1
|
Kondo M, Matsuda H, Noji T, Nango M, Dewa T. Photocatalytic activity of the light-harvesting complex of photosystem II (LHCII) monomer. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
2
|
Tietz S, Leuenberger M, Höhner R, Olson AH, Fleming GR, Kirchhoff H. A proteoliposome-based system reveals how lipids control photosynthetic light harvesting. J Biol Chem 2020; 295:1857-1866. [PMID: 31929108 DOI: 10.1074/jbc.ra119.011707] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/09/2020] [Indexed: 11/06/2022] Open
Abstract
Integral membrane proteins are exposed to a complex and dynamic lipid environment modulated by nonbilayer lipids that can influence protein functions by lipid-protein interactions. The nonbilayer lipid monogalactosyldiacylglycerol (MGDG) is the most abundant lipid in plant photosynthetic thylakoid membranes, but its impact on the functionality of energy-converting membrane protein complexes is unknown. Here, we optimized a detergent-based reconstitution protocol to develop a proteoliposome technique that incorporates the major light-harvesting complex II (LHCII) into compositionally well-defined large unilamellar lipid bilayer vesicles to study the impact of MGDG on light harvesting by LHCII. Using steady-state fluorescence spectroscopy, CD spectroscopy, and time-correlated single-photon counting, we found that both chlorophyll fluorescence quantum yields and fluorescence lifetimes clearly indicate that the presence of MGDG in lipid bilayers switches LHCII from a light-harvesting to a more energy-quenching mode that dissipates harvested light into heat. It is hypothesized that in the in vitro system developed here, MGDG controls light harvesting of LHCII by modulating the hydrostatic lateral membrane pressure profile in the lipid bilayer sensed by LHCII-bound peripheral pigments.
Collapse
Affiliation(s)
- Stefanie Tietz
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, 99164-6340
| | - Michelle Leuenberger
- Department of Chemistry, University of California, Berkeley, California 94720; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Ricarda Höhner
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, 99164-6340
| | - Alice H Olson
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, 99164-6340
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, California 94720; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, 99164-6340.
| |
Collapse
|
3
|
Yokono M, Takabayashi A, Kishimoto J, Fujita T, Iwai M, Murakami A, Akimoto S, Tanaka A. The PSI-PSII Megacomplex in Green Plants. PLANT & CELL PHYSIOLOGY 2019; 60:1098-1108. [PMID: 30753722 DOI: 10.1093/pcp/pcz026] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 02/04/2019] [Indexed: 05/27/2023]
Abstract
Energy dissipation is crucial for land and shallow-water plants exposed to direct sunlight. Almost all green plants dissipate excess excitation energy to protect the photosystem reaction centers, photosystem II (PSII) and photosystem I (PSI), and continue to grow under strong light. In our previous work, we reported that about half of the photosystem reaction centers form a PSI-PSII megacomplex in Arabidopsis thaliana, and that the excess energy was transferred from PSII to PSI fast. However, the physiological function and structure of the megacomplex remained unclear. Here, we suggest that high-light adaptable sun-plants accumulate the PSI-PSII megacomplex more than shade-plants. In addition, PSI of sun-plants has a deep trap to receive excitation energy, which is low-energy chlorophylls showing fluorescence maxima longer than 730 nm. This deep trap may increase the high-light tolerance of PSI by improving excitation energy dissipation. Electron micrographs suggest that one PSII dimer is directly sandwiched between two PSIs with 2-fold rotational symmetry in the basic form of the PSI-PSII megacomplex in green plants. This structure should enable fast energy transfer from PSII to PSI and allow energy in PSII to be dissipated via the deep trap in PSI.
Collapse
Affiliation(s)
- Makio Yokono
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- CREST, JST, Sapporo, Japan
- Nippon Flour Mills Co., Ltd., Innovation Center, Atsugi, Japan
| | - Atsushi Takabayashi
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- CREST, JST, Sapporo, Japan
| | - Junko Kishimoto
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- CREST, JST, Sapporo, Japan
| | - Tomomichi Fujita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Masakazu Iwai
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Akio Murakami
- Kobe University Research Centre for Inland Seas, Awaji, Japan
- Graduate School of Science, Kobe University, Kobe, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- CREST, JST, Sapporo, Japan
| |
Collapse
|
4
|
Röding A, Boekema E, Büchel C. The structure of FCPb, a light-harvesting complex in the diatom Cyclotella meneghiniana. PHOTOSYNTHESIS RESEARCH 2018; 135:203-211. [PMID: 28039566 DOI: 10.1007/s11120-016-0328-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
Diatoms possess fucoxanthin chlorophyll proteins (FCP) as light-harvesting systems. These membrane intrinsic proteins bind fucoxanthin as major carotenoid and Chl c as accessory chlorophyll. The relatively high sequence homology to higher plant light-harvesting complex II gave rise to the assumption of a similar overall structure. From centric diatoms like Cyclotella meneghiniana, however, two major FCP complexes can be isolated. FCPa, composed of Fcp2 and Fcp6 subunits, was demonstrated to be trimeric, whereas FCPb, known to contain Fcp5 polypeptides, is of higher oligomeric state. No molecular structure of either complex is available so far. Here we used electron microscopy and single particle analysis to elucidate the overall architecture of FCPb. The complexes are built from trimers as basic unit, assembling into nonameric moieties. The trimer itself is smaller, i.e. more compact than LHCII, but the main structural features are conserved.
Collapse
Affiliation(s)
- Anja Röding
- Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - Egbert Boekema
- Department of Electron Microscopy, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Claudia Büchel
- Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany.
| |
Collapse
|
5
|
Allen JF. Why we need to know the structure of phosphorylated chloroplast light-harvesting complex II. PHYSIOLOGIA PLANTARUM 2017; 161:28-44. [PMID: 28393369 DOI: 10.1111/ppl.12577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/27/2017] [Accepted: 03/07/2017] [Indexed: 05/11/2023]
Abstract
In oxygenic photosynthesis there are two 'light states' - adaptations of the photosynthetic apparatus to spectral composition that otherwise favours either photosystem I or photosystem II. In chloroplasts of green plants the transition to light state 2 depends on phosphorylation of apoproteins of a membrane-intrinsic antenna, the chlorophyll-a/b-binding, light-harvesting complex II (LHC II), and on the resulting redistribution of absorbed excitation energy from photosystem II to photosystem I. The transition to light state 1 reverses these events and requires a phospho-LHC II phosphatase. Current structures of LHC II reveal little about possible steric effects of phosphorylation. The surface-exposed N-terminal domain of an LHC II polypeptide contains its phosphorylation site and is disordered in its unphosphorylated form. A molecular recognition hypothesis proposes that state transitions are a consequence of movement of LHC II between binding sites on photosystems I and II. In state 1, LHC II forms part of the antenna of photosystem II. In state 2, a unique but as yet unidentified 3-D structure of phospho-LHC II may attach it instead to photosystem I. One possibility is that the LHC II N-terminus becomes ordered upon phosphorylation, adopting a local alpha-helical secondary structure that initiates changes in LHC II tertiary and quaternary structure that sever contact with photosystem II while securing contact with photosystem I. In order to understand redistribution of absorbed excitation energy in photosynthesis we need to know the structure of LHC II in its phosphorylated form, and in its complex with photosystem I.
