1
|
Poursharifi N, Hassanpouramiri M, Zink A, Ucuncu M, Parlak O. Transdermal Sensing of Enzyme Biomarker Enabled by Chemo-Responsive Probe-Modified Epidermal Microneedle Patch in Human Skin Tissue. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403758. [PMID: 38733567 DOI: 10.1002/adma.202403758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Wearable bioelectronics represents a significant breakthrough in healthcare settings, particularly in (bio)sensing which offers an alternative way to track individual health for diagnostics and therapy. However, there has been no notable improvement in the field of cancer, particularly for skin cancer. Here, a wearable bioelectronic patch is established for transdermal sensing of the melanoma biomarker, tyrosinase (Tyr), using a microneedle array integrated with a surface-bound chemo-responsive smart probe to enable target-specific electrochemical detection of Tyr directly from human skin tissue. The results presented herein demonstrate the feasibility of a transdermal microneedle sensor for direct quantification of enzyme biomarkers in an ex vivo skin model. Initial performance analysis of the transdermal microneedle sensor proves that the designed methodology can be an alternative for fast and reliable diagnosis of melanoma and the evaluation of skin moles. The innovative approach presented here may revolutionize the landscape of skin monitoring by offering a nondisruptive means for continuous surveillance and timely intervention of skin anomalies, such as inflammatory skin diseases or allergies and can be extended to the screening of multiple responses of complementary biomarkers with simple modification in device design.
Collapse
Affiliation(s)
- Nazanin Poursharifi
- Department of Medicine, Solna, Division of Dermatology and Venereology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Morteza Hassanpouramiri
- Department of Medicine, Solna, Division of Dermatology and Venereology, Karolinska Institutet, Stockholm, 171 77, Sweden
- Department of Dermatology and Allergy, TUM School of Medicine and Health, Technical University of Munich, 80802, Munich, Germany
| | - Alexander Zink
- Department of Medicine, Solna, Division of Dermatology and Venereology, Karolinska Institutet, Stockholm, 171 77, Sweden
- Department of Dermatology and Allergy, TUM School of Medicine and Health, Technical University of Munich, 80802, Munich, Germany
| | - Muhammed Ucuncu
- Department of Analytical Chemistry, Faculty of Pharmacy, İzmir Katip Çelebi University, İzmir, 35620, Türkiye
| | - Onur Parlak
- Department of Medicine, Solna, Division of Dermatology and Venereology, Karolinska Institutet, Stockholm, 171 77, Sweden
- Department of Dermatology and Allergy, TUM School of Medicine and Health, Technical University of Munich, 80802, Munich, Germany
- Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, 171 77, Sweden
- Centre for Molecular Medicine, Karolinska University Hospital, Stockholm, 171 64, Sweden
| |
Collapse
|
2
|
Mintz Hemed N, Leal-Ortiz S, Zhao ET, Melosh NA. On-Demand, Reversible, Ultrasensitive Polymer Membrane Based on Molecular Imprinting Polymer. ACS NANO 2023; 17:5632-5643. [PMID: 36913954 PMCID: PMC10062346 DOI: 10.1021/acsnano.2c11618] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The development of in vivo, longitudinal, real-time monitoring devices is an essential step toward continuous, precision health monitoring. Molecularly imprinted polymers (MIPs) are popular sensor capture agents that are more robust than antibodies and have been used for sensors, drug delivery, affinity separations, assays, and solid-phase extraction. However, MIP sensors are typically limited to one-time use due to their high binding affinity (>107 M-1) and slow-release kinetics (<10-4 μM/sec). To overcome this challenge, current research has focused on stimuli-responsive MIPs (SR-MIPs), which undergo a conformational change induced by external stimuli to reverse molecular binding, requiring additional chemicals or outside stimuli. Here, we demonstrate fully reversible MIP sensors based on electrostatic repulsion. Once the target analyte is bound within a thin film MIP on an electrode, a small electrical potential successfully releases the bound molecules, enabling repeated, accurate measurements. We demonstrate an electrostatically refreshed dopamine sensor with a 760 pM limit of detection, linear response profile, and accuracy even after 30 sensing-release cycles. These sensors could repeatedly detect <1 nM dopamine released from PC-12 cells in vitro, demonstrating they can longitudinally measure low concentrations in complex biological environments without clogging. Our work provides a simple and effective strategy for enhancing the use of MIPs-based biosensors for all charged molecules in continuous, real-time health monitoring and other sensing applications.
