6 University Avenue, Wolfville, NS B4P 2R6, Canada.
- Photodynamic, Inc., 1344 Summer Street, Halifax, NS B3H 0A8, Canada.
| | - Marc Hetu
- Department of Chemistry, Acadia University, 6 University Avenue, Wolfville, NS B4P 2R6, Canada.
- Photodynamic, Inc., 1344 Summer Street, Halifax, NS B3H 0A8, Canada.
| | - Danika Knight
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Colin G Cameron
- Photodynamic, Inc., 1344 Summer Street, Halifax, NS B3H 0A8, Canada.
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 301 McIver Street, Greensboro, NC 27402, USA.
| | - Sherri A McFarland
- Photodynamic, Inc., 1344 Summer Street, Halifax, NS B3H 0A8, Canada.
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 301 McIver Street, Greensboro, NC 27402, USA.
| | - Craig McCormick
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
34
|
Britt WJ, Prichard MN. New therapies for human cytomegalovirus infections. Antiviral Res 2018; 159:153-174. [PMID: 30227153 DOI: 10.1016/j.antiviral.2018.09.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 02/07/2023]
Abstract
The recent approval of letermovir marks a new era of therapy for human cytomegalovirus (HCMV) infections, particularly for the prevention of HCMV disease in hematopoietic stem cell transplant recipients. For almost 30 years ganciclovir has been the therapy of choice for these infections and by today's standards this drug exhibits only modest antiviral activity that is often insufficient to completely suppress viral replication, and drives the selection of drug-resistant variants that continue to replicate and contribute to disease. While ganciclovir remains the therapy of choice, additional drugs that inhibit novel molecular targets, such as letermovir, will be required as highly effective combination therapies are developed not only for the treatment of immunocompromised hosts, but also for congenitally infected infants. Sustained efforts, largely in the biotech industry and academia, have identified additional highly active lead compounds that have progressed into clinical studies with varying levels of success and at least two have the potential to be approved in the near future. Some of the new drugs in the pipeline inhibit new molecular targets, remain effective against isolates that have developed resistance to existing therapies, and promise to augment existing therapeutic regimens. Here, we will describe some of the unique features of HCMV biology and discuss their effect on therapeutic needs. Existing drugs will also be discussed and some of the more promising candidates will be reviewed with an emphasis on those progressing through clinical studies. The in vitro and in vivo antiviral activity, spectrum of antiviral activity, and mechanism of action of new compounds will be reviewed to provide an update on potential new therapies for HCMV infections that have progressed significantly in recent years.
Collapse
Affiliation(s)
- William J Britt
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham AL 35233-1711, USA
| | - Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham AL 35233-1711, USA.
| |
Collapse
|
35
|
Poole CL, James SH. Antiviral Therapies for Herpesviruses: Current Agents and New Directions. Clin Ther 2018; 40:1282-1298. [PMID: 30104016 PMCID: PMC7728158 DOI: 10.1016/j.clinthera.2018.07.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 01/07/2023]
Abstract
PURPOSE The objective of this review was to summarize the recent literature describing the current burden of disease due to herpesviruses in the antiviral and transplant era; describe mechanisms of action of antiviral agents and the development of resistance; summarize the literature of recent antiviral agents brought to market as well as agents under development; and to present literature on future strategies for herpesvirus therapeutics. METHODS An extensive search of the medical literature related to antiherpesviral therapy was conducted to compose this narrative review. Literature searches were performed via PubMed and ultimately 137 articles were included as most relevant to the scope of this article. FINDINGS Herpesviruses are a family of DNA viruses that are ubiquitous throughout human populations and share the feature of establishing lifelong infections in a latent phase with the potential of periodic reactivation. With the exception of herpes simplex virus, varicella zoster virus, and Epstein-Barr virus, which have a significant disease burden in individuals with normal immune function, the morbidity and mortality of the remaining viruses are primarily associated with the immunocompromised host. Over the last half-century, several agents have been tested in large randomized, placebo-controlled trials that have resulted in safe and effective antiviral agents for the treatment of many of these infections. IMPLICATIONS With increasing use of antiherpesviral agents for extended periods, particularly in immunocompromised hosts, the emergence of resistant viruses has necessitated the development of newer agents with novel targets and better side-effect profiles.
