1
|
Bhardwaj P, Raigond B, Raigond P, Verma A, Verma G, Kochhar T, Patroti P, Das IK, Satyavathi CT. Antiviral activity of ribosome inactivating proteins for management of plant viral infection. Virology 2025; 603:110403. [PMID: 39894605 DOI: 10.1016/j.virol.2025.110403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
In nature, plants exhibit various defense mechanisms to protect themselves from viral infection. Reported to harbor virus-inhibiting compounds like Ribosome inactivating proteins (RIPs). It's a matter of how we explore, identify, and utilize RIPs in managing a given stress. RIPs have been found to contain antiviral, anticancer, and neurotoxic effects and are used in various biomedical and agricultural fields. The expression of RIPs could be enhanced in plants to improve their defense against biotic and abiotic stresses. Identification of new RIPs and genetic sequencing led to the development of new phylogenetic theories. Studies on the interaction between RIPs and cells have increased the knowledge regarding the handling of exogenous proteins by cells. The review provides a brief historical preview, classification, mode of action, and broader applications with a special focus on managing plant viral diseases and concerns to mankind.
Collapse
Affiliation(s)
- Pooja Bhardwaj
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Baswaraj Raigond
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India; Centre for Rabi Sorghum, ICAR-Indian Institute of Millets Research, Regional Station, Solapur, 413006, Maharashtra, India.
| | - Pinky Raigond
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India; ICAR-National Research Centre on Pomegranate, Solapur, 413255, Maharashtra, India
| | - Ambika Verma
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Gaurav Verma
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, 263601, Uttarakhand, India
| | - Tarvinder Kochhar
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Parashuram Patroti
- Centre for Rabi Sorghum, ICAR-Indian Institute of Millets Research, Regional Station, Solapur, 413006, Maharashtra, India
| | - I K Das
- ICAR- ICAR-Indian Institute of Millets Research, Hyderabad, 500030, Telangana, India
| | - C Tara Satyavathi
- ICAR- ICAR-Indian Institute of Millets Research, Hyderabad, 500030, Telangana, India
| |
Collapse
|
2
|
Kashyap P, Bhardwaj VK, Chauhan M, Chauhan V, Kumar A, Purohit R, Kumar A, Kumar S. A ricin-based peptide BRIP from Hordeum vulgare inhibits M pro of SARS-CoV-2. Sci Rep 2022; 12:12802. [PMID: 35896605 PMCID: PMC9326418 DOI: 10.1038/s41598-022-15977-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/01/2022] [Indexed: 12/13/2022] Open
Abstract
COVID-19 pandemic caused by SARS-CoV-2 led to the research aiming to find the inhibitors of this virus. Towards this world problem, an attempt was made to identify SARS-CoV-2 main protease (Mpro) inhibitory peptides from ricin domains. The ricin-based peptide from barley (BRIP) was able to inhibit Mpro in vitro with an IC50 of 0.52 nM. Its low and no cytotoxicity upto 50 µM suggested its therapeutic potential against SARS-CoV-2. The most favorable binding site on Mpro was identified by molecular docking and steered molecular dynamics (MD) simulations. The Mpro-BRIP interactions were further investigated by evaluating the trajectories for microsecond timescale MD simulations. The structural parameters of Mpro-BRIP complex were stable, and the presence of oppositely charged surfaces on the binding interface of BRIP and Mpro complex further contributed to the overall stability of the protein-peptide complex. Among the components of thermodynamic binding free energy, Van der Waals and electrostatic contributions were most favorable for complex formation. Our findings provide novel insight into the area of inhibitor development against COVID-19.
Collapse
Affiliation(s)
- Prakriti Kashyap
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Vijay Kumar Bhardwaj
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Mahima Chauhan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Varun Chauhan
- Covid-19 Testing Facility, Dietetics & Nutrition Technology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, H.P, India, 176061
| | - Asheesh Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Rituraj Purohit
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India.
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.
| | - Arun Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India.
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.
| |
Collapse
|
3
|
Lee YCJ, Shirkey JD, Park J, Bisht K, Cowan AJ. An Overview of Antiviral Peptides and Rational Biodesign Considerations. BIODESIGN RESEARCH 2022; 2022:9898241. [PMID: 37850133 PMCID: PMC10521750 DOI: 10.34133/2022/9898241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 10/19/2023] Open
Abstract
Viral diseases have contributed significantly to worldwide morbidity and mortality throughout history. Despite the existence of therapeutic treatments for many viral infections, antiviral resistance and the threat posed by novel viruses highlight the need for an increased number of effective therapeutics. In addition to small molecule drugs and biologics, antimicrobial peptides (AMPs) represent an emerging class of potential antiviral therapeutics. While AMPs have traditionally been regarded in the context of their antibacterial activities, many AMPs are now known to be antiviral. These antiviral peptides (AVPs) have been shown to target and perturb viral membrane envelopes and inhibit various stages of the viral life cycle, from preattachment inhibition through viral release from infected host cells. Rational design of AMPs has also proven effective in identifying highly active and specific peptides and can aid in the discovery of lead peptides with high therapeutic selectivity. In this review, we highlight AVPs with strong antiviral activity largely curated from a publicly available AMP database. We then compile the sequences present in our AVP database to generate structural predictions of generic AVP motifs. Finally, we cover the rational design approaches available for AVPs taking into account approaches currently used for the rational design of AMPs.
Collapse
Affiliation(s)
- Ying-Chiang J. Lee
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Jaden D. Shirkey
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Jongbeom Park
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Karishma Bisht
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Alexis J. Cowan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
4
|
Yamashiro T, Shiraishi A, Satake H, Nakayama K. Draft genome of Tanacetum cinerariifolium, the natural source of mosquito coil. Sci Rep 2019; 9:18249. [PMID: 31796833 PMCID: PMC6890757 DOI: 10.1038/s41598-019-54815-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/20/2019] [Indexed: 11/09/2022] Open
Abstract
Pyrethrum (Tanacetum cinerariifolium), which is a perennial Asteraceae plant with white daisy-like flowers, is the original source of mosquito coils and is known for the biosynthesis of the pyrethrin class of natural insecticides. However, the molecular basis of the production of pyrethrins by T. cinerariifolium has yet to be fully elucidated. Here, we present the 7.1-Gb draft genome of T. cinerariifolium, consisting of 2,016,451 scaffolds and 60,080 genes predicted with high confidence. Notably, analyses of transposable elements (TEs) indicated that TEs occupy 33.84% of the genome sequence. Furthermore, TEs of the sire and oryco clades were found to be enriched in the T. cinerariifolium-specific evolutionary lineage, occupying a total of 13% of the genome sequence, a proportion approximately 8-fold higher than that in other plants. InterProScan analysis demonstrated that biodefense-related toxic proteins (e.g., ribosome inactivating proteins), signal transduction-related proteins (e.g., histidine kinases), and metabolic enzymes (e.g., lipoxygenases, acyl-CoA dehydrogenases/oxygenases, and P450s) are also highly enriched in the T. cinerariifolium genome. Molecular phylogenetic analysis detected a variety of enzymes with genus-specific multiplication, including both common enzymes and others that appear to be specific to pyrethrin biosynthesis. Together, these data identify possible novel components of the pyrethrin biosynthesis pathway and provide new insights into the unique genomic features of T. cinerariifolium.