Collapse
Affiliation(s)
- John F Allen
- Research Department of Genetics, Evolution and Environment, Darwin Building, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
6
|
Yim D, Sung J, Kim S, Oh J, Yoon H, Sung YM, Kim D, Jang WD. Guest-Induced Modulation of the Energy Transfer Process in Porphyrin-Based Artificial Light Harvesting Dendrimers. J Am Chem Soc 2016; 139:993-1002. [DOI: 10.1021/jacs.6b11804] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Dajeong Yim
- Department of Chemistry, Yonsei University , 50 Yonsei-ro, Seodaemoon-Gu, Seoul 120-749, Korea
| | - Jooyoung Sung
- Department of Chemistry, Yonsei University , 50 Yonsei-ro, Seodaemoon-Gu, Seoul 120-749, Korea
| | - Serom Kim
- Department of Chemistry, Yonsei University , 50 Yonsei-ro, Seodaemoon-Gu, Seoul 120-749, Korea
| | - Juwon Oh
- Department of Chemistry, Yonsei University , 50 Yonsei-ro, Seodaemoon-Gu, Seoul 120-749, Korea
| | - Hongsik Yoon
- Department of Chemistry, Yonsei University , 50 Yonsei-ro, Seodaemoon-Gu, Seoul 120-749, Korea
| | - Young Mo Sung
- Department of Chemistry, Yonsei University , 50 Yonsei-ro, Seodaemoon-Gu, Seoul 120-749, Korea
| | - Dongho Kim
- Department of Chemistry, Yonsei University , 50 Yonsei-ro, Seodaemoon-Gu, Seoul 120-749, Korea
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University , 50 Yonsei-ro, Seodaemoon-Gu, Seoul 120-749, Korea
| |
Collapse
|
7
|
Effects of lead on two green microalgae Chlorella and Scenedesmus: photosystem II activity and heterogeneity. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Self-assembly of the light-harvesting complex of photosystem II (LHCII) on alkanethiol-modified gold electrodes. RESEARCH ON CHEMICAL INTERMEDIATES 2014. [DOI: 10.1007/s11164-014-1822-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Yu D, Huang G, Xu F, Wang M, Liu S, Huang F. Triton X-100 as an effective surfactant for the isolation and purification of photosystem I from Arthrospira platensis. PHOTOSYNTHESIS RESEARCH 2014; 120:311-321. [PMID: 24599394 DOI: 10.1007/s11120-014-9988-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 02/17/2014] [Indexed: 06/03/2023]
Abstract
Surfactants play important roles in the preparation, structural, and functional research of membrane proteins, and solubilizing and isolating membrane protein, while keeping their structural integrity and activity intact is complicated. The commercial n-Dodecyl-β-D-maltoside (DDM) and Triton X-100 (TX) were used as solubilizers to extract and purify trimeric photosystem I (PSI) complex, an important photosynthetic membrane protein complex attracting broad interests. With an optimized procedure, TX can be used as an effective surfactant to isolate and purify PSI, as a replace of the much more expensive DDM. A mechanism was proposed to interpret the solubilization process at surfactant concentrations lower than the critical solubilization concentration. PSI-TX and PSI-DDM had identical polypeptide bands, pigment compositions, oxygen consumption, and photocurrent activities. This provides an alternative procedure and paves a way for economical and large-scale trimeric PSI preparation.
Collapse
Affiliation(s)
- Daoyong Yu
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China,
| | | | | | | | | | | |
Collapse
|
10
|
Shepanski JF, Knox RS. Circular Dichroism and Other Optical Properties of Antenna Chlorophyll Proteins from Higher Plants. Isr J Chem 2013. [DOI: 10.1002/ijch.198100059] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Khanna R, Rajan S, Steinback KE, Bose S, Govindjee, Gutowsky HS. ESR and NMR Studies on the Effects of Magnesium Ion on Chloroplast Manganese. Isr J Chem 2013. [DOI: 10.1002/ijch.198100053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Müh F, Renger T. Refined structure-based simulation of plant light-harvesting complex II: linear optical spectra of trimers and aggregates. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1446-60. [PMID: 22387396 DOI: 10.1016/j.bbabio.2012.02.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 02/09/2012] [Accepted: 02/15/2012] [Indexed: 11/27/2022]
Abstract
Linear optical spectra of solubilized trimers and small lamellar aggregates of the major light-harvesting complex II (LHCII) of higher plants are simulated employing excitonic couplings and site energies of chlorophylls (Chls) computed on the basis of the two crystal structures by a combined quantum chemical/electrostatic approach. A good agreement between simulation and experiment is achieved (except for the circular dichroism in the Chl b region), if vibronic transitions of Chls are taken into account. Site energies are further optimized by refinement fits of optical spectra. The differences between refined and directly calculated values are not significant enough to decide, whether the crystal structures are closer to trimers or aggregates. Changes in the linear dichroism spectrum upon aggregation are related to site energy shifts of Chls b601, b607, a603, a610, and a613, and are interpreted in terms of conformational changes of violaxanthin and the two luteins involving their ionone rings. Chl a610 is the energy sink at 77K in both conformations. An analysis of absorption spectra of trimers perpendicular and parallel to the C(3)-axis (van Amerongen et al. Biophys. J. 67 (1994) 837-847) shows that only Chl a604 close to neoxanthin is significantly reoriented in trimers compared to the crystal structures. Whether this pigment is orientated in aggregates as in the crystal structures, can presently not be determined faithfully. To finally decide about pigment reorientations that could be of relevance for non-photochemical quenching, further polarized absorption and fluorescence measurements of aggregates or detergent-depleted LHCII would be helpful. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Frank Müh
- Johannes Kepler Universitat Linz, Linz, Austria.