Collapse
Affiliation(s)
- Claudette L Poole
- Division of Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Scott H James
- Division of Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
36
|
Brunnemann AK, Hoffmann A, Deinhardt-Emmer S, Nagel CH, Rose R, Fickenscher H, Sauerbrei A, Krumbholz A. Relevance of non-synonymous thymidine kinase mutations for antiviral resistance of recombinant herpes simplex virus type 2 strains. Antiviral Res 2018; 152:53-57. [PMID: 29427675 DOI: 10.1016/j.antiviral.2018.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 11/27/2022]
Abstract
Therapy or prophylaxis of herpes simplex virus type 2 (HSV-2) infections with the nucleoside analog aciclovir (ACV) can lead to the emergence of drug-resistant HSV-2 strains, particularly in immunocompromised patients. In this context, multiple amino acid (aa) changes can accumulate in the ACV-converting viral thymidine kinase (TK) which hampers sequence-based diagnostics significantly. In this study, the so far unknown or still doubted relevance of several individual aa changes for drug resistance in HSV-2 was clarified. For this purpose, ten recombinant fluorescent HSV-2 strains differing in the respective aa within their TK were constructed using the bacterial artificial chromosome (BAC) pHSV2(MS)Lox. Similar TK expression levels and similar replication behavior patterns were demonstrated for the mutants as compared to the unmodified BAC-derived HSV-2 strain. Subsequently, the resulting strains were tested for their susceptibility to ACV as well as penciclovir (PCV) in parallel to a modified cytopathic effect (CPE) inhibition assay and by determining the relative fluorescence intensity (quantified using units, RFU) as a measure for the viral replication capacity. While aa changes Y53N and R221H conferred ACV resistance with cross-resistance to PCV, the aa changes G25A, G39E, T131M, Y133F, G150D, A157T, R248W, and L342W maintained a susceptible phenotype against both antivirals. The CPE inhibition assay and the measurement of relative fluorescence intensity yielded comparable results for the phenotypic testing of recombinant viruses. The latter test showed some technical advantages. In conclusion, the significance of single aa changes in HSV-2 TK on ACV/PCV resistance was clarified by the construction and phenotypic testing of recombinant viral strains. This was facilitated by the fluorescence based method.
Collapse
Affiliation(s)
- Anne-Kathrin Brunnemann
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Brunswiker Straße 4, 24105 Kiel, Germany
| | - Anja Hoffmann
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Stefanie Deinhardt-Emmer
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Claus-Henning Nagel
- Heinrich Pette Institute, Leibniz-Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany
| | - Ruben Rose
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Brunswiker Straße 4, 24105 Kiel, Germany
| | - Helmut Fickenscher
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Brunswiker Straße 4, 24105 Kiel, Germany
| | - Andreas Sauerbrei
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Brunswiker Straße 4, 24105 Kiel, Germany.
| |
Collapse
|
37
|
Kimberlin DW. Antiviral Agents. PRINCIPLES AND PRACTICE OF PEDIATRIC INFECTIOUS DISEASES 2018:1551-1567.e6. [DOI: 10.1016/b978-0-323-40181-4.00295-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
38
|
Abstract
This article focuses on the clinically relevant approved antiviral medications available for the treatment of infants and children. A brief overview of drug categories, mechanism of action, resistance, pharmacokinetics, and side effects is provided for the more commonly prescribed antivirals. The patient categories addressed are treatment and prophylaxis of influenza, neonatal herpes simplex virus and congenital cytomegalovirus, treatment and prophylaxis of viral disease in the immunocompromised host, and a brief introduction to the antivirals available to treat hepatitis B and hepatitis C in children.