Collapse
Affiliation(s)
- Takanori Yamashiro
- Dainihon Jochugiku Co., Ltd., 1-1-11 Daikoku-cho, Toyonaka, Osaka, 561-0827, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, 619-0284, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, 619-0284, Japan.
| | - Koji Nakayama
- Dainihon Jochugiku Co., Ltd., 1-1-11 Daikoku-cho, Toyonaka, Osaka, 561-0827, Japan.
| |
Collapse
|
5
|
Dianthin and Its Potential in Targeted Tumor Therapies. Toxins (Basel) 2019; 11:toxins11100592. [PMID: 31614697 PMCID: PMC6832487 DOI: 10.3390/toxins11100592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 12/26/2022] Open
Abstract
Dianthin enzymes belong to ribosome-inactivating proteins (RIPs) of type 1, i.e., they only consist of a catalytic domain and do not have a cell binding moiety. Dianthin-30 is very similar to saporin-S3 and saporin-S6, two RIPs often used to design targeted toxins for tumor therapy and already tested in some clinical trials. Nevertheless, dianthin enzymes also exhibit differences to saporin with regard to structure, efficacy, toxicity, immunogenicity and production by heterologous expression. Some of the distinctions might make dianthin more suitable for targeted tumor therapies than other RIPs. The present review provides an overview of the history of dianthin discovery and illuminates its structure, function and role in targeted toxins. It further discusses the option to increase the efficacy of dianthin by endosomal escape enhancers.
Collapse
|
6
|
Bortolotti M, Bolognesi A, Polito L. Bouganin, an Attractive Weapon for Immunotoxins. Toxins (Basel) 2018; 10:E323. [PMID: 30096764 PMCID: PMC6115712 DOI: 10.3390/toxins10080323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 11/23/2022] Open
Abstract
Bougainvillea (Bougainvillea spectabilis Willd.) is a plant widely used in folk medicine and many extracts from different tissues of this plant have been employed against several pathologies. The observation that leaf extracts of Bougainvillea possess antiviral properties led to the purification and characterization of a protein, named bouganin, which exhibits typical characteristics of type 1 ribosome-inactivating proteins (RIPs). Beyond that, bouganin has some peculiarities, such as a higher activity on DNA with respect to ribosomal RNA, low systemic toxicity, and immunological properties quite different than other RIPs. The sequencing of bouganin and the knowledge of its three-dimensional structure allowed to obtain a not immunogenic mutant of bouganin. These features make bouganin a very attractive tool as a component of immunotoxins (ITs), chimeric proteins obtained by linking a toxin to a carrier molecule. Bouganin-containing ITs showed very promising results in the experimental treatment of both hematological and solid tumors, and one bouganin-containing IT has entered Phase I clinical trial. In this review, we summarize the milestones of the research on bouganin such as bouganin chemico-physical characteristics, the structural properties and de-immunization studies. In addition, the in vitro and in vivo results obtained with bouganin-containing ITs are summarized.
Collapse
Affiliation(s)
- Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, General Pathology Section, Alma Mater Studiorum-University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy.
| | - Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, General Pathology Section, Alma Mater Studiorum-University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy.
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, General Pathology Section, Alma Mater Studiorum-University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy.
| |
Collapse
|
7
|
Zhu F, Zhou YK, Ji ZL, Chen XR. The Plant Ribosome-Inactivating Proteins Play Important Roles in Defense against Pathogens and Insect Pest Attacks. FRONTIERS IN PLANT SCIENCE 2018; 9:146. [PMID: 29479367 PMCID: PMC5811460 DOI: 10.3389/fpls.2018.00146] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/25/2018] [Indexed: 05/20/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are toxic N-glycosidases that depurinate eukaryotic and prokaryotic rRNAs, thereby arresting protein synthesis during translation. RIPs are widely found in various plant species and within different tissues. It is demonstrated in vitro and in transgenic plants that RIPs have been connected to defense by antifungal, antibacterial, antiviral, and insecticidal activities. However, the mechanism of these effects is still not completely clear. There are a number of reviews of RIPs. However, there are no reviews on the biological functions of RIPs in defense against pathogens and insect pests. Therefore, in this report, we focused on the effect of RIPs from plants in defense against pathogens and insect pest attacks. First, we summarize the three different types of RIPs based on their physical properties. RIPs are generally distributed in plants. Then, we discuss the distribution of RIPs that are found in various plant species and in fungi, bacteria, algae, and animals. Various RIPs have shown unique bioactive properties including antibacterial, antifungal, antiviral, and insecticidal activity. Finally, we divided the discussion into the biological roles of RIPs in defense against bacteria, fungi, viruses, and insects. This review is focused on the role of plant RIPs in defense against bacteria, fungi, viruses, and insect attacks. The role of plant RIPs in defense against pathogens and insects is being comprehended currently. Future study utilizing transgenic technology approaches to study the mechanisms of RIPs will undoubtedly generate a better comprehending of the role of plant RIPs in defense against pathogens and insects. Discovering additional crosstalk mechanisms between RIPs and phytohormones or reactive oxygen species (ROS) against pathogen and insect infections will be a significant subject in the field of biotic stress study. These studies are helpful in revealing significance of genetic control that can be beneficial to engineer crops tolerance to biotic stress.
Collapse
|
8
|
|
9
|
Bolognesi A, Bortolotti M, Battelli MG, Polito L. Hyperuricaemia, Xanthine Oxidoreductase and Ribosome-Inactivating Proteins from Plants: The Contributions of Fiorenzo Stirpe to Frontline Research. Molecules 2017; 22:molecules22020206. [PMID: 28134797 PMCID: PMC6155646 DOI: 10.3390/molecules22020206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/23/2017] [Indexed: 11/16/2022] Open
Abstract
The enzymes called ribosome-inactivating proteins (RIPs) that are able to depurinate nucleic acids and arrest vital cellular functions, including protein synthesis, are still a frontline research field, mostly because of their promising medical applications. The contributions of Stirpe to the development of these studies has been one of the most relevant. After a short biographical introduction, an overview is offered of the main results obtained by his investigations during last 55 years on his main research lines: hyperuricaemia, xanthine oxidoreductase and RIPs.