Collapse
Affiliation(s)
- Nofar Mintz Hemed
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Sergio Leal-Ortiz
- Department
of Psychiatry and Behavioral Sciences, Stanford
University, Stanford, California 94304, United States
| | - Eric T. Zhao
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Nicholas A. Melosh
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Hurben AK, Erber LN, Tretyakova NY, Doran TM. Proteome-Wide Profiling of Cellular Targets Modified by Dopamine Metabolites Using a Bio-Orthogonally Functionalized Catecholamine. ACS Chem Biol 2021; 16:2581-2594. [PMID: 34726906 PMCID: PMC9872492 DOI: 10.1021/acschembio.1c00629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Selective death of midbrain dopaminergic neurons is a hallmark pathology of Parkinson's disease (PD), but the molecular mechanisms that initiate the cascade of events resulting in neurodegeneration in PD remain unclear. Compelling evidence suggests that dysregulation of dopamine (DA) induces neuronal stress and damage responses that are operative processes in striatal degeneration preceding PD-like symptoms. Improper DA sequestration to vesicles raises cytosolic DA levels, which is rapidly converted into electrophilic dopaquinone species (DQs) that react readily with protein nucleophiles forming covalent modifications that alter the native structure and function of proteins. These so-called DA-protein adducts (DPAs) have been reported to play a role in neurotoxicity, and their abundance with respect to neurodegeneration has been linked to clinical and pathological features of PD that suggest that they play a causal role in PD pathogenesis. Therefore, characterizing DPAs is a critical first step in understanding the susceptibility of midbrain dopaminergic neurons during PD. To help achieve this goal, we report here a novel DA-mimetic (DAyne) containing a biorthogonal alkyne handle that exhibits a reactivity profile similar to DA in aqueous buffers. By linking DPAs formed with DAyne to a fluorescent reporter molecule, DPAs were visualized in fixed cells and within lysates. DAyne enabled global mapping of cellular proteins affected by DQ modification and their bioactive pathways through enrichment. Our proteomic profiling of DPAs in neuronal SH-SY5Y cells indicates that proteins susceptible to DPA formation are extant throughout the proteome, potentially influencing several diverse biological pathways involved in PD such as endoplasmic reticulum (ER) stress, cytoskeletal instability, proteotoxicity, and clathrin function. We validated that a protein involved in the ER stress pathway, protein disulfide isomerase 3 (PDIA3), which was enriched in our chemoproteomic analysis, is functionally inhibited by DA, providing evidence that dysregulated cellular DA may induce or exacerbate ER stress. Thus, DAyne provided new mechanistic insights into DA toxicity that may be observed during PD by enabling characterization of DPAs generated reproducibly at physiologically relevant quinone exposures. We anticipate our design and application of this reactivity-based probe will be generally applicable for clarifying mechanisms of metabolic quinone toxicity.
Collapse
Affiliation(s)
- Alexander K. Hurben
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Luke N. Erber
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Todd M. Doran
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Fan YF, Zhu SX, Hou FB, Zhao DF, Pan QS, Xiang YW, Qian XK, Ge GB, Wang P. Spectrophotometric Assays for Sensing Tyrosinase Activity and Their Applications. BIOSENSORS 2021; 11:290. [PMID: 34436092 PMCID: PMC8393227 DOI: 10.3390/bios11080290] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022]
Abstract
Tyrosinase (TYR, E.C. 1.14.18.1), a critical enzyme participating in melanogenesis, catalyzes the first two steps in melanin biosynthesis including the ortho-hydroxylation of L-tyrosine and the oxidation of L-DOPA. Previous pharmacological investigations have revealed that an abnormal level of TYR is tightly associated with various dermatoses, including albinism, age spots, and malignant melanoma. TYR inhibitors can partially block the formation of pigment, which are always used for improving skin tone and treating dermatoses. The practical and reliable assays for monitoring TYR activity levels are very useful for both disease diagnosis and drug discovery. This review comprehensively summarizes structural and enzymatic characteristics, catalytic mechanism and substrate preference of TYR, as well as the recent advances in biochemical assays for sensing TYR activity and their biomedical applications. The design strategies of various TYR substrates, alongside with several lists of all reported biochemical assays for sensing TYR including analytical conditions and kinetic parameters, are presented for the first time. Additionally, the biomedical applications and future perspectives of these optical assays are also highlighted. The information and knowledge presented in this review offer a group of practical and reliable assays and imaging tools for sensing TYR activities in complex biological systems, which strongly facilitates high-throughput screening TYR inhibitors and further investigations on the relevance of TYR to human diseases.