Collapse
Affiliation(s)
- Claudette L Poole
- Department of Pediatrics, University of Alabama at Birmingham, 1600 6th Avenue South, CHB 308, Birmingham, AL 35233, USA.
| | - David W Kimberlin
- Department of Pediatrics, University of Alabama at Birmingham, 1600 6th Avenue South, CHB 308, Birmingham, AL 35233, USA
| |
Collapse
|
39
|
Inhibition of Fosfomycin Resistance Protein FosA by Phosphonoformate (Foscarnet) in Multidrug-Resistant Gram-Negative Pathogens. Antimicrob Agents Chemother 2017; 61:AAC.01424-17. [PMID: 28993329 DOI: 10.1128/aac.01424-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/27/2017] [Indexed: 01/29/2023] Open
Abstract
FosA proteins confer fosfomycin resistance to Gram-negative pathogens via glutathione-mediated modification of the antibiotic. In this study, we assessed whether inhibition of FosA by sodium phosphonoformate (PPF) (foscarnet), a clinically approved antiviral agent, would reverse fosfomycin resistance in representative Gram-negative pathogens. The inhibitory activity of PPF against purified recombinant FosA from Escherichia coli (FosA3), Klebsiella pneumoniae (FosAKP), Enterobacter cloacae (FosAEC), and Pseudomonas aeruginosa (FosAPA) was determined by steady-state kinetic measurements. The antibacterial activity of PPF against FosA in clinical strains of these species was evaluated by susceptibility testing and time-kill assays. PPF increased the Michaelis constant (Km ) for fosfomycin in a dose-dependent manner, without affecting the maximum rate (Vmax) of the reaction, for all four FosA enzymes tested, indicating a competitive mechanism of inhibition. Inhibitory constant (Ki ) values were 22.6, 35.8, 24.4, and 56.3 μM for FosAKP, FosAEC, FosAPA, and FosA3, respectively. Addition of clinically achievable concentrations of PPF (∼667 μM) reduced the fosfomycin MICs by ≥4-fold among 52% of the K. pneumoniae, E. cloacae, and P. aeruginosa clinical strains tested and led to a bacteriostatic or bactericidal effect in time-kill assays among representative strains. PPF inhibits FosA activity across Gram-negative species and can potentiate fosfomycin activity against the majority of strains with chromosomally encoded fosA These data suggest that PPF may be repurposed as an adjuvant for fosfomycin to treat infections caused by some FosA-producing, multidrug-resistant, Gram-negative pathogens.
Collapse
|
40
|
Chernyavskaya Y, Mudbhary R, Zhang C, Tokarz D, Jacob V, Gopinath S, Sun X, Wang S, Magnani E, Madakashira BP, Yoder JA, Hoshida Y, Sadler KC. Loss of DNA methylation in zebrafish embryos activates retrotransposons to trigger antiviral signaling. Development 2017; 144:2925-2939. [PMID: 28698226 PMCID: PMC5592811 DOI: 10.1242/dev.147629] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 07/02/2017] [Indexed: 12/19/2022]
Abstract
Complex cytoplasmic nucleotide-sensing mechanisms can recognize foreign DNA based on a lack of methylation and initiate an immune response to clear the infection. Zebrafish embryos with global DNA hypomethylation caused by mutations in the ubiquitin-like with PHD and ring finger domains 1 (uhrf1) or DNA methyltransferase 1 (dnmt1) genes exhibit a robust interferon induction characteristic of the first line of defense against viral infection. We found that this interferon induction occurred in non-immune cells and examined whether intracellular viral sensing pathways in these cells were the trigger. RNA-seq analysis of uhrf1 and dnmt1 mutants revealed widespread induction of Class I retrotransposons and activation of cytoplasmic DNA viral sensors. Attenuating Sting, phosphorylated Tbk1 and, importantly, blocking reverse transcriptase activity suppressed the expression of interferon genes in uhrf1 mutants. Thus, activation of transposons in cells with global DNA hypomethylation mimics a viral infection by activating cytoplasmic DNA sensors. This suggests that antiviral pathways serve as surveillance of cells that have derepressed intragenomic parasites due to DNA hypomethylation.