Collapse
Affiliation(s)
- Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Maria Giulia Battelli
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| |
Collapse
|
10
|
Bolognesi A, Bortolotti M, Maiello S, Battelli MG, Polito L. Ribosome-Inactivating Proteins from Plants: A Historical Overview. Molecules 2016; 21:molecules21121627. [PMID: 27898041 PMCID: PMC6273060 DOI: 10.3390/molecules21121627] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022] Open
Abstract
This review provides a historical overview of the research on plant ribosome-inactivating proteins (RIPs), starting from the first studies at the end of eighteenth century involving the purification of abrin and ricin, as well as the immunological experiments of Paul Erlich. Interest in these plant toxins was revived in 1970 by the observation of their anticancer activity, which has given rise to a large amount of research contributing to the development of various scientific fields. Biochemistry analyses succeeded in identifying the enzymatic activity of RIPs and allowed for a better understanding of the ribosomal machinery. Studies on RIP/cell interactions were able to detail the endocytosis and intracellular routing of ricin, thus increasing our knowledge of how cells handle exogenous proteins. The identification of new RIPs and the finding that most RIPs are single-chain polypeptides, together with their genetic sequencing, has aided in the development of new phylogenetic theories. Overall, the biological properties of these proteins, including their abortifacient, anticancer, antiviral and neurotoxic activities, suggest that RIPs could be utilized in agriculture and in many biomedical fields, including clinical drug development.
Collapse
Affiliation(s)
- Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Stefania Maiello
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Maria Giulia Battelli
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| |
Collapse
|
11
|
Burroughs AM, Aravind L. RNA damage in biological conflicts and the diversity of responding RNA repair systems. Nucleic Acids Res 2016; 44:8525-8555. [PMID: 27536007 PMCID: PMC5062991 DOI: 10.1093/nar/gkw722] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/08/2016] [Indexed: 12/16/2022] Open
Abstract
RNA is targeted in biological conflicts by enzymatic toxins or effectors. A vast diversity of systems which repair or ‘heal’ this damage has only recently become apparent. Here, we summarize the known effectors, their modes of action, and RNA targets before surveying the diverse systems which counter this damage from a comparative genomics viewpoint. RNA-repair systems show a modular organization with extensive shuffling and displacement of the constituent domains; however, a general ‘syntax’ is strongly maintained whereby systems typically contain: a RNA ligase (either ATP-grasp or RtcB superfamilies), nucleotidyltransferases, enzymes modifying RNA-termini for ligation (phosphatases and kinases) or protection (methylases), and scaffold or cofactor proteins. We highlight poorly-understood or previously-uncharacterized repair systems and components, e.g. potential scaffolding cofactors (Rot/TROVE and SPFH/Band-7 modules) with their respective cognate non-coding RNAs (YRNAs and a novel tRNA-like molecule) and a novel nucleotidyltransferase associating with diverse ligases. These systems have been extensively disseminated by lateral transfer between distant prokaryotic and microbial eukaryotic lineages consistent with intense inter-organismal conflict. Components have also often been ‘institutionalized’ for non-conflict roles, e.g. in RNA-splicing and in RNAi systems (e.g. in kinetoplastids) which combine a distinct family of RNA-acting prim-pol domains with DICER-like proteins.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
12
|
Effect of Depurination on Cellular and Viral RNA. MODIFIED NUCLEIC ACIDS IN BIOLOGY AND MEDICINE 2016. [DOI: 10.1007/978-3-319-34175-0_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Di R, Tumer NE. Pokeweed antiviral protein: its cytotoxicity mechanism and applications in plant disease resistance. Toxins (Basel) 2015; 7:755-72. [PMID: 25756953 PMCID: PMC4379523 DOI: 10.3390/toxins7030755] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/11/2015] [Accepted: 03/02/2015] [Indexed: 11/16/2022] Open
Abstract
Pokeweed antiviral protein (PAP) is a 29 kDa type I ribosome inactivating protein (RIP) found in pokeweed plants. Pokeweed produces different forms of PAP. This review focuses on the spring form of PAP isolated from Phytolacca americana leaves. PAP exerts its cytotoxicity by removing a specific adenine from the α-sarcin/ricin loop of the large ribosomal RNA. Besides depurination of the rRNA, PAP has additional activities that contribute to its cytotoxicity. The mechanism of PAP cytotoxicity is summarized based on evidence from the analysis of transgenic plants and the yeast model system. PAP was initially found to be anti-viral when it was co-inoculated with plant viruses onto plants. Transgenic plants expressing PAP and non-toxic PAP mutants have displayed broad-spectrum resistance to both viral and fungal infection. The mechanism of PAP-induced disease resistance in transgenic plants is summarized.
Collapse
Affiliation(s)
- Rong Di
- Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Nilgun E Tumer
- Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
14
|
Domashevskiy AV, Goss DJ. Pokeweed antiviral protein, a ribosome inactivating protein: activity, inhibition and prospects. Toxins (Basel) 2015; 7:274-98. [PMID: 25635465 PMCID: PMC4344624 DOI: 10.3390/toxins7020274] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/07/2015] [Accepted: 01/23/2015] [Indexed: 01/30/2023] Open
Abstract
Viruses employ an array of elaborate strategies to overcome plant defense mechanisms and must adapt to the requirements of the host translational systems. Pokeweed antiviral protein (PAP) from Phytolacca americana is a ribosome inactivating protein (RIP) and is an RNA N-glycosidase that removes specific purine residues from the sarcin/ricin (S/R) loop of large rRNA, arresting protein synthesis at the translocation step. PAP is thought to play an important role in the plant's defense mechanism against foreign pathogens. This review focuses on the structure, function, and the relationship of PAP to other RIPs, discusses molecular aspects of PAP antiviral activity, the novel inhibition of this plant toxin by a virus counteraction-a peptide linked to the viral genome (VPg), and possible applications of RIP-conjugated immunotoxins in cancer therapeutics.
Collapse
MESH Headings
- Animals
- Binding Sites
- Endoribonucleases/chemistry
- Fungal Proteins/chemistry
- Genome, Viral
- Humans
- Protein Isoforms
- RNA Caps/chemistry
- RNA Caps/genetics
- RNA Caps/metabolism
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribosome Inactivating Proteins, Type 1/chemistry
- Ribosome Inactivating Proteins, Type 1/genetics
- Ribosome Inactivating Proteins, Type 1/metabolism
- Ribosome Inactivating Proteins, Type 1/pharmacology
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ricin/chemistry
Collapse
Affiliation(s)
- Artem V Domashevskiy
- John Jay College of Criminal Justice, Department of Sciences, City University of New York, 524 West 59th Street, New York, NY 10019, USA.
| | - Dixie J Goss
- Department of Chemistry, Hunter College, City University of New York and the Graduate Center, 695 Park Avenue, New York, NY 10065, USA.
| |
Collapse
|
15
|
Ribosome-inactivating proteins: from toxins to useful proteins. Toxicon 2013; 67:12-6. [PMID: 23462379 DOI: 10.1016/j.toxicon.2013.02.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 01/22/2013] [Accepted: 02/07/2013] [Indexed: 01/08/2023]
Abstract
Ribosome-inactivating proteins (RIPs) either single-chain (type 1) or two-chain (type 2) are frequent in plants, often in multiple forms. They are RNA N-glycosidases, have antiviral, antifungal and insecticidal activity. Their expression in plants is increased under stressful conditions. They are investigated for practical applications in medicine and in agriculture. In medicine, RIPs have been linked to, or fused with, appropriate antibodies or other carriers to form "immunotoxins" or other conjugates specifically toxic to the cells target of the carrier, with the aim of eliminating malignant or other undesired cells. In agriculture, it has been observed that an enhanced expression of RIPs confers to plants an increased resistance to viruses, fungi, insects, and also to drought and salinity.