Collapse
Affiliation(s)
- Yu-Fan Fan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Si-Xing Zhu
- Institute of Science, Technology and Humanities, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Fan-Bin Hou
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Dong-Fang Zhao
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Qiu-Sha Pan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Yan-Wei Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Xing-Kai Qian
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Ping Wang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| |
Collapse
|
5
|
Toxic Feedback Loop Involving Iron, Reactive Oxygen Species, α-Synuclein and Neuromelanin in Parkinson's Disease and Intervention with Turmeric. Mol Neurobiol 2021; 58:5920-5936. [PMID: 34426907 DOI: 10.1007/s12035-021-02516-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a movement disorder associated with severe loss of mainly dopaminergic neurons in the substantia nigra. Pathological hallmarks include Lewy bodies, and loss of neuromelanin, due to degeneration of neuromelanin-containing dopaminergic neurons. Despite being described over 200 years ago, the etiology of PD remains unknown. Here, we highlight the roles of reactive oxygen species (ROS), iron, alpha synuclein (α-syn) and neuromelanin in a toxic feedback loop culminating in neuronal death and spread of the disease. Dopaminergic neurons are particularly vulnerable due to decreased antioxidant concentration with aging, constant exposure to ROS and presence of neurotoxic compounds (e.g. ortho-quinones). ROS and iron increase each other's levels, creating a state of oxidative stress. α-Syn aggregation is influenced by ROS and iron but also increases ROS and iron via its induced mitochondrial dysfunction and ferric-reductase activity. Neuromelanin's binding affinity is affected by increased ROS and iron. Furthermore, during neuronal death, neuromelanin is degraded in the extracellular space, releasing its bound toxins. This cycle of events continues to neighboring neurons in the form of a toxic loop, causing PD pathology. The increase in ROS and iron may be an important target for therapies to disrupt this toxic loop, and therefore diets rich in certain 'nutraceuticals' may be beneficial. Turmeric is an attractive candidate, as it is known to have anti-oxidant and iron chelating properties. More studies are needed to test this theory and if validated, this would be a step towards development of lifestyle-based therapeutic modalities to complement existing PD treatments.
Collapse
|
6
|
Yu XA, Bai X, Zhang R, Zhang Y, Hu Y, Lu M, Yu BY, Liu S, Tian J. A nanosensor for precise discrimination of nephrotoxic drug mechanisms via dynamic fluorescence fingerprint strategy. Anal Chim Acta 2021; 1160:338447. [PMID: 33894967 DOI: 10.1016/j.aca.2021.338447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 11/18/2022]
Abstract
Drug-induced kidney injury causes structural or functional abnormalities of kidney, seriously affecting clinical practice and drug discovery. However, rapid and effective identification of nephrotoxic drug mechanisms is yet a challenging task arising from the complexity and diversity of various nephrotoxic mechanisms. Herein, we have constructed a polydopamine-polyethyleneimine/quantum dots sensor to instantaneously read out the nephrotoxic drugs mechanisms based on the disparate cell surface phenotypes. Cell surface components induced by multiple nephrotoxic drugs can change the fluorescence emission of multicolor quantum dots, generating their corresponding fluorescent fingerprints. The fluorescence response signatures induced by different nephrotoxic agents are gained with 84% accuracy via linear discriminant analysis. Furthermore, taking the time-toxicity relationship into consideration, dynamic fluorescent fingerprint is obtained through continuous monitoring the progress of renal cell damage, achieving 100% precise classification for nephrotoxic mechanisms of four types of antibiotics. Notably, the fluorescent fingerprint-based high-throughput sensor has been demonstrated by successfully distinguishing nephrotoxic drugs in seconds, employing a promising protocol to discriminate the specific mechanism of nephrotoxic drugs, as well as drug safety evaluation.
Collapse
Affiliation(s)
- Xie-An Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Xuefei Bai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ran Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ying Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yiting Hu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Mi Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Bo-Yang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Shijia Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
7
|
Manzano-Nicolas J, Taboada-Rodriguez A, Teruel-Puche JA, Marin-Iniesta F, Garcia-Molina F, Garcia-Canovas F, Tudela-Serrano J, Muñoz-Muñoz JL. Kinetic characterization of the oxidation of catecolamines and related compounds by laccase. Int J Biol Macromol 2020; 164:1256-1266. [DOI: 10.1016/j.ijbiomac.2020.07.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 11/28/2022]
|
8
|
Ito S, Sugumaran M, Wakamatsu K. Chemical Reactivities of ortho-Quinones Produced in Living Organisms: Fate of Quinonoid Products Formed by Tyrosinase and Phenoloxidase Action on Phenols and Catechols. Int J Mol Sci 2020; 21:ijms21176080. [PMID: 32846902 PMCID: PMC7504153 DOI: 10.3390/ijms21176080] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022] Open
Abstract
Tyrosinase catalyzes the oxidation of phenols and catechols (o-diphenols) to o-quinones. The reactivities of o-quinones thus generated are responsible for oxidative browning of plant products, sclerotization of insect cuticle, defense reaction in arthropods, tunichrome biochemistry in tunicates, production of mussel glue, and most importantly melanin biosynthesis in all organisms. These reactions also form a set of major reactions that are of nonenzymatic origin in nature. In this review, we summarized the chemical fates of o-quinones. Many of the reactions of o-quinones proceed extremely fast with a half-life of less than a second. As a result, the corresponding quinone production can only be detected through rapid scanning spectrophotometry. Michael-1,6-addition with thiols, intramolecular cyclization reaction with side chain amino groups, and the redox regeneration to original catechol represent some of the fast reactions exhibited by o-quinones, while, nucleophilic addition of carboxyl group, alcoholic group, and water are mostly slow reactions. A variety of catecholamines also exhibit side chain desaturation through tautomeric quinone methide formation. Therefore, quinone methide tautomers also play a pivotal role in the fate of numerous o-quinones. Armed with such wide and dangerous reactivity, o-quinones are capable of modifying the structure of important cellular components especially proteins and DNA and causing severe cytotoxicity and carcinogenic effects. The reactivities of different o-quinones involved in these processes along with special emphasis on mechanism of melanogenesis are discussed.