| | | |
Collapse
|
13
|
Schaller S, Latowski D, Jemioła-Rzemińska M, Dawood A, Wilhelm C, Strzałka K, Goss R. Regulation of LHCII aggregation by different thylakoid membrane lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:326-35. [PMID: 21215252 DOI: 10.1016/j.bbabio.2010.12.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 12/06/2010] [Accepted: 12/29/2010] [Indexed: 10/18/2022]
Abstract
In the present study the influence of the lipid environment on the organization of the main light-harvesting complex of photosystem II (LHCII) was investigated by 77K fluorescence spectroscopy. Measurements were carried out with a lipid-depleted and highly aggregated LHCII which was supplemented with the different thylakoid membrane lipids. The results show that the thylakoid lipids are able to modulate the spectroscopic properties of the LHCII aggregates and that the extent of the lipid effect depends on both the lipid species and the lipid concentration. Addition of the neutral galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) seems to induce a modification of the disorganized structures of the lipid-depleted LHCII and to support the aggregated state of the complex. In contrast, we found that the anionic lipids sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) exert a strong disaggregating effect on the isolated LHCII. LHCII disaggregation was partly suppressed under a high proton concentration and in the presence of cations. The strongest suppression was visible at the lowest pH value (pH 5) and the highest Mg(2+) concentration (40 mM) used in the present study. This suggests that the negative charge of the anionic lipids in conjunction with negatively charged domains of the LHCII proteins is responsible for the disaggregation. Additional measurements by photon correlation spectroscopy and sucrose gradient centrifugation, which were used to gain information about the size and molecular mass of the LHCII aggregates, confirmed the results of the fluorescence spectroscopy. LHCII treated with MGDG and DGDG formed an increased number of aggregates with large particle sizes in the micromm-range, whereas the incubation with anionic lipids led to much smaller LHCII particles (around 40 nm in the case of PG) with a homogeneous distribution.
Collapse
Affiliation(s)
- Susann Schaller
- Institute of Biology I, Plant Physiology, University of Leipzig, Johannisallee 21-23, 04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Müh F, Madjet MEA, Renger T. Structure-Based Identification of Energy Sinks in Plant Light-Harvesting Complex II. J Phys Chem B 2010; 114:13517-35. [DOI: 10.1021/jp106323e] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Frank Müh
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 36a, D-14195 Berlin, Germany, and Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Str. 69, 4040 Linz, Austria
| | - Mohamed El-Amine Madjet
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 36a, D-14195 Berlin, Germany, and Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Str. 69, 4040 Linz, Austria
| | - Thomas Renger
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 36a, D-14195 Berlin, Germany, and Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Str. 69, 4040 Linz, Austria
| |
Collapse
|
15
|
Liao PN, Bode S, Wilk L, Hafi N, Walla PJ. Correlation of electronic carotenoid–chlorophyll interactions and fluorescence quenching with the aggregation of native LHC II and chlorophyll deficient mutants. Chem Phys 2010. [DOI: 10.1016/j.chemphys.2010.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Steinback KE, McIntosh L, Bogorad L, Arntzen CJ. Identification of the triazine receptor protein as a chloroplast gene product. Proc Natl Acad Sci U S A 2010; 78:7463-7. [PMID: 16593133 PMCID: PMC349288 DOI: 10.1073/pnas.78.12.7463] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The triazine herbicides inhibit photosynthesis by blocking electron transport at the second stable electron acceptor of photosystem II. This electron transport component of chloroplast thylakoid membranes is a protein-plastoquinone complex termed "B." The polypeptide that is believed to be a component of the B complex has recently been identified as a 32- to 34-kilo-dalton polypeptide by using a photoaffinity labeling probe, azido-[(14)C]atrazine. A 34-kilodalton polypeptide of pea chloroplasts rapidly incorporates [(35)S]methionine in vivo and is also a rapidly labeled product of chloroplast-directed protein synthesis. Trypsin treatment of membranes tagged with azido-[(14)C]atrazine, [(35)S]methionine in vivo, or [(35)S]methionine in isolated intact chloroplasts results in identical, sequential alterations of the 34-kilo-dalton polypeptide to species of 32, then 18 and 16 kilodaltons. From the identical pattern of susceptibility to trypsin we conclude that the rapidly synthesized 34-kilodalton polypeptide that is a product of chloroplast-directed protein synthesis is identical to the triazine herbicide-binding protein of photosystem II. Chloroplasts of both triazine-susceptible and triazine-resistant biotypes of Amaranthus hybridus synthesize the 34-kilodalton polypeptide, but that of the resistant biotype does not bind the herbicide.
Collapse
Affiliation(s)
- K E Steinback
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | | | | | | |
Collapse
|
17
|
Butler PJ, Kühlbrandt W. Determination of the aggregate size in detergent solution of the light-harvesting chlorophyll a/b-protein complex from chloroplast membranes. Proc Natl Acad Sci U S A 2010; 85:3797-801. [PMID: 16593931 PMCID: PMC280306 DOI: 10.1073/pnas.85.11.3797] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular mass of an oligomeric integral membrane protein, the light-harvesting chlorophyll a/b-protein complex from the photosynthetic membranes of chloroplasts, has been determined in detergent solution by analytical ultracentrifugation and measurement of the density increment at constant chemical potential of all diffusible solutes. The technique used eliminates any problems resulting from detergent binding to the protein, is independent of the particular detergent used (in this case the nonionic n-octyl beta-D-glucopyranoside), and gives the apparent weight-average molecular mass at different protein concentrations, allowing extrapolation to zero concentration. It means that the solutions of the complex must be brought to dialysis equilibrium with the solvent detergent solution and also requires a reliable method for measuring the protein concentration, for which amino acid analysis was used. The detergent-solubilized complex was a trimer that dissociated into monomers and dimers at low protein concentration. The accurate concentration determinations also allowed the molar chlorophyll-to-protein ratio to be measured as 15, corresponding to 8 chlorophyll a and 7 chlorophyll b molecules.
Collapse
Affiliation(s)
- P J Butler
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England
| | | |
Collapse
|
18
|
Pfister K, Steinback KE, Gardner G, Arntzen CJ. Photoaffinity labeling of an herbicide receptor protein in chloroplast membranes. Proc Natl Acad Sci U S A 2010; 78:981-5. [PMID: 16592984 PMCID: PMC319929 DOI: 10.1073/pnas.78.2.981] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
2-Azido-4-ethylamino-6-isopropylamino-s-triazine (azido-atrazine) inhibits photosynthetic electron transport at a site identical to that affected by atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine). The latter is a well-characterized inhibitor of photosystem II reactions. Azido-atrazine was used as a photoaffinity label to identify the herbicide receptor protein; UV irradiation of chloroplast thylakoids in the presence of azido[(14)C]atrazine resulted in the covalent attachment of radioactive inhibitor to thylakoid membranes isolated from pea seedlings and from a triazine-susceptible biotype of the weed Amaranthus hybridus. No covalent binding of azido-atrazine was observed for thylakoid membranes isolated from a naturally occurring triazine-resistant biotype of A. hybridus. Analysis of thylakoid polypeptides from both the susceptible and resistant A. hybridus biotypes by sodium dodecyl sulfate/polyacrylamide gel electrophoresis, followed by fluorography to locate (14)C label, demonstrated specific association of the azido[(14)C]atrazine with polypeptides of the 34- to 32-kilodalton size class in susceptible but not in resistant membranes.