Collapse
|
16
|
Domashevskiy AV, Miyoshi H, Goss DJ. Inhibition of pokeweed antiviral protein (PAP) by turnip mosaic virus genome-linked protein (VPg). J Biol Chem 2012; 287:29729-38. [PMID: 22773840 DOI: 10.1074/jbc.m112.367581] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pokeweed antiviral protein (PAP) from Phytolacca americana is a ribosome-inactivating protein (RIP) and an RNA N-glycosidase that removes specific purine residues from the sarcin/ricin loop of large rRNA, arresting protein synthesis at the translocation step. PAP is also a cap-binding protein and is a potent antiviral agent against many plant, animal, and human viruses. To elucidate the mechanism of RNA depurination, and to understand how PAP recognizes and targets various RNAs, the interactions between PAP and turnip mosaic virus genome-linked protein (VPg) were investigated. VPg can function as a cap analog in cap-independent translation and potentially target PAP to uncapped IRES-containing RNA. In this work, fluorescence spectroscopy and HPLC techniques were used to quantitatively describe PAP depurination activity and PAP-VPg interactions. PAP binds to VPg with high affinity (29.5 nm); the reaction is enthalpically driven and entropically favored. Further, VPg is a potent inhibitor of PAP depurination of RNA in wheat germ lysate and competes with structured RNA derived from tobacco etch virus for PAP binding. VPg may confer an evolutionary advantage by suppressing one of the plant defense mechanisms and also suggests the possible use of this protein against the cytotoxic activity of ribosome-inactivating proteins.
Collapse
Affiliation(s)
- Artem V Domashevskiy
- Department of Chemistry, Hunter College and the Graduate Center of the City University of New York, New York, NY 10065, USA
| | | | | |
Collapse
|
17
|
Parente A, Berisio R, Chambery A, Di Maro A. Type 1 Ribosome-Inactivating Proteins from the Ombú Tree (Phytolacca dioica L.). TOXIC PLANT PROTEINS 2010. [DOI: 10.1007/978-3-642-12176-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
18
|
Di Maro A, Chambery A, Carafa V, Costantini S, Colonna G, Parente A. Structural characterization and comparative modeling of PD-Ls 1–3, type 1 ribosome-inactivating proteins from summer leaves of Phytolacca dioica L. Biochimie 2009; 91:352-63. [DOI: 10.1016/j.biochi.2008.10.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 10/16/2008] [Indexed: 11/29/2022]
|
19
|
Characterization of pokeweed antiviral protein binding to mRNA cap analogs: competition with nucleotides and enhancement by translation initiation factor iso4G. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:109-16. [PMID: 18935985 DOI: 10.1016/j.bbagrm.2008.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 11/23/2022]
Abstract
Pokeweed antiviral protein (PAP) is a type I ribosomal inactivating protein (RIP). PAP binds to and depurinates the sarcin/ricin loop (SRL) of ribosomal RNA resulting in the cessation of protein synthesis. PAP has also been shown to bind to mRNA cap analogs and depurinate mRNA downstream of the cap structure. The biological role of cap binding and its possible role in PAP activity are not known. Here we show the first direct quantitative evidence for PAP binding to the cap analog m(7)GTP. We report a binding affinity of 43.3+/-0.1 nM at 25 degrees C as determined by fluorescence quenching experiments. This is similar to the values reported for wheat cap-binding proteins eIFiso4E and eIFiso4F. van't Hoff analysis of m(7)GTP-PAP equilibrium reveals a binding reaction that is enthalpy driven and entropy favored with TDeltaS degrees contributing 15% to the overall value of DeltaG degrees . This is in contrast to the wheat cap-binding proteins which are enthalpically driven in the DeltaG degrees for binding. Competition experiments indicate that ATP and GTP compete for the cap-binding site on PAP with slightly different affinities. Fluorescence studies of PAP-eIFiso4G binding reveal a protein-protein interaction with a K(d) of 108.4+/-0.3 nM. eIFiso4G was shown to enhance the interaction of PAP with m(7)GTP cap analog by 2.4-fold. These results suggest the involvement of PAP-translation initiation factor complexes in RNA selection and depurination.
Collapse
|
20
|
Jiang SY, Ramamoorthy R, Bhalla R, Luan HF, Venkatesh PN, Cai M, Ramachandran S. Genome-wide survey of the RIP domain family in Oryza sativa and their expression profiles under various abiotic and biotic stresses. PLANT MOLECULAR BIOLOGY 2008; 67:603-614. [PMID: 18493723 DOI: 10.1007/s11103-008-9342-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 04/29/2008] [Indexed: 05/26/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are N-glycosidases that inhibit protein synthesis by depurinating rRNA. Despite their identification more than 25 years ago, little is known about their biological functions. Here, we report a genome-wide identification of the RIP family in rice based on the complete genome sequence analysis. Our data show that rice genome encodes at least 31 members of this family and they all belong to type 1 RIP genes. This family might have evolved in parallel to species evolution and genome-wide duplications represent the major mechanism for this family expansion. Subsequently, we analyzed their expression under biotic (bacteria and fungus infection), abiotic (cold, drought and salinity) and the phytohormone ABA treatment. These data showed that some members of this family were expressed in various tissues with differentiated expression abundances whereas several members showed no expression under normal growth conditions or various environmental stresses. On the other hand, the expression of many RIP members was regulated by various abiotic and biotic stresses. All these data suggested that specific members of the RIP family in rice might play important roles in biotic and abiotic stress-related biological processes and function as a regulator of various environmental cues and hormone signaling. They may be potentially useful in improving plant tolerance to various abiotic and biotic stresses by over-expressing or suppressing these genes.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, 1 Research Link, The National University of Singapore, Singapore, 117604, Singapore
| | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Rajamohan F, Mao C, Uckun FM. Binding interactions between the active center cleft of recombinant pokeweed antiviral protein and the alpha-sarcin/ricin stem loop of ribosomal RNA. J Biol Chem 2001; 276:24075-81. [PMID: 11313342 DOI: 10.1074/jbc.m011406200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pokeweed antiviral protein (PAP) is a ribosome-inactivating protein that catalytically cleaves a specific adenine base from the highly conserved alpha-sarcin/ricin loop of the large ribosomal RNA, thereby inhibiting protein synthesis at the elongation step. Recently, we discovered that alanine substitutions of the active center cleft residues significantly impair the depurinating and ribosome inhibitory activity of PAP. Here we employed site-directed mutagenesis combined with standard filter binding assays, equilibrium binding assays with Scatchard analyses, and surface plasmon resonance technology to elucidate the putative role of the PAP active center cleft in the binding of PAP to the alpha-sarcin/ricin stem loop of rRNA. Our findings presented herein provide experimental evidence that besides the catalytic site, the active center cleft also participates in the binding of PAP to the target tetraloop structure of rRNA. These results extend our recent modeling studies, which predicted that the residues of the active center cleft could, via electrostatic interactions, contribute to both the correct orientation and stable binding of the substrate RNA molecules in PAP active site pocket. The insights gained from this study also explain why and how the conserved charged and polar side chains located at the active center cleft of PAP and certain catalytic site residues, that do not directly participate in the catalytic deadenylation of ribosomal RNA, play a critical role in the catalytic removal of the adenine base from target rRNA substrates by affecting the binding interactions between PAP and rRNA.