Collapse
Affiliation(s)
- Shosuke Ito
- Department of Chemistry, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
- Correspondence: (S.I.); (K.W.); Tel.: +81-562-93-9849 (S.I. & K.W.); Fax: +81-562-93-4595 (S.I. & K.W.)
| | - Manickam Sugumaran
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA;
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
- Correspondence: (S.I.); (K.W.); Tel.: +81-562-93-9849 (S.I. & K.W.); Fax: +81-562-93-4595 (S.I. & K.W.)
| |
Collapse
|
9
|
Jaramillo A, Barrera-Gutiérrez R, Cortés MT. Synthesis, Follow-Up, and Characterization of Polydopamine-like Coatings Departing from Micromolar Dopamine- o-Quinone Precursor Concentrations. ACS OMEGA 2020; 5:15016-15027. [PMID: 32637775 PMCID: PMC7330902 DOI: 10.1021/acsomega.0c00676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
The understanding of oxidized species derived from the neurotransmitter dopamine (DA) is a relevant topic for both the medical field (Parkinson's disease) as well as for the field of materials science where the formation process of polydopamine (PDA) films is an active area of research. Polymers that interact strongly with almost all surfaces but have a low electrical conductivity have been obtained by the chemical oxidation of DA. Since electrical conductivity is a desired property for several applications, deposition alternatives such as electrochemical PDA synthesis have been proposed, but the results are still insufficient. In this context, we propose a new PDA chemical-electrochemical deposition process on glassy carbon electrodes. The chemical oxidation step that converts dopamine into dopamine-o-quinone previous to the electrochemical deposition was crucial to decrease the precursor concentration to the micromolar range. The PDA-like films synthesized by this method had high adhesion and low charge-transfer resistance, which was evidenced by impedance measurements and the successful electrodeposition of a polypyrrole coating on top of a PDA-like film. In addition, we observed that anodization of GC surfaces increases sensitivity toward six electroactive couples derived from DA oxidation in the pH regimes studied. These results show the complexity of the intermediates formed during the electrochemical polymerization of PDA.
Collapse
Affiliation(s)
- Andrés
M. Jaramillo
- Department of Chemistry, Universidad de Los Andes, Cra 1 N° 18A-12, Bogotá 111711, Colombia
| | | | - María T. Cortés
- Department of Chemistry, Universidad de Los Andes, Cra 1 N° 18A-12, Bogotá 111711, Colombia
| |
Collapse
|
10
|
Srivastava AK, Roy Choudhury S, Karmakar S. Near-Infrared Responsive Dopamine/Melatonin-Derived Nanocomposites Abrogating in Situ Amyloid β Nucleation, Propagation, and Ameliorate Neuronal Functions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5658-5670. [PMID: 31986005 DOI: 10.1021/acsami.9b22214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease (AD) is one of the common causes of dementia and mild cognitive impairments, which is progressively expanding among the elderly population worldwide. A short Amyloid-β (Aβ) peptide generated after amyloidogenic processing of amyloid precursor protein exist as intermolecular β-sheet rich oligomeric, protofibriler, and fibrillar structures and believe to be toxic species which instigate neuronal pathobiology in the brain and deposits as senile plaque. Enormous efforts are being made to develop an effective anti-AD therapy that can target Aβ processing, aggregation, and propagation and provide a synergistic neuroprotective effect. However, a nanodrug prepared from natural origin can confer a multimodal synergistic chemo/photothermal inhibition of Aβ pathobiology is not yet demonstrated. In the present work, we report a dopamine-melatonin nanocomposite (DM-NC), which possesses a synergistic near-infrared (NIR) responsive photothermal and pharmacological modality. The noncovalent interaction-mediated self-assembly of melatonin and dopamine oxidative intermediates leads to the evolution of DM-NCs that can withstand variable pH and peroxide environment. NIR-activated melatonin release and photothermal effect collectively inhibit Aβ nucleation, self-seeding, and propagation and can also disrupt the preformed Aβ fibers examined using in vitro Aβ aggregation and Aβ-misfolding cyclic amplification assays. The DM-NCs display a higher biocompatibility to neuroblastoma cells, suppress the AD-associated generation of intracellular reactive oxygen species, and are devoid of any negative impact on the axonal growth process. In okadaic acid-induced neuroblastoma and ex vivo midbrain slice culture-based AD model, DM-NCs exposure suppresses the intracellular Aβ production, aggregation, and accumulation. Therefore, this nature-derived nanocomposite demonstrates a multimodal NIR-responsive synergistic photothermal and pharmacological modality for effective AD therapy.