Collapse
Affiliation(s)
- K Pfister
- United States Department of Agriculture/Science and Education Administration/Agricultural Research, Department of Botany, University of Illinois, Urbana, Illinois 61801
| | | | | | | |
Collapse
|
19
|
Li J. Light-harvesting chlorophyll a/b-protein: Three-dimensional structure of a reconstituted membrane lattice in negative stain. Proc Natl Acad Sci U S A 2010; 82:386-90. [PMID: 16593535 PMCID: PMC397043 DOI: 10.1073/pnas.82.2.386] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The three-dimensional structure of a negatively stained hexagonal membrane lattice containing the light-harvesting chlorophyll a/b-protein complex and phospholipids has been determined to 30-A resolution by image reconstruction from electron micrographs. This lattice has p321 symmetry, a lattice constant of 125 A and a thickness of 75 A. The monomer is shown to be an elongated molecule about 65 A long in the dimension perpendicular to the plane of the membrane. It spans the hydrophobic domain of the membrane in an asymmetric fashion, projecting [unk]20 A from one surface and less from the other. On the basis of this image and available biochemical data, the structure of the complex in the native thylakoid membrane is proposed.
Collapse
Affiliation(s)
- J Li
- Department of Biochemistry, Columbia University, New York, NY 10032
| |
Collapse
|
20
|
Arntzen CJ, Ditto CL, Brewer PE. Chloroplast membrane alterations in triazine-resistant Amaranthus retroflexus biotypes. Proc Natl Acad Sci U S A 2010; 76:278-82. [PMID: 16592608 PMCID: PMC382922 DOI: 10.1073/pnas.76.1.278] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effectiveness of diuron, atrazine, procyazine, and cyanazine were compared in controlling growth of redroot pigweed (Amaranthus retroflexus L.) in hydroponic culture. A very marked differential inhibition response was observed for atrazine between resistant and susceptible biotypes. Procyazine and cyanazine exhibited less dramatic differential responses, whereas diuron was equally effective in controlling growth in both biotypes. Photosystem II activity of chloroplasts from both triazine-resistant and triazine-susceptible biotypes was inhibited by diuron but only the chloroplasts from triazine-susceptible biotypes were inhibited significantly by atrazine. The photochemical activity of chloroplasts from triazine-resistant biotypes was partially resistant to procyazine or cyanazine inhibition. The parallel lack of diuron differential effects, partial procyazine and cyanazine differential response, and very marked atrazine differential response in both whole plant and chloroplast assays indicates that the chloroplast is the site of selective herbicide tolerance in these triazine-resistant redroot pigweed biotypes.Photosystem II photochemical properties were characterized by analysis of chlorophyll fluorescence transients in the presence or absence of herbicides. Data with susceptible chloroplasts indicated that both diuron and atrazine inhibit electron flow very near the primary electron acceptor of photosystem II. Only diuron altered the fluorescence transient in resistant chloroplasts. In untreated preparations there were marked differences in the fast phases of the fluorescence increase in resistant vs. susceptible chloroplasts; these data are interpreted as showing that the resistant plastids have an alteration in the rate of reoxidation of the primary photosystem II electron acceptor. Electrophoretic analysis of chloroplast membrane proteins of the two biotypes showed small changes in the electrophoretic mobilities of two polypeptide species. The data provide evidence for the following herbicide resistance mechanism: genetically controlled modification of the herbicide target site.
Collapse
Affiliation(s)
- C J Arntzen
- U.S Department of Agriculture/SEA, University of Illinois, Urbana, Illinois 61801
| | | | | |
Collapse
|
21
|
Mashkina EV, Usatov AV, Skorina MV. Comparative analysis of thermotolerance of sunflower chlorophyll mutants. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410020079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Barros T, Royant A, Standfuss J, Dreuw A, Kühlbrandt W. Crystal structure of plant light-harvesting complex shows the active, energy-transmitting state. EMBO J 2009; 28:298-306. [PMID: 19131972 PMCID: PMC2637333 DOI: 10.1038/emboj.2008.276] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 12/03/2008] [Indexed: 11/08/2022] Open
Abstract
Plants dissipate excess excitation energy as heat by non-photochemical quenching (NPQ). NPQ has been thought to resemble in vitro aggregation quenching of the major antenna complex, light harvesting complex of photosystem II (LHC-II). Both processes are widely believed to involve a conformational change that creates a quenching centre of two neighbouring pigments within the complex. Using recombinant LHC-II lacking the pigments implicated in quenching, we show that they have no particular role. Single crystals of LHC-II emit strong, orientation-dependent fluorescence with an emission maximum at 680 nm. The average lifetime of the main 680 nm crystal emission at 100 K is 1.31 ns, but only 0.39 ns for LHC-II aggregates under identical conditions. The strong emission and comparatively long fluorescence lifetimes of single LHC-II crystals indicate that the complex is unquenched, and that therefore the crystal structure shows the active, energy-transmitting state of LHC-II. We conclude that quenching of excitation energy in the light-harvesting antenna is due to the molecular interaction with external pigments in vitro or other pigment-protein complexes such as PsbS in vivo, and does not require a conformational change within the complex.
