1
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
2
|
El-Desoky AH, Hitora Y, Nishime Y, Sadahiro Y, Kawahara T, Tsukamoto S. A new linear peptide, higapeptin, isolated from the mud flat-derived fungus Acremonium persicinum inhibits mitochondrial energy metabolism. J Nat Med 2024; 78:505-513. [PMID: 38421472 DOI: 10.1007/s11418-024-01784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
A combination of LC-MS/MS and feature-based molecular networking analyses led to the isolation of a new adenopeptin analog, higapeptin (1), and four known peptides, adenopeptin (2), adenopeptins B and C (3 and 4), and acremopeptin (5), from the rice culture of the fungus Acremonium persicinum (18F04103) isolated from a mud flat of the Ariake Sea in Kyushu, Japan. The structure of 1 was determined by NMR and MS/MS fragmentation analyses. The absolute configuration of the constituent amino acids was determined by Marfey's analysis after acid hydrolysis. The C-terminal residue was synthesized, and its absolute configuration was established by Marfey's analysis. Compounds 1 and 2 were found to inhibit mitochondrial energy metabolism, similar to efrapeptin D (6), a known mitochondrial ATPase inhibitor.
Collapse
Affiliation(s)
- Ahmed H El-Desoky
- Pharmaceutical and Drug Industries Research Institute, Pharmacognosy Department, National Research Centre, 33 El-Bohouth St., Dokki, 12622, Giza, Egypt
| | - Yuki Hitora
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Kumamoto, 862-0973, Japan
| | - Yoshitomo Nishime
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Kumamoto, 862-0973, Japan
| | - Yusaku Sadahiro
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Kumamoto, 862-0973, Japan
| | - Teppei Kawahara
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Kumamoto, 862-0973, Japan
| | - Sachiko Tsukamoto
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Kumamoto, 862-0973, Japan.
| |
Collapse
|
3
|
Dutt Konar A, Vass E, Hollósi M, Majer Z, Grüber G, Frese K, Sewald N. Conformational properties of secondary amino acids: replacement of pipecolic acid by N-methyl-l-alanine in efrapeptin C. Chem Biodivers 2013; 10:942-51. [PMID: 23681735 DOI: 10.1002/cbdv.201300086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Indexed: 11/08/2022]
Abstract
The efrapeptins, a family of naturally occurring peptides with inhibitory activities against ATPases, contain several α,α-disubstituted α-amino acids such as α-aminoisobutyric acid (Aib) or isovaline (Iva) besides pipecolic acid (Pip), β-Ala, Leu, Gly, and a C-terminal heterocyclic residue. Secondary α-amino acids such as proline are known to stabilize discrete conformations in peptides. A similar influence is ascribed to N-alkyl α-amino acids. We synthesized two efrapeptin C analogs with replacement of Pip by N-methyl-L-alanine (MeAla) using a combination of solid- and solution-phase techniques in a fragment-condensation strategy to compare the conformational bias of both secondary amino acids. The solution conformation was investigated by vibrational circular dichroism (VCD) to probe whether the analogs adopt a 310 -helical conformation. The MeAla-containing analogs [MeAla(1,3) ]efrapeptin C and [MeAla(1,3,11) ]efrapeptin C inhibit ATP hydrolysis by the A3 B3 complex of A1 A0 -ATP synthase from Methanosarcina mazei Gö1.