Collapse
Affiliation(s)
- Anup K Srivastava
- Habitat Centre , Institute of Nano Science and Technology , Phase-10 , Mohali 160062 , Punjab , India
| | - Subhasree Roy Choudhury
- Habitat Centre , Institute of Nano Science and Technology , Phase-10 , Mohali 160062 , Punjab , India
| | - Surajit Karmakar
- Habitat Centre , Institute of Nano Science and Technology , Phase-10 , Mohali 160062 , Punjab , India
| |
Collapse
|
11
|
Iron Redox Chemistry and Implications in the Parkinson's Disease Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4609702. [PMID: 31687080 PMCID: PMC6803728 DOI: 10.1155/2019/4609702] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 08/13/2019] [Indexed: 01/05/2023]
Abstract
The etiology of Parkinson's disease (PD) is linked with cellular inclusions in the substantia nigra pars compacta region of the brain that are enriched in the misfolded presynaptic protein α-synuclein (αS) and death of the dopaminergic neurons. Brain iron homeostasis governs both neurotransmission and neurodegeneration; hence, the role of iron in PD progression and neuronal health is apparent. Elevated iron deposits become prevalent in the cerebral region upon aging and even more so in the PD brain. Structural as well as oxidative modifications can result from coordination of αS with redox active iron, which could have functional and/or pathological implications. In this review, we will discuss iron-mediated αS aggregation, alterations in iron metabolism, and the role of the iron-dopamine couple. Moreover, iron interactions with N-terminally acetylated αS, the physiologically relevant form of the human protein, will be addressed to shed light on the current understanding of protein dynamics and the physiological environment in the disease state. Oxidative pathways and biochemical alterations resulting from aberrant iron-induced chemistry are the principal focus of this review in order to highlight the plethora of research that has uncovered this emerging dichotomy of iron playing both functional and disruptive roles in PD pathology.
Collapse
|
12
|
Interference of carbidopa and other catechols with reactions catalyzed by peroxidases. Biochim Biophys Acta Gen Subj 2018; 1862:1626-1634. [DOI: 10.1016/j.bbagen.2018.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 12/27/2022]
|
13
|
de Oliveira JAF, da Silva MP, de Souza B, Camargo TP, Szpoganicz B, Neves A, Bortoluzzi AJ. Dopamine polymerization promoted by a catecholase biomimetic Cu II(μ-OH)Cu II complex containing a triazine-based ligand. Dalton Trans 2018; 45:15294-15297. [PMID: 27722365 DOI: 10.1039/c6dt02032a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We describe herein the catecholase-like catalytic activity and dopamine polymerization by using a dinuclear [LCuII(μ-OH)2CuII](ClO4)2 (1) complex where L is the dinucleating triazine-based ligand 6-chloro-N2,N2,N4,N4-tetrakis(pyridin-2-ylmethyl)-1,3,5-triazine-2,4-diamine. The kinetic parameters (kcat = 0.318 s-1, KM = 1.6 × 10-3 mol L-1, and kcat/KM = 198.8 L s-1 mol-1), mechanistic insights into the oxidation of 3,5-di-tert-butyl catechol and early characterization of poly(dopamine) are presented.
Collapse
Affiliation(s)
- José A F de Oliveira
- Laboratório de Bioinorgânica e Cristalografia, Universidade Federal de Santa Catarina, Trindade Campus, Florianópolis, SC 88040-900, Brazil.
| | - Marcos P da Silva
- Laboratório de Bioinorgânica e Cristalografia, Universidade Federal de Santa Catarina, Trindade Campus, Florianópolis, SC 88040-900, Brazil.
| | - Bernardo de Souza
- Laboratório de Bioinorgânica e Cristalografia, Universidade Federal de Santa Catarina, Trindade Campus, Florianópolis, SC 88040-900, Brazil.
| | - Tiago P Camargo
- Laboratório de Bioinorgânica e Cristalografia, Universidade Federal de Santa Catarina, Trindade Campus, Florianópolis, SC 88040-900, Brazil.
| | - Bruno Szpoganicz
- Departamento de Química, Universidade Federal de Santa Catarina, Trindade Campus, Florianópolis, SC 88040-900, Brazil
| | - Ademir Neves
- Laboratório de Bioinorgânica e Cristalografia, Universidade Federal de Santa Catarina, Trindade Campus, Florianópolis, SC 88040-900, Brazil.