Collapse
MESH Headings
- Animals
- Binding Sites
- Endoribonucleases/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Fungal Proteins
- Models, Molecular
- Mutagenesis, Site-Directed
- N-Glycosyl Hydrolases
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Protein Binding
- RNA, Bacterial/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 28S/chemistry
- RNA, Ribosomal, 28S/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Ribosome Inactivating Proteins, Type 1
- Surface Plasmon Resonance
Collapse
Affiliation(s)
- F Rajamohan
- Biotherapy Program, Parker Hughes Cancer Center, and the Departments of Protein Engineering, Structural Biology, and Virology, Parker Hughes Institute, St. Paul, Minnesota 55113, USA.
| | | | | |
Collapse
|
23
|
Chan SH, Hung FS, Chan DS, Shaw PC. Trichosanthin interacts with acidic ribosomal proteins P0 and P1 and mitotic checkpoint protein MAD2B. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2107-12. [PMID: 11277934 DOI: 10.1046/j.1432-1327.2001.02091.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Trichosanthin is a ribosome-inactivating protein with multiple pharmacological properties. By a yeast two-hybrid system, ribosomal phosphoproteins P0 and P1 and a putative mitotic checkpoint protein, MAD2B, were found to interact with an active-site mutated trichosanthin (TCS). The interactions were verified by an in vitro binding assay of recombinant wild-type TCS and target proteins. The interaction domain of P0 was mapped to amino acids 220-273, which had been previously reported to be involved in the interaction with P1 and P2 in yeast. Consistent with our previous finding that the last seven residues of TCS are not essential for an active conformation, the same deletion did not affect the interaction with P0. Our present study suggests that TCS may disrupt the binding of elongation factors to the P-complex, in addition to the well-known N-glycosidase activity for ribosome inactivation.
Collapse
Affiliation(s)
- S H Chan
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | |
Collapse
|
24
|
Kaloyanova D, Kyurkchiev S, Xu J, Abouhaidar M, Ivanov I. Mouse monoclonal antibodies against Phytolacca americana antiviral protein PAP I. Hybridoma (Larchmt) 1999; 18:367-70. [PMID: 10571267 DOI: 10.1089/hyb.1999.18.367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Four hybridoma lines are constructed producing monoclonal antibodies against the pokeweed (Phytolacca americana) antiviral protein PAP I. Two of the antibodies, 4E8 and 5D3, are characterized in more detail. They recognize amino acid sequences rather than conformational changes and their epitopes are 65% distinct. One of these antibodies (5D3) is used to study localization of recombinant PAP I in Escherichia coli cells by immuno-gold electron microscopy.
Collapse
Affiliation(s)
- D Kaloyanova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia
| | | | | | | | | |
Collapse
|
25
|
Abstract
Methods have been described that are sufficient to determine if a bacterial protein toxin is a selective inhibitor of eukaryotic protein synthesis, and, if so, which part of the overall process is affected. More defined assays are presented for studying the steps of peptide elongation as this is where such toxins have been shown to act.
Collapse
Affiliation(s)
- T G Obrig
- Department of Microbiology and Immunology, University of Rochester, School of Medicine and Dentistry, New York 14642
| |
Collapse
|
26
|
Barbieri L, Battelli MG, Stirpe F. Ribosome-inactivating proteins from plants. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1154:237-82. [PMID: 8280743 DOI: 10.1016/0304-4157(93)90002-6] [Citation(s) in RCA: 546] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- L Barbieri
- Dipartimento di Patologia Sperimentale, Università di Bologna, Italy
| | | | | |
Collapse
|
27
|
Funatsu G, Islam MR, Minami Y, Sung-Sil K, Kimura M. Conserved amino acid residues in ribosome-inactivating proteins from plants. Biochimie 1991; 73:1157-61. [PMID: 1742358 DOI: 10.1016/0300-9084(91)90160-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The amino acid sequences of eleven RIPs sequenced to date have been compared in the expectation that this would be useful in the location of functionally and/or structurally important sites of these molecules. In addition to several highly conserved hydrophobic amino acids, thirteen absolutely conserved residues have been found in ricin A-chain: Tyr21, Phe24, Arg29, Tyr80, Tyr123, Gly140, Ala165, Glu177, Ala178, Arg180, Glu208, Asn209 and Trp211. The role of these residues as well as of the C-terminal region have been discussed based on the results of chemical and enzymatic modifications, site-directed mutagenesis, and deletion studies.
Collapse
Affiliation(s)
- G Funatsu
- Laboratory of Protein Chemistry and Engineering, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
28
|
Zarling JM, Moran PA, Haffar O, Diegel M, Myers DE, Kuelbeck V, Ledbetter JA, Uckun FM. Inhibition of HIV-1 replication in seropositive patients' CD4+ T-cells by pokeweed antiviral protein-monoclonal antibody conjugates. INTERNATIONAL JOURNAL OF IMMUNOPHARMACOLOGY 1991; 13 Suppl 1:63-8. [PMID: 1688086 DOI: 10.1016/0192-0561(91)90126-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pokeweed antiviral protein (PAP) inhibits HIV-1 replication in HIV-1 infected CD4+ cells and PAP targeted to CD4+T-cells by conjugation with monoclonal antibodies (mAb) against CD4 is approximately 1000 times more potent than non-conjugated PAP. Furthermore, PAP-antiCD4 inhibits HIV-1 production in seropositive patients' CD4+ T-cells activated with mAb to CD3 which was found to be the most potent means to activate HIV-1 production. These findings, together with previous observations that PAP-mAb conjugates have an in vivo plasma half-life of about 30 times that of non-conjugated PAP, suggest that PAP-antiCD4 may be a useful therapy in HIV-infected humans. Additionally, because PAP is known to have antiviral activity against several other human viruses, PAP-mAb conjugates may also have clinical potential for treating other viral diseases.
Collapse
Affiliation(s)
- J M Zarling
- Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, WA 98121
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Ribosome-inactivating plant toxic proteins and ADP-ribosylating microbial toxins share a common structural organization. These proteins present domains displaying different biological properties: a target cell membrane-binding component (B-subunit or haptomer) and an enzymatically active component (A-subunit or effectomer). Interactions of these toxins with the target cells are mediated by the hemilectin-like haptomer, which recognizes and specifically binds to a given glycoderivative present at the cell surface. After binding the holoprotein is internalized via endocytosis. Inside the endocytic compartment the toxin is processed to release its effectomer moiety which catalytically modifies a cytoplasmic component, and this step accounts for its toxic effect. The structural relationships between toxic hemilectins and plant lectins are discussed, with emphasis on the example of canatoxin and concanavalin A, both present in the seeds of the jack bean Canavalia ensiformis. Contrary to other plant toxic proteins, which inhibit protein synthesis, canatoxin-induced toxicity includes central nervous system-mediated effects. In vivo as well as in vitro canatoxin acts as lipoxygenase-mediated secretagogue in several types of cells: blood platelets, mast cells, pancreatic islets and synaptosomes. Elucidation of structure vs biological activity relationships of canatoxin and other toxic proteins may provide data for their utilization as pharmacological tools and as therapeutic agents.
