1
|
Easson MLAE, Malka O, Paetz C, Hojná A, Reichelt M, Stein B, van Brunschot S, Feldmesser E, Campbell L, Colvin J, Winter S, Morin S, Gershenzon J, Vassão DG. Activation and detoxification of cassava cyanogenic glucosides by the whitefly Bemisia tabaci. Sci Rep 2021; 11:13244. [PMID: 34168179 PMCID: PMC8225905 DOI: 10.1038/s41598-021-92553-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022] Open
Abstract
Two-component plant defenses such as cyanogenic glucosides are produced by many plant species, but phloem-feeding herbivores have long been thought not to activate these defenses due to their mode of feeding, which causes only minimal tissue damage. Here, however, we report that cyanogenic glycoside defenses from cassava (Manihot esculenta), a major staple crop in Africa, are activated during feeding by a pest insect, the whitefly Bemisia tabaci, and the resulting hydrogen cyanide is detoxified by conversion to beta-cyanoalanine. Additionally, B. tabaci was found to utilize two metabolic mechanisms to detoxify cyanogenic glucosides by conversion to non-activatable derivatives. First, the cyanogenic glycoside linamarin was glucosylated 1–4 times in succession in a reaction catalyzed by two B. tabaci glycoside hydrolase family 13 enzymes in vitro utilizing sucrose as a co-substrate. Second, both linamarin and the glucosylated linamarin derivatives were phosphorylated. Both phosphorylation and glucosidation of linamarin render this plant pro-toxin inert to the activating plant enzyme linamarase, and thus these metabolic transformations can be considered pre-emptive detoxification strategies to avoid cyanogenesis.
Collapse
Affiliation(s)
| | - Osnat Malka
- The Hebrew University of Jerusalem, 7610001, Rehovot, Israel.
| | - Christian Paetz
- Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Anna Hojná
- Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | | | - Beate Stein
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38104, Braunschweig, Germany
| | - Sharon van Brunschot
- Natural Resources Institute, University of Greenwich, Chatham Maritime, ME4 4TB, Kent, UK.,University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Lahcen Campbell
- EMBL-European Bioinformatics Institute, Cambridge, CB10 1SD, UK
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Chatham Maritime, ME4 4TB, Kent, UK
| | - Stephan Winter
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38104, Braunschweig, Germany
| | - Shai Morin
- The Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | | | - Daniel G Vassão
- Max Planck Institute for Chemical Ecology, 07745, Jena, Germany.
| |
Collapse
|
2
|
te Poele EM, Corwin SG, Hamaker BR, Lamothe LM, Vafiadi C, Dijkhuizen L. Development of Slowly Digestible Starch Derived α-Glucans with 4,6-α-Glucanotransferase and Branching Sucrase Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6664-6671. [PMID: 32437608 PMCID: PMC7304062 DOI: 10.1021/acs.jafc.0c01465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 05/31/2023]
Abstract
Previously, we have identified and characterized 4,6-α-glucanotransferase enzymes of the glycosyl hydrolase (GH) family 70 (GH70) that cleave (α1→4)-linkages in amylose and introduce (α1→6)-linkages in linear chains. The 4,6-α-glucanotransferase of Lactobacillus reuteri 121, for instance, converts amylose into an isomalto/malto-polysaccharide (IMMP) with 90% (α1→6)-linkages. Over the years, also, branching sucrase enzymes belonging to GH70 have been characterized. These enzymes use sucrose as a donor substrate to glucosylate dextran as an acceptor substrate, introducing single -(1→2,6)-α-d-Glcp-(1→6)- (Leuconostoc citreum enzyme) or -(1→3,6)-α-d-Glcp-(1→6)-branches (Leuconostoc citreum, Leuconostoc fallax, Lactobacillus kunkeei enzymes). In this work, we observed that the catalytic domain 2 of the L. kunkeei branching sucrase used not only dextran but also IMMP as the acceptor substrate, introducing -(1→3,6)-α-d-Glcp-(1→6)-branches. The products obtained have been structurally characterized in detail, revealing the addition of single (α1→3)-linked glucose units to IMMP (resulting in a comb-like structure). The in vitro digestibility of the various α-glucans was estimated with the glucose generation rate (GGR) assay that uses rat intestinal acetone powder to simulate the digestive enzymes in the upper intestine. Raw wheat starch is known to be a slowly digestible carbohydrate in mammals and was used as a benchmark control. Compared to raw wheat starch, IMMP and dextran showed reduced digestibility, with partially digestible and indigestible portions. Interestingly, the digestibility of the branching sucrase modified IMMP and dextran products considerably decreased with increasing percentages of (α1→3)-linkages present. The treatment of amylose with 4,6-α-glucanotransferase and branching sucrase/sucrose thus allowed for the synthesis of amylose/starch derived α-glucans with markedly reduced digestibility. These starch derived α-glucans may find applications in the food industry.