Collapse
Affiliation(s)
- Yelena Chernyavskaya
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Raksha Mudbhary
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Chi Zhang
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Debra Tokarz
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC 27607, USA
| | - Vinitha Jacob
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Smita Gopinath
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Xiaochen Sun
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Shuang Wang
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Elena Magnani
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC 27607, USA
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Kirsten C Sadler
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| |
Collapse
|
41
|
Nováková L, Pavlík J, Chrenková L, Martinec O, Červený L. Current antiviral drugs and their analysis in biological materials-Part I: Antivirals against respiratory and herpes viruses. J Pharm Biomed Anal 2017; 147:400-416. [PMID: 28755849 DOI: 10.1016/j.jpba.2017.06.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023]
Abstract
This review article is the first in the series providing an overview of currently used antiviral drugs and presenting contemporary approaches to their analysis. Large number of available antivirals and their structural variability makes this task very challenging. Trying to cover this topic comprehensively while maintaining reasonable size of the article, the review is presented in two parts. For the purpose of the overall review, antivirals were divided into four groups: (i) antivirals against herpes viruses, (ii) antivirals against respiratory viruses, (iii) antivirals against hepatitis viruses, and (iv) antivirals against HIV. Part one is devoted to the groups (i) and (ii) and also concerns the key features of the bioanalytical method. The mechanisms of action of antivirals against respiratory and herpes viruses and their use in clinical practice are briefly outlined, and the analytical methods for selected representatives of each class are described in more detail. The methods developed for the determination of drugs from these classes mostly include conventional procedures. In contrast, current trends such as UHPLC are used rarely and proper method validation based on requirements of bioanalytical guidelines can be often considered insufficient.
Collapse
Affiliation(s)
- Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Jakub Pavlík
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Lucia Chrenková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Ondřej Martinec
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Lukáš Červený
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
42
|
Molecular mutagenesis of ppGpp: turning a RelA activator into an inhibitor. Sci Rep 2017; 7:41839. [PMID: 28157202 PMCID: PMC5291098 DOI: 10.1038/srep41839] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/29/2016] [Indexed: 01/26/2023] Open
Abstract
The alarmone nucleotide (p)ppGpp is a key regulator of bacterial metabolism, growth, stress tolerance and virulence, making (p)ppGpp-mediated signaling a promising target for development of antibacterials. Although ppGpp itself is an activator of the ribosome-associated ppGpp synthetase RelA, several ppGpp mimics have been developed as RelA inhibitors. However promising, the currently available ppGpp mimics are relatively inefficient, with IC50 in the sub-mM range. In an attempt to identify a potent and specific inhibitor of RelA capable of abrogating (p)ppGpp production in live bacterial cells, we have tested a targeted nucleotide library using a biochemical test system comprised of purified Escherichia coli components. While none of the compounds fulfilled this aim, the screen has yielded several potentially useful molecular tools for biochemical and structural work.
Collapse
|
43
|
Nephrotoxicity induced by drugs: The case of foscarnet and atazanavir—A SEM and μFTIR investigation. CR CHIM 2016. [DOI: 10.1016/j.crci.2016.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
How I treat resistant cytomegalovirus infection in hematopoietic cell transplantation recipients. Blood 2016; 128:2624-2636. [PMID: 27760756 DOI: 10.1182/blood-2016-06-688432] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/17/2016] [Indexed: 12/20/2022] Open
Abstract
Cytomegalovirus (CMV) infection is a significant complication in hematopoietic cell transplantation (HCT) recipients. Four antiviral drugs are used for preventing or treating CMV: ganciclovir, valganciclovir, foscarnet, and cidofovir. With prolonged and repeated use of these drugs, CMV can become resistant to standard therapy, resulting in increased morbidity and mortality, especially in HCT recipients. Antiviral drug resistance should be suspected when CMV viremia (DNAemia or antigenemia) fails to improve or continue to increase after 2 weeks of appropriately dosed and delivered antiviral therapy. CMV resistance is diagnosed by detecting specific genetic mutations. UL97 mutations confer resistance to ganciclovir and valganciclovir, and a UL54 mutation confers multidrug resistance. Risk factors for resistance include prolonged or previous anti-CMV drug exposure or inadequate dosing, absorption, or bioavailability. Host risk factors include type of HCT and degree of immunosuppression. Depending on the genotyping results, multiple strategies can be adopted to treat resistant CMV infections, albeit no randomized clinical trials exist so far, after reducing immunosuppression (if possible): ganciclovir dose escalation, ganciclovir and foscarnet combination, and adjunct therapy such as CMV-specific cytotoxic T-lymphocyte infusions. Novel therapies such as maribavir, brincidofovir, and letermovir should be further studied for treatment of resistant CMV.