Collapse
Affiliation(s)
- C R Carlini
- Department of Biochemistry, ICB, Universidade Federal do Rio de Janeiro, Brasil
| | | |
Collapse
|
30
|
Bolognesi A, Barbieri L, Abbondanza A, Falasca AI, Carnicelli D, Battelli MG, Stirpe F. Purification and properties of new ribosome-inactivating proteins with RNA N-glycosidase activity. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1087:293-302. [PMID: 2248976 DOI: 10.1016/0167-4781(90)90002-j] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ribosome-inactivating proteins (RIPs) similar to those already known (Stirpe & Barbieri (1986) FEBS Lett. 195, 1-8) were purified from the seeds of Asparagus officinalis (two proteins, asparin 1 and 2), of Citrullus colocynthis (two proteins, colocin 1 and 2), of Lychnis chalcedonica (lychnin) and of Manihot palmata (mapalmin), from the roots of Phytolacca americana (pokeweed antiviral protein from roots, PAP-R) and from the leaves of Bryonia dioica (bryodin-L). The two latter proteins can be considered as isoforms, respectively, of previously purified PAP, from the leaves of P. americana, and of bryodin-R, from the roots of B. dioica. All proteins have an Mr at approx, 30,000, and an alkaline isoelectric point. Bryodin-L, colocins, lychnin and mapalmin are glycoproteins. All RIPs inhibit protein synthesis by a rabbit reticulocyte lysate and phenylalanine polymerization by isolated ribosomes and alter rRNA in a similar manner as the A-chain of ricin and related toxins (Endo et al. (1987) J. Biol. Chem. 262, 5908-5912).
Collapse
Affiliation(s)
- A Bolognesi
- Dipartimento di Patologia Sperimentale, Universitá di Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies. Nature 1990; 347:92-5. [PMID: 1975641 DOI: 10.1038/347092a0] [Citation(s) in RCA: 164] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Functional impairment and selective depletion of CD4+ T cells, the hallmark of AIDS, are at least partly caused by human immunodeficiency virus (HIV-1) type 1 binding to the CD4 molecule and infecting CD4+ cells. It may, therefore, be of therapeutic value to target an antiviral agent to CD4+ cells to prevent infection and to inhibit HIV-1 production in patients' CD4+ cells which contain proviral DNA. We report here that HIV-1 replication in normal primary CD4+ T cells can be inhibited by pokeweed antiviral protein, a plant protein of relative molecular mass 30,000, which inhibits replication of certain plant RNA viruses, and of herpes simplex virus, poliovirus and influenza virus. Targeting pokeweed antiviral protein to CD4+ T cells by conjugating it to monoclonal antibodies reactive with CD5, CD7 or CD4 expressed on CD4+ cells, increased its anti-HIV potency up to 1,000-fold. HIV-1 replication is inhibited at picomolar concentrations of conjugates of pokeweed antiviral protein and monoclonal antibodies, which do not inhibit proliferation of normal CD4+ T cells or CD4-dependent responses. These conjugates inhibit HIV-1 protein synthesis and also strongly inhibit HIV-1 production in activated CD4+ T cells from infected patients.
Collapse
|
32
|
Battelli MG, Barbieri L, Stirpe F. Toxicity of, and histological lesions caused by, ribosome-inactivating proteins, their IgG-conjugates, and their homopolymers. APMIS 1990; 98:585-93. [PMID: 2397111 DOI: 10.1111/j.1699-0463.1990.tb04975.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The toxicity of, and the lesions brought about by, several ribosome-inactivating proteins (bryodin, gelonin, momordin, pokeweed antiviral protein from seeds, saporin 6, trichokirin and momorcochin-S), either native, or conjugated to bovine IgG, or polymerized, were studied in the mouse. Severe necrotic liver damage was the main lesion present in animals receiving lethal doses of the proteins. The toxicity of ribosome-inactivating proteins increased after conjugation to IgG or homopolymerization. The toxicity of conjugates to mouse was not predictable from the inhibitory activity on cell-free protein synthesis.
Collapse
Affiliation(s)
- M G Battelli
- Dipartimento di Patologia Sperimentale, Università di Bologna, Italy
| | | | | |
Collapse
|
33
|
Coombe DR, Rider CC. Lymphocyte homing receptors cloned--a role for anionic polysaccharides in lymphocyte adhesion. IMMUNOLOGY TODAY 1989; 10:289-91. [PMID: 2686676 DOI: 10.1016/0167-5699(89)90083-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
34
|
Lord J, Spooner RA, Hussain K, Roberts LM. Immunotoxins: properties, applications and current limitations. Adv Drug Deliv Rev 1988. [DOI: 10.1016/0169-409x(88)90012-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Lambert JM, Blättler WA, McIntyre GD, Goldmacher VS, Scott CF. Immunotoxins containing single-chain ribosome-inactivating proteins. Cancer Treat Res 1988; 37:175-209. [PMID: 2908625 DOI: 10.1007/978-1-4613-1083-9_12] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have summarized what is currently known about the distribution, biological role, and the mechanism of action of the single chain ribosome-inactivating proteins and described the purification of one of them, gelonin, as an example. ITs have been made with several of these proteins and, depending upon the antibody used for conjugation, these immunoconjugates can show specific in vitro cytotoxicity which is similar to that shown by equivalent ITs prepared with ricin A chain. The most potent of these conjugates have shown antitumor efficacy in a variety of animal tumor models, including both syngeneic rodent tumors and xenografts in nude or immunosuppressed mice. An important point needs to be addressed, however, before concluding that ITs containing single chain toxins will be clinically useful. A major problem with this approach is that it is likely that both the antibody and the toxin components of these conjugates will be immunogenic. Both antitoxin and antixenogenic immunoglobulin responses have been shown to occur in animals after infusion of IT, although it has not yet been clearly demonstrated that such antibody responses adversely effect the pharmacokinetics or the efficacy of immunoconjugates. Thus, preliminary enthusiasm over the efficacy of these new reagents must be tempered with the knowledge that their use in the clinic may be limited by the host immune responses or other as yet undefined factors. The fact that there are many immunologically distinct single chain ribosome-inactivating proteins does suggest one way of evading the antitoxin response, by a sequential treatment with a panel of immunoconjugates, each containing a different single chain toxin.