Collapse
|
4
|
Weigelt S, Huber T, Hofmann F, Jost M, Ritzefeld M, Luy B, Freudenberger C, Majer Z, Vass E, Greie JC, Panella L, Kaptein B, Broxterman QB, Kessler H, Altendorf K, Hollósi M, Sewald N. Synthesis and Conformational Analysis of Efrapeptins. Chemistry 2011; 18:478-87. [DOI: 10.1002/chem.201102134] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Indexed: 11/11/2022]
|
5
|
Hong S, Pedersen PL. ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas. Microbiol Mol Biol Rev 2008; 72:590-641, Table of Contents. [PMID: 19052322 PMCID: PMC2593570 DOI: 10.1128/mmbr.00016-08] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ATP synthase, a double-motor enzyme, plays various roles in the cell, participating not only in ATP synthesis but in ATP hydrolysis-dependent processes and in the regulation of a proton gradient across some membrane-dependent systems. Recent studies of ATP synthase as a potential molecular target for the treatment of some human diseases have displayed promising results, and this enzyme is now emerging as an attractive molecular target for the development of new therapies for a variety of diseases. Significantly, ATP synthase, because of its complex structure, is inhibited by a number of different inhibitors and provides diverse possibilities in the development of new ATP synthase-directed agents. In this review, we classify over 250 natural and synthetic inhibitors of ATP synthase reported to date and present their inhibitory sites and their known or proposed modes of action. The rich source of ATP synthase inhibitors and their known or purported sites of action presented in this review should provide valuable insights into their applications as potential scaffolds for new therapeutics for human and animal diseases as well as for the discovery of new pesticides and herbicides to help protect the world's food supply. Finally, as ATP synthase is now known to consist of two unique nanomotors involved in making ATP from ADP and P(i), the information provided in this review may greatly assist those investigators entering the emerging field of nanotechnology.
Collapse
Affiliation(s)
- Sangjin Hong
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205-2185, USA
| | | |
Collapse
|
6
|
Holuigue L, Lucero HA, Vallejos RH. Protein phosphorylation in the photosynthetic bacterium Rhodospirillum rubrum. FEBS Lett 2001. [DOI: 10.1016/0014-5793(85)81122-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Bandani AR, Amiri B, Butt TM, Gordon-Weeks R. Effects of efrapeptin and destruxin, metabolites of entomogenous fungi, on the hydrolytic activity of a vacuolar type ATPase identified on the brush border membrane vesicles of Galleria mellonella midgut and on plant membrane bound hydrolytic enzymes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1510:367-77. [PMID: 11342173 DOI: 10.1016/s0005-2736(00)00370-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The brush border membrane of the insect midgut is an initial site for interaction of insecticidal proteins. We have investigated the possibility that it may contain a target site for two insecticidal fungal toxins, destruxin and efrapeptin, both of which are ATPase inhibitors. We have studied the effects of the toxins on the hydrolytic activity of a vacuolar type ATPase (V-ATPase) that we have identified from Galleria mellonella midgut columnar cell brush border membrane vesicles (BBMV) by its cation and pH dependence, sensitivity to proton pump inhibitors and K(m) (0.49 mM ATP). Efrapeptin strongly inhibited the BBMV V-ATPase but destruxin had little effect. We compared the effects of the inhibitors on known plant membrane hydrolytic enzymes, and although the vacuolar pyrophosphatase and plasma membrane ATPase were not inhibited by the toxins, the V-ATPase from mung bean, but not barley, was inhibited (50%) by 10 microM concentrations of both compounds. Different forms of the toxins were tested on the ATPases and destruxin B and efrapeptin F were the most effective. Kinetic analysis showed that the purified forms of both compounds inhibited the V-ATPases uncompetitively and modelling of data for inhibition of the BBMV V-ATPase by efrapeptin at concentrations of 0.06--12 microM yielded a K(i) of 0.125 microM.
Collapse
Affiliation(s)
- A R Bandani
- IACR-Rothamsted, Harpenden, Hertfordshire AL5 2JQ, UK
| | | | | | | |
Collapse
|
8
|
Antimicrobial Nonapeptide Leucinostatin A-Dependent Effects on the Physical Properties of Phospholipid Model Membranes. J Colloid Interface Sci 2000. [DOI: 10.1006/jcis.2000.6816] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Ricci M, Sassi P, Nastruzzi C, Rossi C. Liposome-based formulations for the antibiotic nonapeptide Leucinostatin A: Fourier transform infrared spectroscopy characterization and in vivo toxicologic study. AAPS PharmSciTech 2000; 1:E2. [PMID: 14727851 PMCID: PMC2784834 DOI: 10.1208/pt010102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Leucinostatin-A is a nonapeptide isolated from Paecilomyces marquandii, Paecilomyces lilacinus A257, and Acremonium sp., exerting remarkable phytotoxic, antibacterial (especially against Gram-positive) and antimycotic activities. With the aim to find alternative formulation for in vivo administration, a number of Leucinostatin-A-loaded liposomal formulations have been prepared and characterized. Both large unilamellar vesicles and multilamellar vesicles consisting of synthetic and natural lipids were evaluated. In addition, to determine the nature of peptide-membrane interactions and the stability of liposomes loaded with Leucinostatin-A, a Fourier Transform Infrared Spectroscopy study was performed. The results suggest that the mode of interaction of the peptide is dependent on its concentration, on bilayer fluidity, and on liposome type. Finally, the LD50 of both free and liposome-delivered Leucinostatin-A was determined in mice. These results suggest that the incorporation of Leucinostatin-A into liposomes may result in decreased Leucinostatin-A toxicity, as the intraperitoneal administration of Leucinostatin-A-loaded liposomes reduced the LD50 of Leucinostatin-A 15-fold.