Collapse
|
45
|
Shahani L. Fulminant hepatic failure secondary to acyclovir-resistant herpes simplex virus. BMJ Case Rep 2016; 2016:bcr-2016-216322. [PMID: 27754940 DOI: 10.1136/bcr-2016-216322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Liver failure is a frequent and serious complication that causes morbidity and mortality in haematopoietic stem cell transplantation (HCT) recipients. Liver dysfunction in these patients can be related to infectious causes, most common viral hepatitis. We report a case of disseminated acyclovir-resistant herpes simplex virus (HSV) infection following HCT that led to acute liver failure and death. Although rare, HSV hepatitis leads to high morbidity and mortality and should be considered in the differential diagnosis of HCT recipients with marked elevation of hepatic transaminase. Acyclovir is a first-line therapy for HSV infection; however, acyclovir-resistant viral strains should be considered and alternative HSV therapies given in HCT recipients whose HSV infection does not improve on acyclovir therapy.
Collapse
Affiliation(s)
- Lokesh Shahani
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW The mainstay of antiviral therapy for the alpha-herpesviruses [herpes simplex virus (HSV)-1, HSV-2, and varicella zoster virus (VZV)] over the past 40 years has been the nucleoside analogues such as aciclovir. Although conventional antiviral therapy has reduced mortality in severe disease, novel agents are needed to address the emergence of resistance and toxicity associated with current second-line therapy. Treatment and prophylaxis of VZV and HSV reactivations remains a challenge. RECENT FINDINGS A number of compounds have recently been evaluated in human clinical trials, amongst them brincidofovir, an intracellularly acting derivative of cidofovir currently undergoing phase III trials. The helicase-primase inhibitors are a new class of antiviral agent and may circumvent resistance to existing agents. Amenamevir and pritelivir are two examples of these agents that have been evaluated clinically along with novel nucleoside analogues such as valomaciclovir and FV-100. Tenofovir, an agent used in HIV and hepatitis B therapy, may also have a role in the prevention of HSV-2 acquisition and reduce viral shedding. SUMMARY Although several novel antiviral agents have undergone clinical trials in recent years, all are yet to gain licensure. Brincidofovir appears to be the candidate with most promise for adoption into routine practice in the near future.
Collapse
|
47
|
Clementi N, Criscuolo E, Cappelletti F, Burioni R, Clementi M, Mancini N. Novel therapeutic investigational strategies to treat severe and disseminated HSV infections suggested by a deeper understanding of in vitro virus entry processes. Drug Discov Today 2016; 21:682-91. [PMID: 26976690 DOI: 10.1016/j.drudis.2016.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/11/2016] [Accepted: 03/04/2016] [Indexed: 01/28/2023]
Abstract
The global burden of herpes simplex virus (HSV) legitimates the critical need to develop new prevention strategies, such as drugs and vaccines that are able to fight either primary HSV infections or reactivations. Moreover, the ever-growing number of patients receiving transplants increases the number of severe HSV infections that are unresponsive to current therapies. Finally, the high global incidence of genital HSV-2 infection increases the risk of perinatal transmission to newborns, in which disseminated infection or central nervous system (CNS) involvement is frequent, with associated high morbidity and mortality rates. There are several key features shared by novel anti-HSV drugs, from currently available optimized drugs to small molecules able to interfere with various virus replication steps. However, several virological aspects of the disease and associated clinical needs highlight why an ideal anti-HSV drug has yet to be developed.