Collapse
Affiliation(s)
- Tiago Barros
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Antoine Royant
- Laboratoire de Cristallogenèse et Cristallographie des Protéines, Institut de Biologie Structurale J-P Ebel, UMR 5075 CNRS–CEA–UJF, Grenoble, France
- European Synchrotron Radiation Facility, Grenoble, France
| | - Jörg Standfuss
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Andreas Dreuw
- Institute for Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
23
|
Ishigure S, Okuda A, Fujii K, Maki Y, Nango M, Amao Y. Photoinduced Hydrogen Production with a Platinum Nanoparticle and Light-Harvesting Chlorophylla/b–Protein Complex of Photosystem II (LHCII) fromSpinachSystem. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2009. [DOI: 10.1246/bcsj.82.93] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Fey H, Piano D, Horn R, Fischer D, Schmidt M, Ruf S, Schröder WP, Bock R, Büchel C. Isolation of highly active photosystem II core complexes with a His-tagged Cyt b559 subunit from transplastomic tobacco plants. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1777:1501-9. [PMID: 18973745 DOI: 10.1016/j.bbabio.2008.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 09/25/2008] [Accepted: 09/26/2008] [Indexed: 10/21/2022]
Abstract
Photosystem II (PSII) is a huge multi-protein-complex consisting, in higher plants and green algae, of the PS II core and the adjacent light harvesting proteins. In the study reported here, N-terminal His-tags were added to the plastome-encoded alpha-subunit of cytochrome b559, PsbE, in tobacco plants, thus facilitating rapid, mild purification of higher plant PSII. Biolistic chloroplast transformation was used to replace the wildtype psbE gene by His-tagged counterparts. Transgenic plants did not exhibit an obvious phenotype. However, the oxygen evolution capacity of thylakoids prepared from the mutants compared to the wildtype was reduced by 10-30% depending on the length of the His-tag, although Fv/Fm values differed only slightly. Homoplasmic F1 plants were used to isolate PSII cores complexes. The cores contained no detectable traces of LHC or PsaA/B polypeptides, but the main core subunits of PSII could be identified using immunodetection and mass spectroscopy. In addition, Psb27 and PsbS were detected. The presence of the former was presumably due to the preparation method, since PSII complexes located in the stroma are also isolated. In contrast to previous reports, PsbS was solely found as a monomer on SDS-PAGE in the PSII core complexes of tobacco.
Collapse
Affiliation(s)
- Holger Fey
- Institute of Molecular Biosciences, University of Frankfurt, Siesmayerstr. 70, D60323 Frankfurt, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
DAINESE PAOLA, HOYER-HANSEN GUNILLA, BASSI ROBERTO. THE RESOLUTION OF CHLOROPHYLLa/bBINDING PROTEINS BY A PREPARATIVE METHOD BASED ON FLAT BED ISOELECTRIC FOCUSING. Photochem Photobiol 2008; 51:693-703. [DOI: 10.1111/php.1990.51.6.693] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/1989] [Accepted: 01/16/1990] [Indexed: 11/30/2022]
|
27
|
Bode S, Quentmeier CC, Liao PN, Barros T, Walla PJ. Xanthophyll-cycle dependence of the energy transfer between carotenoid dark states and chlorophylls in NPQ mutants of living plants and in LHC II. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2007.11.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Amarie S, Standfuss J, Barros T, Kühlbrandt W, Dreuw A, Wachtveitl J. Carotenoid radical cations as a probe for the molecular mechanism of nonphotochemical quenching in oxygenic photosynthesis. J Phys Chem B 2007; 111:3481-7. [PMID: 17388511 DOI: 10.1021/jp066458q] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonphotochemical quenching (NPQ) is a fundamental mechanism in photosynthesis which protects plants against excess excitation energy and is of crucial importance for their survival and fitness. Recently, carotenoid radical cation (Car*+) formation has been discovered to be a key step for the feedback deexcitation quenching mechanism (qE), a component of NPQ, of which the molecular mechanism and location is still unknown. We have generated and characterized carotenoid radical cations by means of resonant two color, two photon ionization (R2C2PI) spectroscopy. The Car*+ bands have maxima located at 830 nm (violaxanthin), 880 nm (lutein), 900 nm (zeaxanthin), and 920 nm (beta-carotene). The positions of these maxima depend strongly on solution conditions, the number of conjugated C=C bonds, and molecular structure. Furthermore, R2C2PI measurements on the light-harvesting complex of photosystem II (LHC II) samples with or without zeaxanthin (Zea) reveal the violaxanthin (Vio) radical cation (Vio*+) band at 909 nm and the Zea*+ band at 983 nm. The replacement of Vio by Zea in the light-harvesting complex II (LHC II) has no influence on the Chl excitation lifetime, and by exciting the Chls lowest excited state, no additional rise and decay corresponding to the Car*+ signal observed previously during qE was detected in the spectral range investigated (800-1050 nm). On the basis of our findings, the mechanism of qE involving the simple replacement of Vio with Zea in LHC II needs to be reconsidered.
Collapse
Affiliation(s)
- Sergiu Amarie
- Institute for Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University-Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
29
|
O'Neill H, Heller WT, Helton KE, Urban VS, Greenbaum E. Small-Angle X-ray Scattering Study of Photosystem I−Detergent Complexes: Implications for Membrane Protein Crystallization. J Phys Chem B 2007; 111:4211-9. [PMID: 17391018 DOI: 10.1021/jp067463x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small-angle X-ray scattering (SAXS) was used to investigate the structure of isolated photosystem I (PSI) complexes stabilized in detergent solution. Two different types of PSI preparation were investigated. In the first preparation, thylakoid membranes were solubilized with Triton X100 and purified by density gradient centrifugation. SAXS data indicated large scattering objects or microphases that can be described as sheets with approximately 68 A thickness and a virtually infinite lateral extension. The observed thickness agreed well with the dimension of a PSI molecule across the thylakoid membrane. In the second preparation, PSI was isolated as before but was further purified by anion exchange chromatography resulting in functional complexes consisting of single PSI units with attached surfactant as evidenced by the particle volume and gyration radius extracted from the SAXS data. Several approaches were used to model the solution conformation of the complex. Three different ellipsoidal modeling approaches, a uniform density ellipsoid of revolution, a triaxial solid ellipsoid, and a core-shell model, found extended structures with dimensions that were not consistent with the PSI crystal structure (Ben-Shem, A.; et al. Nature 2003, 426, 630-635). Additionally, the SAXS data could not be modeled using the crystal structure embedded in a disk of detergent. The final approach considered the possibility that protein was partially unfolded by the detergent. The data were modeled using a "beads-on-a-string" approach that describes detergent micelles associated with the unfolded polypeptide chains. This model reproduced the position and relative amplitude of a peak present in the SAXS data at 0.16 A(-1) but was not consistent with the data at larger length scales. We conclude that the polypeptide subunits at the periphery of the PSI complex were partially unfolded and associated with detergent micelles while the catalytically active core of the PSI complex remained structurally intact. This interpretation of the solution structure of isolated PSI complexes has broader implications for the investigation of the interactions of detergents and protein, especially for crystallization studies.