Collapse
Affiliation(s)
- M Ricci
- Institute of Chimica e Tecnologia del Farmaco, in Department of Chimica e Tecnologia, Università degli Studi, 06123 Perugia, Italy.
| | | | | | | |
Collapse
|
10
|
Ricci M, Sassi P, Nastruzzi C, Róssi C. Liposome-based formulations for the antibiotic nonapeptide Leucinostatin A: Fourier transform infrared spectroscopy characterization and in vivo toxicologic study. AAPS PharmSciTech 2000. [DOI: 10.1007/bf02830517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
11
|
Abrahams JP, Buchanan SK, Van Raaij MJ, Fearnley IM, Leslie AG, Walker JE. The structure of bovine F1-ATPase complexed with the peptide antibiotic efrapeptin. Proc Natl Acad Sci U S A 1996; 93:9420-4. [PMID: 8790345 PMCID: PMC38443 DOI: 10.1073/pnas.93.18.9420] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In the previously determined structure of mitochondrial F1-ATPase determined with crystals grown in the presence of adenylyl-imidodiphosphate (AMP-PNP) and ADP, the three catalytic beta-subunits have different conformations and nucleotide occupancies. AMP-PNP and ADP are bound to subunits beta TP and beta DP, respectively, and the third beta-subunit (beta E) has no bound nucleotide. The efrapeptins are a closely related family of modified linear peptides containing 15 amino acids that inhibit both ATP synthesis and hydrolysis by binding to the F1 catalytic domain of F1F0-ATP synthase. In crystals of F1-ATPase grown in the presence of both nucleotides and inhibitor, efrapeptin is bound to a unique site in the central cavity of the enzyme. Its binding is associated with small structural changes in side chains of F1-ATPase around the binding pocket. Efrapeptin makes hydrophobic contacts with the alpha-helical structure in the gamma-subunit, which traverses the cavity, and with subunit beta E and the two adjacent alpha-subunits. Two intermolecular hydrogen bonds could also form. Intramolecular hydrogen bonds probably help to stabilize efrapeptin's two domains (residues 1-6 and 9-15, respectively), which are connected by a flexible region (beta Ala-7 and Gly-8). Efrapeptin appears to inhibit F1-ATPase by blocking the conversion of subunit beta E to a nucleotide binding conformation, as would be required by an enzyme mechanism involving cyclic interconversion of catalytic sites.
Collapse
Affiliation(s)
- J P Abrahams
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
12
|
Csermely P, Radics L, Rossi C, Szamel M, Ricci M, Mihály K, Somogyi J. The nonapeptide leucinostatin A acts as a weak ionophore and as an immunosuppressant on T lymphocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1221:125-32. [PMID: 8148389 DOI: 10.1016/0167-4889(94)90004-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Earlier studies have disclosed that leucinostatin A, a hydrophobic nonapeptide antibiotic, assumes an alpha-helical secondary structure in nonpolar environments. The present report demonstrates that the peptide acts as a weak ionophore facilitating the transport of mono-and divalent cations through the plasma membrane of T lymphocytes and through artificial membranes. Leucinostatin A does not change the thymidine uptake of both resting mouse thymocytes and peripheral blood lymphocytes but dose-dependently prevents the activation of T lymphocytes by tetradecanoyl-phorbol-acetate and by anti-T cell receptor antibody.