| | - Adailton J Bortoluzzi
- Laboratório de Bioinorgânica e Cristalografia, Universidade Federal de Santa Catarina, Trindade Campus, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
14
|
Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, Sarna T, Casella L, Zecca L. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease. Prog Neurobiol 2017; 155:96-119. [PMID: 26455458 PMCID: PMC4826627 DOI: 10.1016/j.pneurobio.2015.09.012] [Citation(s) in RCA: 423] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 12/11/2022]
Abstract
There are several interrelated mechanisms involving iron, dopamine, and neuromelanin in neurons. Neuromelanin accumulates during aging and is the catecholamine-derived pigment of the dopamine neurons of the substantia nigra and norepinephrine neurons of the locus coeruleus, the two neuronal populations most targeted in Parkinson's disease. Many cellular redox reactions rely on iron, however an altered distribution of reactive iron is cytotoxic. In fact, increased levels of iron in the brain of Parkinson's disease patients are present. Dopamine accumulation can induce neuronal death; however, excess dopamine can be removed by converting it into a stable compound like neuromelanin, and this process rescues the cell. Interestingly, the main iron compound in dopamine and norepinephrine neurons is the neuromelanin-iron complex, since neuromelanin is an effective metal chelator. Neuromelanin serves to trap iron and provide neuronal protection from oxidative stress. This equilibrium between iron, dopamine, and neuromelanin is crucial for cell homeostasis and in some cellular circumstances can be disrupted. Indeed, when neuromelanin-containing organelles accumulate high load of toxins and iron during aging a neurodegenerative process can be triggered. In addition, neuromelanin released by degenerating neurons activates microglia and the latter cause neurons death with further release of neuromelanin, then starting a self-propelling mechanism of neuroinflammation and neurodegeneration. Considering the above issues, age-related accumulation of neuromelanin in dopamine neurons shows an interesting link between aging and neurodegeneration.
Collapse
Affiliation(s)
- Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Juan Segura-Aguilar
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile
| | - Emanuele Ferrari
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Patricia Muñoz
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile
| | - Irmgard Paris
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile; Department of Basic Sciences, Faculty of Sciences, Santo Tomás University, Viña del Mar, Chile
| | - David Sulzer
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Department of Neurology, Columbia University Medical Center, New York, NY, USA; Department of Pharmacology, Columbia University Medical Center, New York, NY, USA
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Luigi Casella
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy.
| |
Collapse
|
15
|
Bizzarri BM, Martini A, Serafini F, Aversa D, Piccinino D, Botta L, Berretta N, Guatteo E, Saladino R. Tyrosinase mediated oxidative functionalization in the synthesis of DOPA-derived peptidomimetics with anti-Parkinson activity. RSC Adv 2017. [DOI: 10.1039/c7ra03326e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
DOPA-derived peptidomimetics are an attractive therapeutic tool for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Bruno M. Bizzarri
- Department of Ecological and Biological Sciences (DEB)
- University of Tuscia
- 01100 Viterbo
- Italy
| | - Alessandro Martini
- Laboratory of Experimental Neurology
- Fondazione Santa Lucia IRCCS
- 00143 Roma
- Italy
| | - Francesco Serafini
- Department of Ecological and Biological Sciences (DEB)
- University of Tuscia
- 01100 Viterbo
- Italy
| | - Daniela Aversa
- Laboratory of Experimental Neurology
- Fondazione Santa Lucia IRCCS
- 00143 Roma
- Italy
| | - Davide Piccinino
- Department of Ecological and Biological Sciences (DEB)
- University of Tuscia
- 01100 Viterbo
- Italy
| | - Lorenzo Botta
- Department of Ecological and Biological Sciences (DEB)
- University of Tuscia
- 01100 Viterbo
- Italy
| | - Nicola Berretta
- Laboratory of Experimental Neurology
- Fondazione Santa Lucia IRCCS
- 00143 Roma
- Italy
| | - Ezia Guatteo
- Laboratory of Experimental Neurology
- Fondazione Santa Lucia IRCCS
- 00143 Roma
- Italy
- University of Naples Parthenope
| | - Raffaele Saladino
- Department of Ecological and Biological Sciences (DEB)
- University of Tuscia
- 01100 Viterbo
- Italy
| |
Collapse
|
16
|
Vij M, Grover R, Gotherwal V, Wani NA, Joshi P, Gautam H, Sharma K, Chandna S, Gokhale RS, Rai R, Ganguli M, Natarajan VT. Bioinspired Functionalized Melanin Nanovariants with a Range of Properties Provide Effective Color Matched Photoprotection in Skin. Biomacromolecules 2016; 17:2912-9. [DOI: 10.1021/acs.biomac.6b00740] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Manika Vij