Collapse
Affiliation(s)
- Hugh O'Neill
- Chemical Sciences Division and Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| | | | | | | | | |
Collapse
|
30
|
Lambrev PH, Várkonyi Z, Krumova S, Kovács L, Miloslavina Y, Holzwarth AR, Garab G. Importance of trimer-trimer interactions for the native state of the plant light-harvesting complex II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:847-53. [PMID: 17321492 DOI: 10.1016/j.bbabio.2007.01.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 01/10/2007] [Accepted: 01/18/2007] [Indexed: 11/19/2022]
Abstract
Aggregates and solubilized trimers of LHCII were characterized by circular dichroism (CD), linear dichroism and time-resolved fluorescence spectroscopy and compared with thylakoid membranes in order to evaluate the native state of LHCII in vivo. It was found that the CD spectra of lamellar aggregates closely resemble those of unstacked thylakoid membranes whereas the spectra of trimers solubilized in n-dodecyl-beta,D-maltoside, n-octyl-beta,D-glucopyranoside, or Triton X-100 were drastically different in the Soret region. Thylakoid membranes or LHCII aggregates solubilized with detergent exhibited CD spectra similar to the isolated trimers. Solubilization of LHCII was accompanied by profound changes in the linear dichroism and increase in fluorescence lifetime. These data support the notion that lamellar aggregates of LHCII retain the native organization of LHCII in the thylakoid membranes. The results indicate that the supramolecular organization of LHCII, most likely due to specific trimer-trimer contacts, has significant impact on the pigment interactions in the complexes.
Collapse
Affiliation(s)
- Petar H Lambrev
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
31
|
Hirashima M, Satoh S, Tanaka R, Tanaka A. Pigment Shuffling in Antenna Systems Achieved by Expressing Prokaryotic Chlorophyllide a Oxygenase in Arabidopsis. J Biol Chem 2006; 281:15385-93. [PMID: 16574646 DOI: 10.1074/jbc.m602903200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The organization of pigment molecules in photosystems is strictly determined. The peripheral antennae have both chlorophyll a and b, but the core antennae consist of only chlorophyll a in green plants. Furthermore, according to the recent model obtained from the crystal structure of light-harvesting chlorophyll a/b-protein complexes II (LHCII), individual chlorophyll-binding sites are occupied by either chlorophyll a or chlorophyll b. In this study, we succeeded in altering these pigment organizations by introducing a prokaryotic chlorophyll b synthesis gene (chlorophyllide a oxygenase (CAO)) into Arabidopsis. In these transgenic plants (Prochlirothrix hollandica CAO plants), approximately 40% of chlorophyll a of the core antenna complexes was replaced by chlorophyll b in both photosystems. Chlorophyll a/b ratios of LHCII also decreased from 1.3 to 0.8 in PhCAO plants. Surprisingly, these transgenic plants were capable of photosynthetic growth similar to wild type under low light conditions. These results indicate that chlorophyll organizations are not solely determined by the binding affinities, but they are also controlled by CAO. These data also suggest that strict organizations of chlorophyll molecules are not essential for photosynthesis under low light conditions.
Collapse
Affiliation(s)
- Masumi Hirashima
- Institute of Low Temperature Science, Hokkaido University, Kita-ku, N19 W8, Sapporo 060-0819, Japan
| | | | | | | |
Collapse
|
32
|
Guglielmi G, Lavaud J, Rousseau B, Etienne AL, Houmard J, Ruban AV. The light-harvesting antenna of the diatom Phaeodactylum tricornutum. Evidence for a diadinoxanthin-binding subcomplex. FEBS J 2005; 272:4339-48. [PMID: 16128804 DOI: 10.1111/j.1742-4658.2005.04846.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Diatoms differ from higher plants by their antenna system, in terms of both polypeptide and pigment contents. A rapid isolation procedure was designed for the membrane-intrinsic light harvesting complexes (LHC) of the diatom Phaeodactylum tricornutum to establish whether different LHC subcomplexes exist, as well to determine an uneven distribution between them of pigments and polypeptides. Two distinct fractions were separated that contain functional oligomeric complexes. The major and more stable complex ( approximately 75% of total polypeptides) carries most of the chlorophyll a, and almost only one type of carotenoid, fucoxanthin. The minor complex, carrying approximately 10-15% of the total antenna chlorophyll and only a little chlorophyll c, is highly enriched in diadinoxanthin, the main xanthophyll cycle carotenoid. The two complexes also differ in their polypeptide composition, suggesting specialized functions within the antenna. The diadinoxanthin-enriched complex could be where the de-epoxidation of diadinoxanthin into diatoxanthin mostly occurs.
Collapse
Affiliation(s)
- Gérard Guglielmi
- Organismes Photosynthétiques et Environnement, CNRS, Département de Biologie, Ecole Normale Supérieure, Paris, France.
| | | | | | | | | | | |
Collapse
|
33
|
Akimoto S, Yokono M, Ohmae M, Yamazaki I, Tanaka A, Higuchi M, Tsuchiya T, Miyashita H, Mimuro M. Ultrafast Excitation Relaxation Dynamics of Lutein in Solution and in the Light-Harvesting Complexes II Isolated from Arabidopsis thaliana. J Phys Chem B 2005; 109:12612-9. [PMID: 16852560 DOI: 10.1021/jp050595q] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ultrafast excitation relaxation dynamics and energy-transfer processes in the light-harvesting complex II (LHC II) of Arabidopsis thaliana were examined at physiological temperature using femtosecond time-resolved fluorescence spectroscopy. Energy transfer from lutein to Chl a proceeded with a rate constant of k(ET) = 1.8-1.9 x 10(13) s(-1) and a yield of approximately Phi(ET) = 0.70, whereas that from neoxanthin to Chl a had a rate constant of k(ET) = 6.5 x 10(11) s(-1) and a yield at the most of Phi(ET) = 0.09. Fluorescence anisotropic decay of lutein in LHC II showed a value larger than 0.4 at the initial state and decayed to approximately 0.1 in 0.3 ps, indicating that two lutein molecules interact with each other in LHC II. In solution, anisotropy of lutein remained constant (0.38) independent of time, and thus a new excited state inferred between the S(2) (1B(u)) state and the S(1) (2A(g)) state was not applicable for lutein in solution. Energy migration processes among Chl a or Chl b molecules were clearly resolved by kinetic analysis. On the basis of these results, relaxation processes and energy-transfer kinetics in LHC II of A. thaliana are discussed.
Collapse
Affiliation(s)
- Seiji Akimoto
- Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M, Kühlbrandt W. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution. EMBO J 2005; 24:919-28. [PMID: 15719016 PMCID: PMC554132 DOI: 10.1038/sj.emboj.7600585] [Citation(s) in RCA: 583] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Accepted: 01/26/2005] [Indexed: 11/08/2022] Open
Abstract
The plant light-harvesting complex of photosystem II (LHC-II) collects and transmits solar energy for photosynthesis in chloroplast membranes and has essential roles in regulation of photosynthesis and in photoprotection. The 2.5 A structure of pea LHC-II determined by X-ray crystallography of stacked two-dimensional crystals shows how membranes interact to form chloroplast grana, and reveals the mutual arrangement of 42 chlorophylls a and b, 12 carotenoids and six lipids in the LHC-II trimer. Spectral assignment of individual chlorophylls indicates the flow of energy in the complex and the mechanism of photoprotection in two close chlorophyll a-lutein pairs. We propose a simple mechanism for the xanthophyll-related, slow component of nonphotochemical quenching in LHC-II, by which excess energy is transferred to a zeaxanthin replacing violaxanthin in its binding site, and dissipated as heat. Our structure shows the complex in a quenched state, which may be relevant for the rapid, pH-induced component of nonphotochemical quenching.