Collapse
Affiliation(s)
- Nicola Clementi
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy.
| | - Elena Criscuolo
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| | - Francesca Cappelletti
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| | - Roberto Burioni
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| | - Massimo Clementi
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| | - Nicasio Mancini
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| |
Collapse
|
48
|
Vashishtha AK, Kuchta RD. Effects of Acyclovir, Foscarnet, and Ribonucleotides on Herpes Simplex Virus-1 DNA Polymerase: Mechanistic Insights and a Novel Mechanism for Preventing Stable Incorporation of Ribonucleotides into DNA. Biochemistry 2016; 55:1168-77. [PMID: 26836009 DOI: 10.1021/acs.biochem.6b00065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We examined the impact of two clinically approved anti-herpes drugs, acyclovir and Forscarnet (phosphonoformate), on the exonuclease activity of the herpes simplex virus-1 DNA polymerase, UL30. Acyclovir triphosphate and Foscarnet, along with the closely related phosphonoacetic acid, did not affect exonuclease activity on single-stranded DNA. Furthermore, blocking the polymerase active site due to either binding of Foscarnet or phosphonoacetic acid to the E-DNA complex or polymerization of acyclovir onto the DNA also had a minimal effect on exonuclease activity. The inability of the exonuclease to excise acyclovir from the primer 3'-terminus results from the altered sugar structure directly impeding phosphodiester bond hydrolysis as opposed to inhibiting binding, unwinding of the DNA by the exonuclease, or transfer of the DNA from the polymerase to the exonuclease. Removing the 3'-hydroxyl or the 2'-carbon from the nucleotide at the 3'-terminus of the primer strongly inhibited exonuclease activity, although addition of a 2'-hydroxyl did not affect exonuclease activity. The biological consequences of these results are twofold. First, the ability of acyclovir and Foscarnet to block dNTP polymerization without impacting exonuclease activity raises the possibility that their effects on herpes replication may involve both direct inhibition of dNTP polymerization and exonuclease-mediated destruction of herpes DNA. Second, the ability of the exonuclease to rapidly remove a ribonucleotide at the primer 3'-terminus in combination with the polymerase not efficiently adding dNTPs onto this primer provides a novel mechanism by which the herpes replication machinery can prevent incorporation of ribonucleotides into newly synthesized DNA.
Collapse
Affiliation(s)
- Ashwani Kumar Vashishtha
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309-0215, United States
| | - Robert D Kuchta
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309-0215, United States
| |
Collapse
|
49
|
Szczubiałka K, Pyrć K, Nowakowska M. In search for effective and definitive treatment of herpes simplex virus type 1 (HSV-1) infections. RSC Adv 2016. [DOI: 10.1039/c5ra22896d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Herpes Simplex Virus type 1 (HSV-1) is a nuclear replicating enveloped virus.
Collapse
Affiliation(s)
| | - Krzysztof Pyrć
- Faculty of Biochemistry, Biophysics and Biotechnology
- Jagiellonian University
- 30-387 Kraków
- Poland
| | | |
Collapse
|
50
|
Efficacy of Antiviral Drugs against Feline Immunodeficiency Virus. Vet Sci 2015; 2:456-476. [PMID: 29061953 PMCID: PMC5644647 DOI: 10.3390/vetsci2040456] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/05/2015] [Accepted: 10/21/2015] [Indexed: 11/29/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is one of the most common infectious agents affecting cats worldwide .FIV and human immunodeficiency virus (HIV) share many properties: both are lifelong persistent lentiviruses that are similar genetically and morphologically and both viruses propagate in T-lymphocytes, macrophages, and neural cells. Experimentally infected cats have measurable immune suppression, which sometimes progresses to an acquired immunodeficiency syndrome. A transient initial state of infection is followed by a long latent stage with low virus replication and absence of clinical signs. In the terminal stage, both viruses can cause severe immunosuppression. Thus, FIV infection in cats has become an important natural model for studying HIV infection in humans, especially for evaluation of antiviral compounds. Of particular importance for chemotherapeutic studies is the close similarity between the reverse transcriptase (RT) of FIV and HIV, which results in high in vitro susceptibility of FIV to many RT-targeted antiviral compounds used in the treatment of HIV-infected patients. Thus, the aim of this article is to provide an up-to-date review of studies on antiviral treatment of FIV, focusing on commercially available compounds for human or animal use.
Collapse
|