Collapse
Affiliation(s)
- E. M. te Poele
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
- CarbExplore
Research BV, Zernikepark
12, 9747AN Groningen, The Netherlands
| | - S. G. Corwin
- Whistler
Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - B. R. Hamaker
- Whistler
Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - L. M. Lamothe
- Nestlé
Research, Vers-Chez-Les-Blanc, 1000 Lausanne, Switzerland
| | - C. Vafiadi
- Nestlé
Research, Vers-Chez-Les-Blanc, 1000 Lausanne, Switzerland
| | - L. Dijkhuizen
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
- CarbExplore
Research BV, Zernikepark
12, 9747AN Groningen, The Netherlands
| |
Collapse
|
3
|
Glucansucrase (mutant) enzymes from Lactobacillus reuteri 180 efficiently transglucosylate Stevia component rebaudioside A, resulting in a superior taste. Sci Rep 2018; 8:1516. [PMID: 29367749 PMCID: PMC5784128 DOI: 10.1038/s41598-018-19622-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/05/2018] [Indexed: 12/14/2022] Open
Abstract
Steviol glycosides from the leaves of the plant Stevia rebaudiana are high-potency natural sweeteners but suffer from a lingering bitterness. The Lactobacillus reuteri 180 wild-type glucansucrase Gtf180-ΔN, and in particular its Q1140E-mutant, efficiently α-glucosylated rebaudioside A (RebA), using sucrose as donor substrate. Structural analysis of the products by MALDI-TOF mass spectrometry, methylation analysis and NMR spectroscopy showed that both enzymes exclusively glucosylate the Glc(β1→C-19 residue of RebA, with the initial formation of an (α1→6) linkage. Docking of RebA in the active site of the enzyme revealed that only the steviol C-19 β-D-glucosyl moiety is available for glucosylation. Response surface methodology was applied to optimize the Gtf180-ΔN-Q1140E-catalyzed α-glucosylation of RebA, resulting in a highly productive process with a RebA conversion of 95% and a production of 115 g/L α-glucosylated products within 3 h. Development of a fed-batch reaction allowed further suppression of α-glucan synthesis which improved the product yield to 270 g/L. Sensory analysis by a trained panel revealed that glucosylated RebA products show a significant reduction in bitterness, resulting in a superior taste profile compared to RebA. The Gtf180-ΔN-Q1140E glucansucrase mutant enzyme thus is an efficient biocatalyst for generating α-glucosylated RebA variants with improved edulcorant/organoleptic properties.
Collapse
|
4
|
Effect of a single point mutation on the interaction of glucans with a glucansucrase from Leuconostoc mesenteroides NRRL B-1118. Carbohydr Res 2016; 428:57-61. [PMID: 27131127 DOI: 10.1016/j.carres.2016.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/01/2016] [Accepted: 04/08/2016] [Indexed: 11/22/2022]
Abstract
Our previous work showed that substitution of an amino acid that is coupled with the +2 subsite adjacent to the transition stabilizer of a glucansucrase, which produces a water-insoluble glucan, resulted in significant changes in the structures and yields of the water-insoluble glucans produced. We now describe how these changes affect the ability of the glucansucrase to bind to exogenous glucans, and how these glucans can influence the yield, product structures, and kinetics of the mutant glucansucrases. The activity of the wild-type enzyme, with threonine at position 654, is not significantly activated by added dextran, and the yield of water-insoluble glucan from sucrose is only slightly increased by dextran. Mutant T654Y is not affected at all by the addition of dextran. However, several mutant enzymes exhibit markedly lower yields of glucan relative to the wild type; these lower yields can be partially or completely overcome by the addition of water-soluble dextran. Although evidence indicates that the soluble dextran is incorporated into water-insoluble glucan, the increased yields cannot be accounted for solely by incorporation of the dextran into insoluble product. Furthermore, these DsrI mutants are significantly activated by exogenous glucans. The addition of dextran does not markedly change the KM for sucrose in the mutant enzymes, but does increase the Vmax of the reaction. These effects apparently depend on the presence of unbranched sequences of α1→6-linked D-glucose units in the glucan.
Collapse
|
5
|
Seibel J, Jördening HJ, Buchholz K. Extending synthetic routes for oligosaccharides by enzyme, substrate and reaction engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 120:163-93. [PMID: 20182930 DOI: 10.1007/10_2009_54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The integration of all relevant tools for bioreaction engineering has been a recent challenge. This approach should notably favor the production of oligo- and polysaccharides, which is highly complex due to the requirements of regio- and stereoselectivity. Oligosaccharides (OS) and polysaccharides (PS) have found many interests in the fields of food, pharmaceuticals, and cosmetics due to different specific properties. Food, sweeteners, and food ingredients represent important sectors where OS are used in major amounts. Increasing attention has been devoted to the sophisticated roles of OS and glycosylated compounds, at cell or membrane surfaces, and their function, e.g., in infection and cancer proliferation. The challenge for synthesis is obvious, and convenient approaches using cheap and readily available substrates and enzymes will be discussed. We report on new routes for the synthesis of oligosaccharides (OS), with emphasis on enzymatic reactions, since they offer unique properties, proceeding highly regio- and stereoselective in water solution, and providing for high yields in general.