Collapse
Affiliation(s)
- Jörg Standfuss
- Max Planck Institute of Biophysics, Department of Structural Biology, Frankfurt am Main, Germany
| | | | - Matteo Lamborghini
- Max Planck Institute of Biophysics, Department of Structural Biology, Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Max Planck Institute of Biophysics, Department of Structural Biology, Frankfurt am Main, Germany
| |
Collapse
|
35
|
Kirchhoff H, Hinz HJ, Rösgen J. Aggregation and fluorescence quenching of chlorophyll a of the light-harvesting complex II from spinach in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2003; 1606:105-16. [PMID: 14507431 DOI: 10.1016/s0005-2728(03)00105-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The salt-induced aggregation of the light-harvesting complex (LHC) II isolated from spinach and its correlation with fluorescence quenching of chlorophyll a is reported. Two transitions with distinctly different properties were observed. One transition related to salt-induced fluorescence quenching takes place at low salt concentration and is dependent both on temperature and detergent concentration. This transition seems to be related to a change in the lateral microorganization of LHCII. The second transition occurs at higher salt concentration and involves aggregation. It is independent of temperature and of detergent at sub-cmc concentrations. During the latter transition the small LHCII sheets (approximately 100 nm in diameter) are stacked to form larger aggregates of approximately 3 microm diameter. Based on the comparison between the physical properties of the transition and theoretical models, direct and specific binding of cations can practically be ruled out as driving force for the aggregation. It seems that in vitro aggregation of LHCII is caused by a complex mixture of different effects such as dielectric and electrostatic properties of the solution and surface charges.
Collapse
Affiliation(s)
- Helmut Kirchhoff
- Institut für Botanik, Schlossgarten 3, D-48149 Münster, Germany.
| | | | | |
Collapse
|
36
|
Prakash JSS, Baig MA, Bhagwat AS, Mohanty P. Characterisation of senescence-induced changes in light harvesting complex II and photosystem I complex of thylakoids of Cucumis sativus cotyledons: age induced association of LHCII with photosystem I. JOURNAL OF PLANT PHYSIOLOGY 2003; 160:175-184. [PMID: 12685033 DOI: 10.1078/0176-1617-00529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Structure and function of chloroplasts are known to after during senescence. The senescence-induced specific changes in light harvesting antenna of photosystem II (PSII) and photosystem I (PSI) were investigated in Cucumis cotyledons. Purified light harvesting complex II (LHCII) and photosystem I complex were isolated from 6-day non-senescing and 27-day senescing Cucumis cotyledons. The chlorophyll a/b ratio of LHCII obtained from 6-day-old control cotyledons and their absorption, chlorophyll a fluorescence emission and the circular dichroism (CD) spectral properties were comparable to the LHCII preparations from other plants such as pea and spinach. The purified LHCII obtained from 27-day senescing cotyledons had a Chl a/b ratio of 1.25 instead of 1.2 as with 6-day LHCII and also exhibited significant changes in the visible CD spectrum compared to that of 6-day LHCII, indicating some specific alterations in the organisation of chlorophylls of LHCII. The light harvesting antenna of photosystems are likely to be altered due to aging. The room temperature absorption spectrum of LHCII obtained from 27-day senescing cotyledons showed changes in the peak positions. Similarly, comparison of 77K chlorophyll a fluorescence emission characteristics of LHCII preparation from senescing cotyledons with that of control showed a small shift in the peak position and the alteration in the emission profile, which is suggestive of possible changes in energy transfer within LHCII chlorophylls. Further, the salt induced aggregation of LHCII samples was lower, resulting in lower yields of LHCII from 27-day cotyledons than from normal cotyledons. Moreover, the PSI preparations of 6-day cotyledons showed Chl a/b ratios of 5 to 5.5, where as the PSI sample of 27-day cotyledons had a Chl a/b ratio of 2.9 suggesting LHCII association with PSI. The absorption, fluorescence emission and visible CD spectral measurements as well as the polypeptide profiles of 27-day cotyledon-PSI complexes indicated age-induced association of LHCII of PSII with PSI obtained from 27-day cotyledons. We modified our isolation protocols by increasing the duration of detergent Triton X-100 treatment for preparing the PSI and LHCII complexes from 27-day cotyledons. However, the PSI complexes isolated from senescing samples invariably proved to have significantly low Chl a/b ratio suggesting an age induced lateral movement and possible association of LHCII with PSI complexes. The analyses of polypeptide compositions of LHCII and PSI holocomplexes isolated from 6-day control and 27-day senescing cotyledons showed distinctive differences in their profiles. The presence of 26-28 kDa polypeptide in PSI complexes from 27-day cotyledons, but not in 6-day control PSI complexes is in agreement with the notion that senescence induced migration of LHCII to stroma lamellae and its possible association with PSI. We suggest that the migration of LHCII to the stroma lamellae region and its possible association with PSI might cause the destacking and flattening of grana structure during senescence of the chloroplasts. Such structural changes in light harvesting antenna are likely to alter energy transfer between two photosystems. The nature of aging induced migration and association of LHCII with PSI and its existence in other senescing systems need to be estimated in the future.
Collapse
|
37
|
Allen JF, Race HL. Will the Real LHC II Kinase Please Step Forward? Sci Signal 2002. [DOI: 10.1126/scisignal.1552002pe43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
38
|
Allen JF, Race HL. Will the real LHC II kinase please step forward? SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:pe43. [PMID: 12393917 DOI: 10.1126/stke.2002.155.pe43] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Many laboratories have searched for the protein kinase responsible for phosphorylation of the chloroplast light-harvesting complex of photosynthesis, LHC II. The LHC II kinase provides a vital link in a redox signaling pathway of ecological, developmental, and evolutionary significance. Various candidates for the LHC II kinase, some stronger than others, have come and gone. Recently, a family of three thylakoid-associated kinases (TAKs) has been identified and purified; they too catalyze in vitro phosphorylation of LHC II. The LHC II kinase is part of an integrated network of signal transduction to which input is provided by a number of environmental factors. The implications of understanding these processes stretch beyond the important, central question of how plants adapt their photosynthetic machinery to changing wavelengths of light.