Collapse
Affiliation(s)
- P Csermely
- Institute of Biochemistry I, Semmelweis University, School of Medicine, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
13
|
Krasnoff S, Gupta S, Leger R, Renwick J, Roberts D. Antifungal and insecticidal properties of the efrapeptins: Metabolites of the fungus Tolypocladium niveum. J Invertebr Pathol 1991. [DOI: 10.1016/0022-2011(91)90062-u] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Cortez N, Lucero HA, Vallejos RH. Inactivation of Rhodospirillum rubrum coupling factor by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Modification of a tyrosine protected by phosphate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1983. [DOI: 10.1016/0005-2728(83)90099-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Ceccarelli E, Vallejos RH. Two types of essential carboxyl groups in Rhodospirillum rubrum proton ATPase. Arch Biochem Biophys 1983; 224:382-8. [PMID: 6307154 DOI: 10.1016/0003-9861(83)90224-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Two different types of essential carboxyl groups were detected in the extrinsic component of the proton ATPase of Rhodospirillum rubrum. Chemical modification of R. rubrum chromatophores or its solubilized ATPase by Woodward's reagent K resulted in inactivation of photophosphorylating and ATPase activities. The apparent order of reaction was nearly 1 with respect to reagent concentration and similar K1 were obtained for the soluble and membrane-bound ATPases suggesting that inactivation was associated with modification of one essential carboxyl group located in the soluble component of the proton ATPase. Inactivation was prevented by adenine nucleotides but not by divalent cations. Dicyclohexylcarbodiimide completely inhibited the solubilized ATPase with a K1 of 5.2 mM and a K2 of 0.81 min-1. Mg2+ afforded nearly complete protection with a Kd of 2.8 mM. Two moles of [14C]dicyclohexylcarbodiimide were incorporated per mole of enzyme for complete inactivation but in the presence of 30 mM MgCl2 only one mole was incorporated and there was no inhibition. The labeling was recovered mostly from the beta subunit. The incorporation of the labeled reagent into the ATPase was not prevented by previous modification with Woodward's reagent K. It is concluded that both reagents modified two different essential carboxyl groups in the soluble ATPase from R. rubrum.
Collapse
|
16
|
Nyrén P, Baltscheffsky M. Inorganic pyrophosphate-driven ATP-synthesis in liposomes containing membrane-bound inorganic pyrophosphatase and F0-F1 complex from Rhodospirillum rubrum. FEBS Lett 1983; 155:125-30. [PMID: 6132837 DOI: 10.1016/0014-5793(83)80223-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PPi driven ATP synthesis has been reconstituted in a liposomal system containing the membrane-bound energy-linked PPiase and coupling factor complex, both highly purified from Rhodospirillum rubrum. This energy converting model system was made by mixing both enzyme preparations with an aqueous suspension of sonicated soybean phospholipids and subjecting to a freeze-thaw procedure. In the presence of ADP, Mg2+, Pi and PPi the system catalyzed phosphorylation by up to 25 nmol ATP formed X mg protein-1 X min-1, at 20 degrees C, which was sensitive to uncouplers and inhibitors of phosphorylation such as oligomycin, efrapeptin and N,N'-dicyclohexylcarbodiimide.
Collapse
|
17
|
|
18
|
Kohlbrenner WE, Cross RL. The mode of inhibition of oxidative phosphorylation by efrapeptin (A23871): measurement of substrate effects on rates of inactivation by a tight-binding inhibitor. Arch Biochem Biophys 1979; 198:598-607. [PMID: 160214 DOI: 10.1016/0003-9861(79)90536-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Hammond SM. Inhibitors of enzymes of microbial membranes; agents affecting Mg2+-activated adenosine triphosphatase. PROGRESS IN MEDICINAL CHEMISTRY 1979; 16:223-56. [PMID: 162480 DOI: 10.1016/s0079-6468(08)70189-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Vallejos RH, Lescano WI, Lucero HA. Involvement of an essential arginyl residue in the coupling activity of Rhodospirillum rubrum chromatophores. Arch Biochem Biophys 1978; 190:578-84. [PMID: 102254 DOI: 10.1016/0003-9861(78)90313-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|