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 020, India
- Academy of Scientific and Innovative research, CSIR campus, CSIR Road, Chennai 600113, India
| | - Ritika Grover
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 020, India
- Academy of Scientific and Innovative research, CSIR campus, CSIR Road, Chennai 600113, India
| | - Vishvabandhu Gotherwal
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 020, India
- Academy of Scientific and Innovative research, CSIR campus, CSIR Road, Chennai 600113, India
| | - Naiem Ahmad Wani
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Prashant Joshi
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Hemlata Gautam
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 020, India
| | - Kanupriya Sharma
- Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Road, Delhi 110054, India
| | - Sudhir Chandna
- Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Road, Delhi 110054, India
| | - Rajesh S. Gokhale
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 020, India
- Academy of Scientific and Innovative research, CSIR campus, CSIR Road, Chennai 600113, India
- National Institute of Immunology, Aruna Asaf Ali Marg, Delhi 110067, India
| | - Rajkishor Rai
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 020, India
- Academy of Scientific and Innovative research, CSIR campus, CSIR Road, Chennai 600113, India
| | - Vivek T. Natarajan
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 020, India
- Academy of Scientific and Innovative research, CSIR campus, CSIR Road, Chennai 600113, India
| |
Collapse
|
17
|
Zhao C, Zuo F, Liao Z, Qin Z, Du S, Zhao Z. Mussel-Inspired One-Pot Synthesis of a Fluorescent and Water-Soluble Polydopamine-Polyethyleneimine Copolymer. Macromol Rapid Commun 2015; 36:909-15. [DOI: 10.1002/marc.201500021] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 02/13/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Chenxu Zhao
- College of Chemistry & Environment Protection Engineering; Southwest University for Nationalities; Chengdu Sichuan 610041 China
| | - Fang Zuo
- College of Chemistry & Environment Protection Engineering; Southwest University for Nationalities; Chengdu Sichuan 610041 China
| | - Zhijian Liao
- College of Chemistry & Environment Protection Engineering; Southwest University for Nationalities; Chengdu Sichuan 610041 China
| | - Zhenli Qin
- College of Chemistry & Environment Protection Engineering; Southwest University for Nationalities; Chengdu Sichuan 610041 China
| | - Sinan Du
- College of Chemistry & Environment Protection Engineering; Southwest University for Nationalities; Chengdu Sichuan 610041 China
| | - Zhigang Zhao
- College of Chemistry & Environment Protection Engineering; Southwest University for Nationalities; Chengdu Sichuan 610041 China
| |
Collapse
|
18
|
Bizzarri BM, Pieri C, Botta G, Arabuli L, Mosesso P, Cinelli S, Schinoppi A, Saladino R. Synthesis and antioxidant activity of DOPA peptidomimetics by a novel IBX mediated aromatic oxidative functionalization. RSC Adv 2015. [DOI: 10.1039/c5ra09464j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
DOPA peptidomimetics with stable O–C and N–C covalent bonds between amino acid residues have been prepared by aromatic oxidative functionalization of tyrosine with 2-iodoxybenzoic acid (IBX).
Collapse
Affiliation(s)
| | - Cristina Pieri
- Department of Ecology and Biology
- University of Tuscia
- 01100 Viterbo
- Italy
| | - Giorgia Botta
- Department of Ecology and Biology
- University of Tuscia
- 01100 Viterbo
- Italy
| | - Lili Arabuli
- Department of Chemistry
- Javakhishvili Tbilisi State University
- Georgia
| | - Pasquale Mosesso
- Department of Ecology and Biology
- University of Tuscia
- 01100 Viterbo
- Italy
| | - Serena Cinelli
- Research Toxicology Center Menarini
- 00040 Pomezia (Roma)
- Italy
| | - Angelo Schinoppi
- Department of Ecology and Biology
- University of Tuscia
- 01100 Viterbo
- Italy
| | - Raffele Saladino
- Department of Ecology and Biology
- University of Tuscia
- 01100 Viterbo
- Italy
| |
Collapse
|
19
|
Segura-Aguilar J, Paris I, Muñoz P, Ferrari E, Zecca L, Zucca FA. Protective and toxic roles of dopamine in Parkinson's disease. J Neurochem 2014; 129:898-915. [PMID: 24548101 DOI: 10.1111/jnc.12686] [Citation(s) in RCA: 314] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 12/21/2022]
Abstract