Collapse
|
36
|
Obrig TG, Moran TP, Brown JE. The mode of action of Shiga toxin on peptide elongation of eukaryotic protein synthesis. Biochem J 1987; 244:287-94. [PMID: 3663122 PMCID: PMC1147989 DOI: 10.1042/bj2440287] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The effect of Shiga toxin, from Shigella dysenteriae 1, on the component reactions of peptide elongation were investigated. Enzymic binding of [3H]phenylalanine-tRNA to reticulocyte ribosomes was inhibited by 50% at 7 nM toxin. Elongation factor 1 (eEF-1)-dependent GTPase activity was also inhibited. Both reactions were not restored by addition of excess eEF-1 protein. In contrast, toxin concentrations of 200 nM were required to inhibit by 50% the elongation factor 2 (eEF-2)-dependent translocation of aminoacyl-tRNA on ribosomes. Addition of excess eEF-2 restored translocation activity. The eEF-2-dependent GTPase activity was unaffected at toxin concentrations below 100 nM, and Shiga-toxin concentrations of up to 1,000 nM did not affect either GTP.eEF-2.ribosome complex-formation or peptidyltransferase activity. Thus Shiga toxin closely resembles alpha-sarcin in action, both being primary inhibitors of eEF-1-dependent reactions. In contrast, the 60 S ribosome inactivators ricin and phytolaccin are primary inhibitors of eEF-2-dependent reactions of peptide elongation.
Collapse
Affiliation(s)
- T G Obrig
- Department of Microbiology and Immunology, Albany Medical College, NY 12208
| | | | | |
Collapse
|
37
|
Brown JE, Obrig TG, Ussery MA, Moran TP. Shiga toxin from Shigella dysenteriae 1 inhibits protein synthesis in reticulocyte lysates by inactivation of aminoacyl-tRNA binding. Microb Pathog 1986; 1:325-34. [PMID: 3334156 DOI: 10.1016/0882-4010(86)90065-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inhibition of the peptide elongation cycle of eukaryotic protein synthesis by Shiga toxin from Shigella dysenteriae 1 was examined in toxin-treated reticulocyte lysate mixtures. Peptidyl transferase activity of toxin-treated ribosomes was measured by following the decrease in peptidyl-tRNA concentrations when puromycin was added after incubation with toxin. Concentrations of [3H]leucine-labeled peptidyl-tRNA were measured by extraction with cetyltrimethylammonium bromide. The data suggest that Shiga toxin inhibited aminoacyl-tRNA binding. Toxin-treated ribosomes retained peptidyl transferase activity, and toxin did not block translocation. Furthermore, no inhibition of initiation of protein synthesis could be observed. Finally, Shiga toxin had no detectable nucleolytic effect on polysomal 28S rRNA, nor was hydrolysis of 5.8S or 5S rRNA observed.
Collapse
Affiliation(s)
- J E Brown
- Department of Biological Chemistry, Walter Reed Army Institute of Research, Washington DC 20307-5100
| | | | | | | |
Collapse
|
38
|
Abstract
Ribosome-inactivating proteins (RIPs) from plants inactivate eukaryotic ribosomes, as far as studied by rendering their 60 S subunit unable to bind elongation factor 2. These proteins seem widely distributed and possibly ubiquitous in plants. They are either type 1, those consisting of a single polypeptide chain, or type 2 (ricin and related toxins), those consisting of two chains, one of which is a galactose-binding lectin. The literature on RIPs from 1982 has been reviewed with respect to the chemical and biological properties of RIPs, their use for the preparation of immunotoxins and new perspectives.
Collapse
|
39
|
|
40
|
Obrig TG, Moran TP, Colinas RJ. Ribonuclease activity associated with the 60S ribosome-inactivating proteins ricin A, phytolaccin and Shiga toxin. Biochem Biophys Res Commun 1985; 130:879-84. [PMID: 3839673 DOI: 10.1016/0006-291x(85)90498-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
All purified preparations of the ribosome-inactivating proteins ricin A, phytolaccin and Shiga toxin were shown to exhibit ribonuclease activity with 5S or 5.8S rRNA substrates. These toxin species generated reproducible patterns of RNA fragments distinct for each toxin species while multiple preparations of a single toxin species yielded similar RNA fragment patterns. The heat inactivation profile of Shiga toxin was identical for its RNase and protein synthesis inhibitory activities. These data are the first to indicate that the ribosome-inactivating catalytic toxins, in addition to alpha-sarcin, exhibit RNase activity. These results suggest RNase activity may be responsible for ribosome-inactivation catalyzed by ricin, phytolaccin and Shiga toxin proteins.
Collapse
|
41
|
Ready MP, Adams RP, Robertus JD. Dodecandrin, a new ribosome-inhibiting protein from Phytolacca dodecandra. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 791:314-9. [PMID: 6440592 DOI: 10.1016/0167-4838(84)90342-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dodecandrin, a newly discovered ribosome-inhibiting protein, has been isolated and purified from the leaves of the African endod plant, Phytolacca dodecandra. Dodecandrin has a molecular weight of approx. 29 000. It cross-reacts with antiserum prepared against pokeweed antiviral protein from Phytolacca americana and exhibits similar requirements for antiribosomal activity. It is more basic than pokeweed antiviral protein, and comparison of the first 30 amino-terminal residues of the two proteins reveals 83% homology. This level of homology is greater than that between pokeweed antiviral protein and pokeweed antiviral protein S, another antiviral protein found in P. americana. Such conservatism in sequence, coupled with the high efficiency of the proteins in deactivating ribosomes and with their abundance in plant tissue, suggests that they serve an important function in the life of the plant, probably as a defense against infection.
Collapse
|
42
|
Stirpe F, Gasperi-Campani A, Barbieri L, Falasca A, Abbondanza A, Stevens WA. Ribosome-inactivating proteins from the seeds of Saponaria officinalis L. (soapwort), of Agrostemma githago L. (corn cockle) and of Asparagus officinalis L. (asparagus), and from the latex of Hura crepitans L. (sandbox tree). Biochem J 1983; 216:617-25. [PMID: 6667259 PMCID: PMC1152554 DOI: 10.1042/bj2160617] [Citation(s) in RCA: 188] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ribosome-inactivating proteins, similar to those already known [Barbieri & Stirpe (1982) Cancer Surveys 1, 489-520] were purified from the seeds of Saponaria officinalis (two proteins), of Agrostemma githago (three proteins), and of Asparagus officinalis (three proteins), and from the latex of Hura crepitans (one protein). The yield ranged from 8 to 400 mg/100 g of starting material. All proteins have an Mr of approx. 30000 and an alkaline isoelectric point. Their sugar content varies from 0 (proteins from S. officinalis) to 40% (protein from H. crepitans). The ribosome-inactivating proteins inhibit protein synthesis by rabbit reticulocyte lysate, the ID50 (concentration giving 50% inhibition) ranging from 1 ng/ml (a protein from S. officinalis) to 18 ng/ml (a protein from A. githago). Those which were tested (the proteins from S. officinalis and from A. githago) also inhibit polymerization of phenylalanine by isolated ribosomes, acting in an apparently catalytic manner. The protein from H. crepitans inhibited protein synthesis by HeLa cells, with an ID50 of 4 micrograms/ml, whereas the proteins from S. officinalis and from A. githago had an ID50 of more than 50-100 micrograms/ml. The ribosome-inactivating proteins from S. officinalis and from A. githago reduced the number of local lesions by tobacco-mosaic virus in the leaves of Nicotiana glutinosa.