Collapse
Affiliation(s)
- John F Allen
- Plant Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | | |
Collapse
|
39
|
Georgakopoulos JH, Sokolenko A, Arkas M, Sofou G, Herrmann RG, Argyroudi-Akoyunoglou JH. Proteolytic activity against the light-harvesting complex and the D1/D2 core proteins of Photosystem II in close association to the light-harvesting complex II trimer. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1556:53-64. [PMID: 12351218 DOI: 10.1016/s0005-2728(02)00306-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Light-harvesting complex II (LHCII) prepared from isolated thylakoids of either broken or intact chloroplasts by three independent methods, exhibits proteolytic activity against LHCII. This activity is readily detectable upon incubation of these preparations at 37 degrees C (without addition of any chemicals or prior pre-treatment), and can be monitored either by the LHCII immunostain reduction on Western blots or by the Coomassie blue stain reduction in substrate-containing "activity gels". Upon SDS-sucrose density gradient ultracentrifugation of SDS-solubilized thylakoids, a method which succeeds in the separation of the pigment-protein complexes in their trimeric and monomeric forms, the protease activity copurifies with the LHCII trimer, its monomer exhibiting no activity. This LHCII trimer, apart from being "self-digested", also degrades the Photosystem II (PSII) core proteins (D1, D2) when added to an isolated PSII core protein preparation containing the D1/D2 heterodimer. Under our experimental conditions, 50% of LHCII or the D1, D2 proteins are degraded by the LHCII-protease complex within 30 min at 37 degrees C and specific degradation products are observed. The protease is light-inducible during chloroplast biogenesis, stable in low concentrations of SDS, activated by Mg(2+), and inhibited by Zn(2+), Cd(2+), EDTA and p-hydroxy-mercury benzoate (pOHMB), suggesting that it may belong to the cysteine family of proteases. Upon electrophoresis of the LHCII trimer on substrate-containing "activity gels" or normal Laemmli gels, the protease is released from the complex and runs in the upper part of the gel, above the LHCII trimer. A polypeptide of 140 kDa that exhibits proteolytic activity against LHCII, D1 and D2 has been identified as the protease. We believe that this membrane-bound protease is closely associated to the LHCII complex in vivo, as an LHCII-protease complex, its function being the regulation of the PSII unit assembly and/or adaptation.
Collapse
|
40
|
Lokstein H, Tian L, Polle JEW, DellaPenna D. Xanthophyll biosynthetic mutants of Arabidopsis thaliana: altered nonphotochemical quenching of chlorophyll fluorescence is due to changes in Photosystem II antenna size and stability. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:309-19. [PMID: 11997140 DOI: 10.1016/s0005-2728(02)00184-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Xanthophylls (oxygen derivatives of carotenes) are essential components of the plant photosynthetic apparatus. Lutein, the most abundant xanthophyll, is attached primarily to the bulk antenna complex, light-harvesting complex (LHC) II. We have used mutations in Arabidopsis thaliana that selectively eliminate (and substitute) specific xanthophylls in order to study their function(s) in vivo. These include two lutein-deficient mutants, lut1 and lut2, the epoxy xanthophyll-deficient aba1 mutant and the lut2aba1 double mutant. Photosystem stoichiometry, antenna sizes and xanthophyll cycle activity have been related to alterations in nonphotochemical quenching of chlorophyll fluorescence (NPQ). Nondenaturing polyacrylamide gel electrophoresis indicates reduced stability of trimeric LHC II in the absence of lutein (and/or epoxy xanthophylls). Photosystem (antenna) size and stoichiometry is altered in all mutants relative to wild type (WT). Maximal DeltapH-dependent NPQ (qE) is reduced in the following order: WT>aba1>lut1 approximately lut2>lut2aba1, paralleling reduction in Photosystem (PS) II antenna size. Finally, light-activation of NPQ shows that zeaxanthin and antheraxanthin present constitutively in lut mutants are not qE active, and hence, the same can be inferred of the lutein they replace. Thus, a direct involvement of lutein in the mechanism of qE is unlikely. Rather, altered NPQ in xanthophyll biosynthetic mutants is explained by disturbed macro-organization of LHC II and reduced PS II-antenna size in the absence of the optimal, wild-type xanthophyll composition. These data suggest the evolutionary conservation of lutein content in plants was selected for due to its unique ability to optimize antenna structure, stability and macro-organization for efficient regulation of light-harvesting under natural environmental conditions.
Collapse
Affiliation(s)
- Heiko Lokstein
- Institut für Biologie/Pflanzenphysiologie, Humboldt-Universität zu Berlin, Unter den Linden 6 (Sitz: Philippstr. 13), D-10099, Berlin, Germany.
| | | | | | | |
Collapse
|
41
|
|
42
|
|
43
|
Siefermann-Harms D, Ninnemann H. The separation of photochemically active PS-I and PS-II containing chlorophyll-protein complexes by isoelectric focusing of bean thylakoids on polyacrylamide gel plates. FEBS Lett 2001. [DOI: 10.1016/0014-5793(79)81087-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
|
45
|
Gillbro T, Sundström V, Sandström Å, Spangfort M, Andersson B. Energy transfer within the isolated light-harvesting chlorophyll a/b
protein of photosystem II (LHC-II). FEBS Lett 2001. [DOI: 10.1016/0014-5793(85)80166-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Murphy DJ, Crowther D, Woodrow IE. Reconstitution of light-harvesting chlorophyll-protein complexes with Photosystem II complexes in soybean phosphatidylcholine liposomes. FEBS Lett 2001. [DOI: 10.1016/0014-5793(84)80160-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Astier C, Joset-Espardellier F. Characterization and function of a 33 000Mrpolypeptide in DCMU-sensitive and resistant strains of a cyanobacterium,Aphanocapsa6714. FEBS Lett 2001. [DOI: 10.1016/0014-5793(81)80752-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Williams R, Ellis R. Immunological studies on the light-harvesting polypeptides of photosystems I and II. FEBS Lett 2001. [DOI: 10.1016/0014-5793(86)80761-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Welte W, Wacker T, Leis M, Kreutz W, Shiozawa J, Gad'on N, Drews G. Crystallization of the photosynthetic light-harvesting pigment-protein complex B800-850 of Rhodopseudomonas capsulata. FEBS Lett 2001. [DOI: 10.1016/0014-5793(85)80311-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
The influence of proton-induced grana formation on partial electron-transport reactions in chloroplasts. FEBS Lett 2001. [DOI: 10.1016/0014-5793(79)80738-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|