Collapse
Affiliation(s)
- Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany,
| | | | | |
Collapse
|
6
|
|
7
|
Berensmeier S, Jördening HJ, Buchholz K. Isomaltose formation by free and immobilized dextransucrase. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420500491854] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
RABELO M, HONORATO T, GONÇALVES L, PINTO G, RODRIGUES S. OPTIMIZATION OF ENZYMATIC SYNTHESIS OF ISOMALTO-OLIGOSACCHARIDES PRODUCTION. J Food Biochem 2009. [DOI: 10.1111/j.1745-4514.2009.00222.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Moulis C, Joucla G, Harrison D, Fabre E, Potocki-Veronese G, Monsan P, Remaud-Simeon M. Understanding the Polymerization Mechanism of Glycoside-Hydrolase Family 70 Glucansucrases. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84038-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
10
|
Moulis C, Joucla G, Harrison D, Fabre E, Potocki-Veronese G, Monsan P, Remaud-Simeon M. Understanding the polymerization mechanism of glycoside-hydrolase family 70 glucansucrases. J Biol Chem 2006; 281:31254-67. [PMID: 16864576 DOI: 10.1074/jbc.m604850200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucan formation catalyzed by two GH-family 70 enzymes, Leuconostoc mesenteroides NRRL B-512F dextransucrase and L. mesenteroides NRRL B-1355 alternansucrase, was investigated by combining biochemical and kinetic characterization of the recombinant enzymes and their respective products. Using HPAEC analysis, we showed that two molecules act as initiator of polymerization: sucrose itself and glucose produced by hydrolysis, the latter being preferred when produced in sufficient amounts. Then, elongation occurs by transfer of the glucosyl residue coming from sucrose to the non-reducing end of initially formed products. Dextransucrase preferentially produces an isomaltooligosaccharide series, whose concentration is always low because of the high ability of these products to be elongated and form high molecular weight dextran. Compared with dextransucrase, alternansucrase has a broader specificity. It produces a myriad of oligosaccharides with various alpha-1,3 and/or alpha-1,6 links in early reaction stages. Only some of them are further elongated. Overall alternan polymer is smaller in size than dextran. In dextransucrase, the A repeats often found in C-terminal domain of GH family 70 were found to play a major role in efficient dextran elongation. Their truncation result in an enzyme much less efficient to catalyze high molecular weight polymer formation. It is thus proposed that, in dextransucrase, the A repeats define anchoring zones for the growing chains, favoring their elongation. Based on these results, a semi-processive mechanism involving only one active site and an elongation by the non-reducing end is proposed for the GH-family 70 glucansucrases.
Collapse
Affiliation(s)
- Claire Moulis
- Laboratoire de Biotechnologies-Bioprocédés, UMR CNRS 5504, UMR INRA 792, INSA, 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Korakli M, Vogel RF. Structure/function relationship of homopolysaccharide producing glycansucrases and therapeutic potential of their synthesised glycans. Appl Microbiol Biotechnol 2006; 71:790-803. [PMID: 16724190 DOI: 10.1007/s00253-006-0469-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 04/12/2006] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
The capability of lactic acid bacteria (LAB) to produce exopoly- and oligosaccharides was and is the subject of expanding research efforts. Due to their physicochemical properties and health-promoting potential, exopoly- and oligosaccharides from food-grade LAB can be used in the food and other industries and may have additional medical applications. In the last years, many LAB have been screened for their ability to produce exopoly- and oligosaccharides, and several glycosyltransferases involved in their biosynthesis have been characterised at biochemical and genetic levels. These research efforts aim to exploit the full potential of these organisms and to understand the structure/function relationship of glycosyltransferases. The latter knowledge is a prerequisite for the production of tailored exopoly- and oligosaccharides for the diverse applications. This review will survey the results of recent works on the structure/function relationship of homopolysaccharide producing glycosyltransferases and the therapeutic potential of their synthesised exopoly- and oligosaccharides.
Collapse
Affiliation(s)
- Maher Korakli
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Weihenstephaner Steig 16, 85350, Freising, Germany.
| | | |
Collapse
|
12
|
Rodrigues S, Lona LMF, Franco TT. The effect of maltose on dextran yield and molecular weight distribution. Bioprocess Biosyst Eng 2005; 28:9-14. [PMID: 16163491 DOI: 10.1007/s00449-005-0002-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 04/29/2005] [Indexed: 10/25/2022]
Abstract
Dextran synthesis has been studied since the Second World War, when it was used as blood plasma expander. This polysaccharide composed of glucose units is linked by an alpha-1,6-glucosidic bond. Dextransucrase is a bacterial extra cellular enzyme, which promotes the dextran synthesis from sucrose. When, besides sucrose, another substrate (acceptor) is also present in the reactor, oligosaccharides are produced and part of the glucosyl moieties from glucose is consumed to form these acceptor products, decreasing the dextran yield. Although dextran enzymatic synthesis has been extensively studied, there are few published studies regarding its molecular weight distribution. In this work, the effect of maltose on yield and dextran molecular weight synthesized using dextransucrase from Leuconostoc mesenteroides B512F, was investigated. According to the obtained results, maltose is not able to control and reduce dextran molecular weight distribution and synthesis carried out with or without maltose presented the same molecular weight distribution profile.
Collapse
Affiliation(s)
- Sueli Rodrigues
- Departamento de Tecnologia de Alimentos, Universidade Federal do Ceará, Caixa Postal 12168, Campus do Pici, Bloco 858, 60021-970, Fortaleza, CE, Brazil.
| | | | | |
Collapse
|
13
|
Argüello-Morales M, Sánchez-González M, Canedo M, Quirasco M, Farrés A, López-Munguía A. Proteolytic modification of Leuconostoc mesenteroides B-512F dextransucrase. Antonie van Leeuwenhoek 2005; 87:131-41. [PMID: 15723174 DOI: 10.1007/s10482-004-2042-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Accepted: 08/10/2004] [Indexed: 10/25/2022]
Abstract
Multiple active lower molecular weight forms from Leuconostoc mesenteroides B512F dextransucrase have been reported. It has been suggested that they arise from proteolytic processing of a 170 kDa precursor. In this work, the simultaneous production of proteases and dextransucrase was studied in order to elucidate the dextransucrase proteolytic processing. The effect of the nitrogen source on protease and dextransucrase production was studied. Protease activity reaches a maximum early in the logarithmic phase of dextransucrase synthesis using the basal culture medium but the nitrogen source plays an important effect on growth: the highest protease concentration was obtained when ammonium sulfate, casaminoacids or tryptone were used. Two active forms of 155 and 129 kDa were systematically obtained from dextransucrase precursor by proteolysis. The amino termini of these forms were sequenced and the cleavage site deduced. Both forms of the enzyme obtained had the same cleavage site in the amino terminal region (F209-Y210). From dextransucrase analysis, various putative cleavage sites with the same sequence were found in the variable region and in the glucan binding domain. Although no structural differences were found in dextrans synthesized with both the precursor and the proteolyzed 155 kDa form under the same reaction conditions, their rheological behaviour was modified, with dextran of a lower viscosity yielded by the smaller form.