Collapse
|
43
|
Seasonal variations in different forms of pokeweed antiviral protein, a potent inactivator of ribosomes. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)44535-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
44
|
Reisbig RR, Bruland O. Dianthin 30 and 32 from Dianthus caryophyllus: two inhibitors of plant protein synthesis and their tissue distribution. Arch Biochem Biophys 1983; 224:700-6. [PMID: 6870284 DOI: 10.1016/0003-9861(83)90258-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The ability of dianthin 30 and 32 to inhibit translation in reticulocyte lysates and wheat germ extracts has been studied. The dianthins, like the A chains of the toxins abrin and ricin, inhibited protein synthesis in reticulocyte lysates by inactivating the 60S ribosomal subunit. They also inhibited, at concentrations of 10 ng/ml, a protein-synthesizing system from wheat germ and inactivated isolated wheat germ ribosomes. The concentration of the dianthins in different tissues of the plant was determined by rocket immunoelectrophoresis and by the dianthin's ability to inhibit protein synthesis. Dianthin 32 was found only in the leaves and in growing shoots, while dianthin 30 was present throughout the plant. In the older parts of the plant, the dianthins constituted between 1 and 3% of the total extractable protein whereas much less was found in the younger parts.
Collapse
|
45
|
Ready M, Bird S, Rothe G, Robertus JD. Requirements for antiribosomal activity of pokeweed antiviral protein. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 740:19-28. [PMID: 6849929 DOI: 10.1016/0167-4781(83)90116-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It has been known for some time that pokeweed antiviral protein acts by enzymatically inhibiting protein synthesis on eucaryotic ribosome systems. The site of this action is known to be the ribosome itself. In this paper we show that the pokeweed antiviral protein reaction against ribosomes is a strong function of salt concentrations, where 160 mM K+ and 3 mM Mg2+ retards the reaction, while 20 mM K+ and 2 mM Mg2+ allows maximum reaction rate. It is also shown, however, that an unidentified protein in the postribosomal supernatant solution, together with ATP, allows the ribosome to be attacked even in the presence of high salt. Kinetic analysis of the antiviral protein reaction has been carried out under both sets of conditions, and reveals that the turnover number for the enzyme is about 300-400 mol/mol per min. in each case. The Km for ribosomes is 1 microM in the presence of low salt and 0.2 microM at higher salt in the presence of postribosomal supernatant factors plus ATP. The antiviral protein reaction is also shown to be pH dependent and is controlled by a residue with pKa value of approx. 7.0, apparently a histidine. Stoichiometric reaction of the enzyme with iodoacetamide results in a significant loss of antiribosomal activity.
Collapse
|
46
|
Teltow GJ, Irvin JD, Aron GM. Inhibition of herpes simplex virus DNA synthesis by pokeweed antiviral protein. Antimicrob Agents Chemother 1983; 23:390-6. [PMID: 6303210 PMCID: PMC184658 DOI: 10.1128/aac.23.3.390] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Pokeweed antiviral protein at a concentration of 3 microM inhibited both the synthesis and release of infectious herpes simplex virus type 1 in cell culture by 90 and 99%, respectively. Addition of pokeweed antiviral protein to Vero cell monolayers before virus infection was 10 to 15% more effective in reducing virus yields than was the simultaneous addition of the antiviral protein with virus inoculum. Viral DNA synthesis was inhibited by 90% in cells which had been exposed to the antiviral protein, whereas cellular DNA synthesis was unaffected. No significant inhibition in the synthesis of the majority of viral infected-cell polypeptides was observed early postinfection (7 h), with the exception of infected cell polypeptides 4 and 41, whose syntheses were reduced by 38 and 25%, respectively. At 9 to 21 h postinfection, however, the synthesis of individual infected cell polypeptides was reduced by 48 to greater than 99%.
Collapse
|
47
|
|
48
|
Abstract
Although the use of conjugates of enzymes has been considered, their use has not been very actively pursued. Much more interest has focused on the possibilities offered by the use of toxins, their subunits or of ribosome inhibitors. Conjugates of holotoxin which were very active and specific in vitro have been prepared. High in vivo activity and some specificity together with reduced whole body toxicity has been described. When A chain subunits or ribosome inhibiting proteins are used, the results are more mixed. Some very active and specific conjugates are known but others have relatively low activity. The reasons for this may be associated with the particular antigen to which the antibody component is directed, the nature of the A chain or inhibitor and the type and physiological state of the target cell. Application to man seems likely in the first instance to involve the removal of undesirable cells from bone marrow transplants.
Collapse
|
49
|
Foà-Tomasi L, Campadelli-Fiume G, Barbieri L, Stirpe F. Effect of ribosome-inactivating proteins on virus-infected cells. Inhibition of virus multiplication and of protein synthesis. Arch Virol 1982; 71:323-32. [PMID: 6284092 DOI: 10.1007/bf01315062] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
HEp-2 cells were infected with herpes simplex virus-1 (HSV-1) or with polio-virus I in the presence of plant proteins which inactivate ribosomes in cell-free systems, while exerting scarce effect on whole cells. Ribosome-inactivating proteins used were gelonin, from seeds of Gelonium multiflorum, an inhibitor from the seeds of Momordica charantia, dianthin 32, from the leaves of Dianthus caryophyllus (carnation), and PAP-S, from the seeds of Phytolacca americana (pokeweed). All proteins tested had the following effects: 1. They reduced viral yield; 2. They decreased HSV-1 plaque-forming efficiency; 3. They inhibited protein synthesis more in infected than in uninfected cells. These results strongly suggest that ribosome-inactivating proteins impair viral replication by inhibiting protein synthesis in virus-infected cells, in which presumably they enter more easily than in uninfected cells.
Collapse
|
50
|
Falasca A, Gasperi-Campani A, Abbondanza A, Barbieri L, Stirpe F. Properties of the ribosome-inactivating proteins gelonin, Momordica charantia inhibitor, and dianthins. Biochem J 1982; 207:505-9. [PMID: 6819861 PMCID: PMC1153890 DOI: 10.1042/bj2070505] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The amino acid and sugar compositions of four ribosome-inactivating proteins (gelonin, Momordica charantia inhibitor, dianthin 30 and dianthin 32) were determined. The proteins are all basic glycoproteins (pI greater than 8) containing mannose (more abundant in gelonin), glucose, xylose, fucose (absent from gelonin) and glucosamine. The ribosome-inactivating properties of the proteins examined are not modified by pretreatment with N-ethylmaleimide. Precipitating and inactivating antibodies can be raised against ribosome-inactivating proteins; a weak cross-reaction was observed only between dianthin 30 and dianthin 32.
Collapse
|