Bon S, Bader MF, Aunis D, Massoulié J, Henry JP. Subcellular distribution of acetylcholinesterase forms in chromaffin cells. Do chromaffin granules contain a specific secretory acetylcholinesterase?
EUROPEAN JOURNAL OF BIOCHEMISTRY 1990;
190:221-32. [PMID:
2364948 DOI:
10.1111/j.1432-1033.1990.tb15567.x]
[Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The presence of acetylcholinesterase (AChE) in chromaffin granules has been controversial for a long time. We therefore undertook a study of AChE molecular forms in chromaffin cells and of their distribution during subcellular fractionation. We characterized four main AChE forms, three amphiphilic forms (Ga1, Ga2 and Ga4), and one non-amphiphilic form (Gna4). Each form shows the same molecular characteristics (sedimentation, electrophoretic migration, lectin interactions) in the different subcellular fractions. All forms are glycosylated and seem to possess both N-linked and O-linked carbohydrate chains. There are differences in the structure of the glycans carried by the different forms, as indicated by their interaction with some lectins. Glycophosphatidylinositol-specific phospholipases C converted the Ga2 form, but not the other amphiphilic forms, into non-amphiphilic derivatives. The distinct patterns of AChE molecular forms observed in various subcellular compartments indicate the existence of an active sorting process. Gna4 was concentrated in fractions of high density, containing chromaffin granules. We obtained evidence for the existence of a lighter fraction also containing chromogranin A, tetrabenazine-binding sites and Gna4 AChE, which may correspond to immature, incompletely loaded granules or to partially emptied granules. The distribution of Gna4 during subcellular fractionation suggested that this form is largely, but not exclusively, contained in chromaffin granules, the membranes of which may contain low levels of the three amphiphilic forms.
Collapse