Collapse
Affiliation(s)
- Martha Argüello-Morales
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250, Morelos, Cuernavaca, México
| | | | | | | | | | | |
Collapse
|
14
|
Kawakita H, Saito K, Sugita K, Tamada M, Sugo T, Kawamoto H. Skin-layer formation on porous membrane by immobilized dextransucrase. AIChE J 2004. [DOI: 10.1002/aic.10063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Demuth K, Jördening HJ, Buchholz K. Oligosaccharide synthesis by dextransucrase: new unconventional acceptors. Carbohydr Res 2002; 337:1811-20. [PMID: 12431883 DOI: 10.1016/s0008-6215(02)00272-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The acceptor reactions of dextransucrase offer the potential for a targeted synthesis of a wide range of di-, tri- and higher oligosaccharides by the transfer of a glucosyl group from sucrose to the acceptor. We here report on results which show that the synthetic potential of this enzyme is not restricted to 'normal' saccharides. Additionally functionalized saccharides, such as alditols, aldosuloses, sugar acids, alkyl saccharides, and glycals, and rather unconventional saccharides, such as fructose dianhydride, may also act as acceptors. Some of these acceptors even turned out to be relatively efficient: alpha-D-glucopyranosyl-(1-->5)-D-arabinonic acid, alpha-D-glucopyranosyl-(1-->4)-D-glucitol, alpha-D-glucopyranosyl-(1-->6)-D-glucitol, alpha-D-glucopyranosyl-(1-->6)-D-mannitol, alpha-D-fructofuranosyl-beta-D-fructofuranosyl-(1,2':2,3')-dianhydride, 1,5-anhydro-2-deoxy-D-arabino-hex-1-enitol ('D-glucal'), and may therefore be of interest for future applications of the dextransucrase acceptor reaction.
Collapse
Affiliation(s)
- Kristin Demuth
- Technical University, Langer Kamp 5, D-38106 Braunschweig, Germany
| | | | | |
Collapse
|
16
|
Dols-Lafargue M, Willemot RM, Monsan PF, Remaud-Simeon M. Reactor optimization for alpha-1,2 glucooligosaccharide synthesis by immobilized dextransucrase. Biotechnol Bioeng 2001; 75:276-84. [PMID: 11590600 DOI: 10.1002/bit.1183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The immobilization of dextransucrase in Ca-alginate beads relies on the close association between dextran polymer and dextransucrase. However, high amounts of dextran in the enzyme preparation drastically limit the specific activity of the immobilized enzyme (4 U/mL of alginate beads). Moreover, even in the absence of diffusion limitation at the batch conditions used, the enzyme behavior is modified by entrapment so that the dextran yield increases and the alpha-1,2 glucooligosaccharides (GOS) are produced with a lower yield (46.6% instead of 56.7%) and have a lower mean degree of polymerization than with the free dextransucrase. When the immobilized catalyst is used in a continuous reaction, the reactor flow rate necessary to obtain high conversion of the substrates is very low, leading to external diffusion resistance. As a result, dextran synthesis is even higher than in the batch reaction, and its accumulation within the alginate beads limits the operational stability of the catalyst and decreases glucooligosaccharide yield and productivity. This effect can be limited by using reactor columns with length to diameter ratio > or =20, and by optimizing the substrate concentrations in the feed solution: the best productivity obtained was 3.74 g. U(-1). h(-1), with an alpha-1,2 GOS yield of 36%.
Collapse
Affiliation(s)
- M Dols-Lafargue
- Laboratoire de Biochimie et Technologie des Aliments, Avenue des Facultés, 33405, Talence cedex France
| | | | | | | |
Collapse
|
17
|
|
18
|
Dols-Lafargue M, Willemot RM, Monsan PF, Remaud-Simeon M. Factors affecting alpha,-1,2 glucooligosaccharide synthesis by Leuconostoc mesenteroides NRRL B-1299 dextransucrase. Biotechnol Bioeng 2001; 74:498-504. [PMID: 11494217 DOI: 10.1002/bit.1141] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The optimization of alpha-1,2 glucooligosaccharide (GOS) synthesis from maltose and sucrose by Leuconostoc mesenteroides NRRL B-1299 dextransucrase was achieved using experimental design and consecutive analysis of the key parameters. An increase of the pH of the reaction from 5.4 to 6.7 and of the temperature from 25 to 40 degrees C significantly favored alpha-1,2 GOS synthesis, thanks to a significant decrease of the side reactions, i.e., dextran and leucrose synthesis. These positive effects were not sufficient to compensate for the decrease of enzyme stability caused by the use of high pH and temperature. However, the critical parameters were the sucrose to maltose concentration ratio (S/M) and the total sugar concentration (TSC). Alpha1,2 GOS synthesis was favored at high S/M ratios. But using these conditions also led to an increase of side reactions which could be modulated by choosing the appropriate TSC. Finally, with S/M = 4 and TSC = 45% w/v, dextran and leucrose productions were limited and the final alpha-1,2 GOS yield reached 56.7%, the total GOS yield being 88%.
Collapse
Affiliation(s)
- M Dols-Lafargue
- Laboratoire de Biochimie et Technologie des Aliments, Avenue des Facultés, 33405 Talence Cedex, France
| | | | | | | |
Collapse
|
19
|
Monsan P, Bozonnet S, Albenne C, Joucla G, Willemot RM, Remaud-Siméon M. Homopolysaccharides from lactic acid bacteria. Int Dairy J 2001. [DOI: 10.1016/s0958-6946(01)00113-3] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Kinetics of the dextransucrase acceptor reaction with maltose—experimental results and modeling. Enzyme Microb Technol 1999. [DOI: 10.1016/s0141-0229(98)00150-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Dols M, Remaud-Simeon M, Willemot RM, Demuth B, Jordening HJ, Buchholz K, Monsan P. Kinetic modeling of oligosaccharide synthesis catalyzed by leuconostoc mesenteroides NRRL B-1299 dextransucrase. Biotechnol Bioeng 1999; 63:308-15. [PMID: 10099610 DOI: 10.1002/(sici)1097-0290(19990505)63:3<308::aid-bit7>3.0.co;2-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The kinetic behavior of soluble and insoluble forms of dextransucrase from Leuconostoc mesenteroides NRRL B-1299 was investigated with sucrose as substrate and maltose as acceptor. To study the parameters involved, a kinetic model was applied that was previously developed for L. mesenteroides NRRL B-512F dextransucrase. There are significant correlations between the parameters of the soluble form of B-1299 dextransucrase and those calculated for the B-512F enzyme; that is, their properties are comparable and differ from those of the insoluble form of B-1299 dextransucrase. Whereas the calculated parameters for high maltose concentrations describe the kinetic behavior very well, the time curves for low maltose concentrations were not described correctly. Therefore, the parameters were calculated separately for the two ranges. Copyright 1999 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- M Dols
- Laboratoire de Biotechnologie-Bioprocedes, UMR 5504 INSA/CNRS and Laboratoire Associe INRA, INSA, Complexe scientifique de Rangueil, 31 077 Toulouse cedex 4, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Girard E, Legoy MD. Activity and stability of dextransucrase from Leuconostoc mesenteroides NRRL B-512F in the presence of organic solvents. Enzyme Microb Technol 1999. [DOI: 10.1016/s0141-0229(98)00166-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Characterization of dextransucrases fromLeuconostoc mesenteroides NRRL B-1299. Appl Biochem Biotechnol 1997. [DOI: 10.1007/bf02787983] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Simpson CL, Cheetham NWH, Jacques NA. Four glucosyltransferases, GtfJ, GtfK, GtfL and GtfM, from Streptococcus salivarius ATCC 25975. MICROBIOLOGY (READING, ENGLAND) 1995; 141 ( Pt 6):1451-1460. [PMID: 7545511 DOI: 10.1099/13500872-141-6-1451] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The four recombinant glucosyltransferases (GTFs), GtfJ, GtfK, GtfL and GtfM, that had previously been cloned from Streptococcus salivarius ATCC 25975, were individually expressed in Escherichia coli and their glucan products and kinetic properties were analysed. GtfJ was a primer-dependent GTF which synthesized an insoluble glucan composed mainly of alpha-(1-->3)-linked glucosyl residues in the presence of dextran T-10. GtfK was primer-stimulated, and produced a linear soluble dextran without any detectable branch points both in the absence and in the presence of dextran T-10. GtfL was primer-independent and produced a mixed-linkage insoluble glucan composed of approximately equal proportions of alpha-(1-->3)- and alpha-(1-->6)-linked glucosyl residues. GtfL was inhibited by dextran T-10. GtfM was primer-independent and produced a soluble dextran with approximately 5% alpha-(1-->3)-linked glucosyl residues. GtfM was essentially unaffected by the presence of dextran T-10. The results confirmed that each enzyme represented one of the four possible combinations of primer-dependency and product solubility and that each possessed unique biosynthetic properties. The soluble dextrans formed by GtfK and GtfM, as well as the mixed-linkage insoluble glucan formed by GtfL, were also capable of acting as primers for the primer-dependent GtfJ and the primer-stimulated GtfK. Unexpectedly, the linear dextran produced by GtfK was by far the least effective either at priming itself or at activating and priming the primer-dependent GtfJ.
Collapse
Affiliation(s)
- Christine L Simpson
- 1Institute of Dental Research, 2 Chalmers Street, Surry Hills, NSW 2010, Australia
| | - Norman W H Cheetham
- 1Institute of Dental Research, 2 Chalmers Street, Surry Hills, NSW 2010, Australia
| | - Nicholas A Jacques
- 1Institute of Dental Research, 2 Chalmers Street, Surry Hills, NSW 2010, Australia
| |
Collapse
|
25
|
Robyt JF. Mechanisms in the glucansucrase synthesis of polysaccharides and oligosaccharides from sucrose. Adv Carbohydr Chem Biochem 1995; 51:133-68. [PMID: 7484361 DOI: 10.1016/s0065-2318(08)60193-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- J F Robyt
- Department of Biochemistry and Biophysics, Iowa State University, Ames,USA
| |
Collapse
|
26
|
Tanriseven A, Robyt JF. Inhibition of dextran synthesis by acceptor reactions of dextransucrase, and the demonstration of a separate acceptor binding-site. Carbohydr Res 1992. [DOI: 10.1016/s0008-6215(00)90504-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
|
28
|
Kobs SF, Mayer RM. Photolabeling of dextransucrase from Streptococcus sanguis with p-azidophenyl alpha-D-glucopyranoside. Carbohydr Res 1991; 211:317-26. [PMID: 1837494 DOI: 10.1016/0008-6215(91)80101-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dextransucrase from Streptococcus sanguis ATCC 10558 was photolabeled using p-azidophenyl alpha-D-glucopyranoside with an apparent rate constant of inactivation of 1.40 min-1. The dissociation constant for this compound, which acts as an acceptor molecule in the enzymatic reaction, is 90 microM. Apparently two acceptor binding sites exist on dextransucrase as shown by (i.) photolabeling the enzyme with p-azidophenyl-alpha-D-[5,6-3H]glucopyranoside and (ii.) fluorescence titration experiments.
Collapse
Affiliation(s)
- S F Kobs
- Department of Chemistry, Ohio State University, Columbus 43210
| | | |
Collapse
|
29
|
Minami T, Fujiwara T, Ooshima T, Nakajima Y, Hamada S. Interaction of structural isomers of sucrose in the reaction between sucrose and glucosyltransferases from mutans streptococci. ORAL MICROBIOLOGY AND IMMUNOLOGY 1990; 5:189-94. [PMID: 2150553 DOI: 10.1111/j.1399-302x.1990.tb00644.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Structural isomers of sucrose, i.e. disaccharides composed of glucose and fructose molecules with different glucosidic linkages, were examined for their effect on the reaction between sucrose and various glucosyltransferases (GTases) from Streptococcus mutans MT8148 and Streptococcus sobrinus 6715. Trehalulose (alpha 1-1), turanose (alpha 1-3), maltulose (alpha 1-4), and palatinose (alpha 1-6) were used as the sucrose analogues. Mutans streptococci were found not to utilize these sucrose analogues. Analysis of enzymatic products of GTase and sucrose with thin layer chromatography clearly revealed that glucan synthesis from [14C]sucrose by the various purified GTase preparations from S. mutans and S. sobrinus was inhibited in the presence of these sucrose analogues except turanose, resulting in the release of increased amounts of [14C]fructose and [14C]oligosaccharides. It was also found that the fructose residues in the oligosaccharides were derived from those of sucrose analogues but not sucrose itself. The Lineweaver-Burk plots of the substrate saturation kinetics of GTase vs sucrose indicated increased Km and Vmax in the presence of sucrose analogue, as compared with sucrose alone. Finally, these sucrose analogues except turanose inhibited sucrose dependent cellular adherence of S. sobrinus 6715 to a glass surface, while they scarcely inhibited the adherence of S. mutans MT8148. Among the analogues, maltulose appeared the most effective inhibitor against GTases in general.
Collapse
Affiliation(s)
- T Minami
- Osaka University, Research and Development Department, Japan
| | | | | | | | | |
Collapse
|
30
|
|
31
|
Koga T, Horikoshi T, Fujiwara T, Hamada S. Effects of panose on glucan synthesis and cellular adherence by Streptococcus mutans. Microbiol Immunol 1988; 32:25-31. [PMID: 3374403 DOI: 10.1111/j.1348-0421.1988.tb01362.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effects of panose on glucan synthesis and sucrose-dependent cellular adherence by Streptococcus mutans were investigated. Panose effectively inhibited glucan synthesis from sucrose by glucosyltransferases from S. mutans strain 6715, but increasing amounts of panose increased the release of fructose from sucrose by the enzymes. On the other hand, production of a series of oligosaccharides of increasing size by the enzymes was markedly enhanced in the presence of panose. These results indicate that panose activates the enzymes and that the inhibition of glucan synthesis by panose is due to the transfer of the glucosyl group of sucrose to panose. Sucrose-dependent adherence of cells of various S. mutans strains to a glass surface was also inhibited by panose.
Collapse
Affiliation(s)
- T Koga
- Department of Dental Research, National Institute of Health, Tokyo
| | | | | | | |
Collapse
|
32
|
Oriol E, Paul F, Monsan P, Heyraud A, Rinaudo M. Transfer reaction of glucosyl residues to maltose and purified oligosaccharides using highly active Leuconostoc mesenteroides NRRL B-512F dextransucrase. Ann N Y Acad Sci 1987; 501:210-5. [PMID: 2955732 DOI: 10.1111/j.1749-6632.1987.tb45711.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
33
|
|
34
|
Binder TP, Robyt JF. Inhibition- and acceptor-reaction studies of Streptococcus mutans 6715 glucosyltransferases with 3-deoxysucrose, 3-deoxy-3-fluorosucrose, and alpha-D-allopyranosyl beta-D-fructofuranoside. Carbohydr Res 1986; 154:229-38. [PMID: 2947681 DOI: 10.1016/s0008-6215(00)90035-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Three new sucrose analogs modified at C-3 have been studied as inhibitors and substrates for the glucosyltransferases (glucansucrases) of Streptococcus mutans 6715. Although none of the analogs were found to be substrates for polymer synthesis with either the soluble-polysaccharide producing enzyme, GTF-S, or the insoluble-polysaccharide producing enzyme, GTF-I, 3-deoxysucrose and 3-deoxy-3-fluorosucrose were able to donate glycosyl residues for acceptor reactions with both enzymes. Modification at C-3 considerably decreased the binding at the active site of both enzymes, since all of the analogs had inhibition constants at least one order of magnitude greater than the Km value for sucrose.
Collapse
|
35
|
Abstract
Dextransucrase, from Streptococcus sanguis ATCC 10558, was immobilized on hydroxylapatite and was "charged" in short pulses with labeled sucrose, as previously described [V. K. Parnaik, G. A. Luzio, D. A. Grahame, S. L. Ditson, and R. M. Mayer (1983) Carbohydr. Res. 121, 257-268]. The "charged" enzyme has been shown to contain both bound glucose and gluco-oligosaccharides. The reactivity of this form of the enzyme has been studied, and shown to have unexpected behavior. Earlier pulse-chase experiments [J. F. Robyt, B. K. Kimble, and T. F. Walseth (1979) Arch. Biochem. Biophys. 165, 634-640; S. L. Ditson and R. M. Mayer (1984) Carbohydr. Res. 126, 170-175], carried out with high concentrations of unlabeled sucrose in the chase, resulted in a rapid decrease in isotope at the reducing termini of enzyme-bound oligosaccharides. However, in the present work, in which the pulsed enzyme was chased with low concentrations of unlabeled sucrose, we observed an increase in the radioactive reducing termini. The possibility that this was due to the enzymatic hydrolysis of dextran has been ruled out. Data presented demonstrate that the enzyme catalyzes the depolymerization of the bound oligosaccharides. Individual glucosyl residues of the oligosaccharides are transferred to acceptors, such as added maltose to form a trisaccharide, or water to form glucose. Similarly, the glucosyl residues can be transferred to added fructose to form sucrose. The studies also provide evidence that the oligosaccharides are slowly released from the enzyme. The ability of the enzyme to catalyze the reverse of the glucosyl transfer reaction involving acceptors was also examined. It was observed that glucose residues transferred by dextransucrase to an acceptor can also be removed to produce sucrose when fructose is added.
Collapse
|
36
|
Paul F, Oriol E, Auriol D, Monsan P. Acceptor reaction of a highly purified dextransucrase with maltose and oligosaccharides. Application to the synthesis of controlled-molecular-weight dextrans. Carbohydr Res 1986. [DOI: 10.1016/s0008-6215(00)90063-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Nisizawa T, Takeuchi K, Imai S, Kitahata S, Okada S. Difference in mode of inhibition between alpha-D-xylosyl beta-D-fructoside and alpha-isomaltosyl beta-D-fructoside in synthesis of glucan by Streptococcus mutans D-glucosyltransferase. Carbohydr Res 1986; 147:135-44. [PMID: 2938734 DOI: 10.1016/0008-6215(86)85012-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Both alpha-isomaltosyl beta-D-fructoside and alpha-D-xylosyl beta-D-fructoside show strong inhibition of the synthesis of water-insoluble and water-soluble D-glucans from sucrose by a partially purified preparation of a D-glucosyltransferase (GTase) from Streptococcus mutans 6715; however, the inhibitory modes differ substantially. In the presence of alpha-isomaltosyl beta-D-fructoside, the production of reducing sugars and the consumption of sucrose are remarkably enhanced, compared with a control of sucrose alone. Under these conditions, a large proportion of low-molecular-weight glycan (lmwg) and a series of nonreducing oligosaccharides (both containing D-fructosyl groups or residues) are produced. In contrast, in the presence of alpha-D-xylosyl beta-D-fructoside, the production of reducing sugars and the sucrose consumption are strikingly suppressed, and no lmwg or oligosaccharides are produced. Thus, it may be concluded that alpha-isomaltosyl beta-D-fructoside acts as an alternative acceptor for the D-glucosyl and/or D-glucanosyl transfer reactions of the enzyme, and serves to lessen the formation of insoluble and soluble D-glucan, although it stimulates the transferring activity of the enzyme. On the other hand, alpha-D-xylosyl beta-D-fructoside competitively inhibits the sucrose-splitting activity of the enzyme as an analog to sucrose, and thereby diminishes the synthesis of D-glucan.
Collapse
|
38
|
Grahame DA, Mayer RM. Purification, and comparison, of two forms of dextransucrase from Streptococcus sanguis. Carbohydr Res 1985; 142:285-98. [PMID: 2934131 DOI: 10.1016/0008-6215(85)85030-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A procedure has been developed whereby native and proteolyzed forms of dextransucrase have been purified; it involves gel filtration, and hydroxylapatite chromatography in the presence of 0.10% sodium dodecyl sulfate. This procedure is highly reproducible, and permits approximately 30% recovery of high purity (94% homogeneous) enzyme as an inactive, SDS complex that can be reactivated by the addition of Triton X-100. The purified enzymes have been compared with regard to amino acid compositions, and isoelectric and catalytic properties. An analysis of the structure of their product D-glucans was also made. Although the structural characteristics of the enzyme forms differ, proteolysis does not cause alterations in their catalytic properties.
Collapse
|
39
|
Abstract
Members of a series of deoxyhalosucrose analogs substituted at one, two, or three primary carbon atoms with bromine or chlorine were prepared. Dextransucrase isolated from Streptococcus sanguis was separately treated with 6-bromo-6-deoxysucrose, 6,6'-dibromo-6,6'-dideoxysucrose, 6,1',6'-tribromotrideoxysucrose, and 6,6'-dichlorodideoxysucrose, in order to determine if they were inactivators. Variation in time of exposure, and in the concentration of the sucrose analogs, did not yield significant irreversible inactivation. In supplementary studies, it was found that the compounds serve as weak, reversible inhibitors.
Collapse
|
40
|
|
41
|
Fukui K, Moriyama T. Effect of maltose on glucan synthesis by glucosyltransferases of Streptococcus mutans. Microbiol Immunol 1983; 27:917-27. [PMID: 6230510 DOI: 10.1111/j.1348-0421.1983.tb00657.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The effects of added maltose on the activities of a preparation of crude glucosyltransferases (GTases) and purified dextransucrase (DS) were investigated to elucidate the inhibition mechanism of maltose on the synthesis of water-insoluble glucan (ISG) in Streptococcus mutans HS-6. Tri- and tetra-saccharides produced by crude GTases from sucrose in the presence of maltose were identified as panose (4-alpha-isomaltosylglucose) and 4-alpha-isomaltotriosylglucose which were responsible for the activity of DS involved in crude GTases. Kinetic studies on crude GTases in the presence of maltose showed similar results to those of DS except that the synthesis of ISG in the crude GTases was inhibited. Comparative studies of soluble products of crude GTases and DS in the presence of maltose were performed employing gel filtration on Sephadex G-15. The existence of oligosaccharides above hexasaccharide was revealed as the products of DS but not of crude GTases. These findings were interpreted in terms of the previously proposed mechanism of ISG synthesis by S. mutans, i.e., ISG should be synthesized from the preformed soluble glucan. It was indicated that oligosaccharides above hexasaccharide are utilized for ISG synthesis in the crude GTases system. From these results, the inhibitory mechanism of added maltose on ISG synthesis by crude GTases is considered as follows: DS synthesizes a series of 4-alpha-isomaltodextrinylglucose from sucrose and maltose, and the increase of added maltose results in the decrease of oligosaccharides responsible for synthesis of ISG.
Collapse
|
42
|
Parnaik VK, Luzio GA, Grahame DA, Ditson SL, Mayer RM. A D-glucosylated form of dextransucrase: preparation and characteristics. Carbohydr Res 1983; 121:257-68. [PMID: 6230150 DOI: 10.1016/0008-6215(83)84022-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dextransucrase was treated with [14C]sucrose, and the product applied to gel-permeation columns. In the absence of the detergents SDS and Triton X-100, poor recovery of enzyme was observed; however, that enzyme which was recovered was labeled. In the presence of detergents, recovery was increased, but the material appeared to be a large aggregate (mol. wt. greater than 5 X 10(6) ). In addition, the ratio of D-glucose to enzyme suggested that a polymer had been formed. Disc-gel electrophoresis in the presence of a mixture of SDS and Triton X-100 showed similar results, and indicated that the aggregate was disrupted upon treatment with dextranase. Native enzyme that had been immobilized on hydroxylapatite could also be labeled with [14C]sucrose, and the labeling followed saturation kinetics. The labeled protein could be released from the gel with 8M urea, but was aggregated. Radioactive sugars, free from protein, could be released by heating the labeled enzyme. The sugars released consisted of a mixture of D-glucose with oligosaccharides having an average chain-length of 17 D-glucosyl residues. The significance of these observations is discussed.
Collapse
|
43
|
Luzio GA, Parnaik VK, Mayer RM. A D-glucosylated form of dextransucrase: demonstration of partial reactions. Carbohydr Res 1983; 121:269-78. [PMID: 6230151 DOI: 10.1016/0008-6215(83)84023-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A D-glucosylated form of dextransucrase, whose preparation and characteristics have just been reported in Carbohydr. Res., was employed in a series of studies designed to explore the question of whether the bound sugars participate in the reactions catalyzed by the enzyme. When exposed to maltose, a good acceptor-substrate, monomeric D-glucosyl groups were rapidly transferred to the disaccharide, affording a trisaccharide. In the absence of an acceptor, monomeric D-glucose was released from the enzyme by hydrolysis. In a reaction with D-fructose, the charged enzyme catalyzed the formation of sucrose. Finally, in the presence of unlabeled sucrose, monomeric D-glucosyl groups were chased into enzyme-associated oligomers. Evidence is also presented which indicates that the various pathways for the bound D-glucosyl groups are competitive. The significance of these observations is discussed.
Collapse
|
44
|
Robyt JF, Martin PJ. Mechanism of synthesis of D-glucans by D-glucosyltransferases from Streptococcus mutans 6715. Carbohydr Res 1983; 113:301-15. [PMID: 6220802 DOI: 10.1016/0008-6215(83)88245-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Two glucosyltransferases from Streptococcus mutans 6715 were purified and separated. One of the glucosyltransferases synthesized an insoluble glucan, and the other, a soluble glucan. The enzymes were immobilized on Bio-Gel P-2 beads, and the mechanism of glucan synthesis was studied by pulse and chase techniques with 14C-sucrose. Label was associated with the immobilized enzymes. The label could be quantitatively released by heating at pH 2. Analysis of the labeled products from the pulse experiment showed labeled glucose and labeled glucan; the chase experiment showed labeled glucan and a significant decrease in labeled glucose. The glucans from the pulse and the chase experiments were separated from glucose by chromatography on Bio-Gel P-6. They were reduced with sodium borohydride, and the products hydrolyzed with acid. Analysis of the labeled products from the reduced and hydrolyzed, pulsed glucans showed labeled glucose and labeled glucitol; label in the glucitol was greatly decreased in the chase experiment. These experiments showed that glucose and glucan were covalently attached to the active site of the enzymes during synthesis, and that the glucose was being transferred to the reducing end of the glucan chain. A mechanism for the synthesis of the glucans is proposed in which there are two catalytic groups on each enzyme that holds glucosyl and glucanosyl units. During synthesis, the glucosyl and glucanosyl units alternate between the two sites, giving elongation of the glucans from the reducing end. The addition of increasing amounts of B-512F dextran to the insoluble-glucan-forming glucosyltransferase produced a decrease in the proportion of insoluble glucan formed and a concomitant increase in a soluble glucan. The total amount of glucan synthesized (soluble plus insoluble) was increased 1.6 times over the amount of insoluble glucan formed when no exogenous dextran was added. It is shown that the addition of B-512F dextran affects the solubility of the synthesized alpha-(1 to 3)-glucan by accepting alpha-(1-3)-glucan chains at various positions along the dextran chain, to give a soluble, graft polymer.
Collapse
|
45
|
|
46
|
|
47
|
|
48
|
|