The molecular mechanisms causing the loss of dopaminergic neurons containing neuromelanin in the substantia nigra and responsible for motor symptoms of Parkinson's disease are still unknown. The discovery of genes associated with Parkinson's disease (such as alpha synuclein (SNCA), E3 ubiquitin protein ligase (parkin), DJ-1 (PARK7), ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL-1), serine/threonine-protein kinase (PINK-1), leucine-rich repeat kinase 2 (LRRK2), cation-transporting ATPase 13A1 (ATP13A), etc.) contributed enormously to basic research towards understanding the role of these proteins in the sporadic form of the disease. However, it is generally accepted by the scientific community that mitochondria dysfunction, alpha synuclein aggregation, dysfunction of protein degradation, oxidative stress and neuroinflammation are involved in neurodegeneration. Dopamine oxidation seems to be a complex pathway in which dopamine o-quinone, aminochrome and 5,6-indolequinone are formed. However, both dopamine o-quinone and 5,6-indolequinone are so unstable that is difficult to study and separate their roles in the degenerative process occurring in Parkinson's disease. Dopamine oxidation to dopamine o-quinone, aminochrome and 5,6-indolequinone seems to play an important role in the neurodegenerative processes of Parkinson's disease as aminochrome induces: (i) mitochondria dysfunction, (ii) formation and stabilization of neurotoxic protofibrils of alpha synuclein, (iii) protein degradation dysfunction of both proteasomal and lysosomal systems and (iv) oxidative stress. The neurotoxic effects of aminochrome in dopaminergic neurons can be inhibited by: (i) preventing dopamine oxidation of the transporter that takes up dopamine into monoaminergic vesicles with low pH and dopamine oxidative deamination catalyzed by monoamino oxidase (ii) dopamine o-quinone, aminochrome and 5,6-indolequinone polymerization to neuromelanin and (iii) two-electron reduction of aminochrome catalyzed by DT-diaphorase. Furthermore, dopamine conversion to NM seems to have a dual role, protective and toxic, depending mostly on the cellular context. Dopamine oxidation to dopamine o-quinone, aminochrome and 5,6-indolequinone plays an important role in neurodegeneration in Parkinson's disease since they induce mitochondria and protein degradation dysfunction; formation of neurotoxic alpha synuclein protofibrils and oxidative stress. However, the cells have a protective system against dopamine oxidation composed by dopamine uptake mediated by Vesicular monoaminergic transporter-2 (VMAT-2), neuromelanin formation, two-electron reduction and GSH-conjugation mediated by Glutathione S-transferase M2-2 (GSTM2).
Collapse
Affiliation(s)
- Juan Segura-Aguilar
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
20
|
Garcia-Molina MDM, Muñoz-Muñoz JL, Garcia-Molina F, García-Ruiz PA, Garcia-Canovas F. Action of tyrosinase on ortho-substituted phenols: possible influence on browning and melanogenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6447-53. [PMID: 22670832 DOI: 10.1021/jf301238q] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The action of tyrosinase on ortho-substituted monophenols (thymol, carvacrol, guaiacol, butylated hydroxyanisole, eugenol, and isoeugenol) was studied. These monophenols inhibit melanogenesis because they act as alternative substrates to L-tyrosine and L-Dopa in the monophenolase and diphenolase activities, respectively, despite the steric hindrance on the part of the substituent in ortho position with respect to the hydroxyl group. We kinetically characterize the action of tyrosinase on these substrates and assess its possible effect on browning and melanognesis. In general, these compounds are poor substrates of the enzyme, with high Michaelis constant values, K(m), and low catalytic constant values, k(cat), so that the catalytic efficiency k(cat)/K(m) is low: thymol, 161 ± 4 M(-1) s(-1); carvacrol, 95 ± 7 M(-1) s(-1); guaiacol, 1160 ± 101 M(-1) s(-1).
Collapse
Affiliation(s)
- Maria del Mar Garcia-Molina
- GENZ: Grupo de Investigación de Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia , E-30100, Espinardo, Murcia, Spain
| | | | | | | | | |
Collapse
|
21
|
Sakai S, Komatani K, Taya M. Glucose-triggered co-enzymatic hydrogelation of aqueous polymer solutions. RSC Adv 2012. [DOI: 10.1039/c1ra01060c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Kisner A, Stockmann R, Jansen M, Yegin U, Offenhäusser A, Kubota LT, Mourzina Y. Sensing small neurotransmitter–enzyme interaction with nanoporous gated ion-sensitive field effect transistors. Biosens Bioelectron 2012; 31:157-63. [DOI: 10.1016/j.bios.2011.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/04/2011] [Accepted: 10/07/2011] [Indexed: 10/16/2022]
|
23
|
Bru R, Sanchez-Ferrer A, García-Carmona F. Characteristics of tyrosinase in AOT-isooctane reverse micelles. Biotechnol Bioeng 2010; 34:304-8. [PMID: 18588108 DOI: 10.1002/bit.260340305] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Isooctane-AOT-H(2)O is a suitable system for studying enzyme behavior in organic solvents. Tyrosinase was able to catalyze a well-known reaction in aqueous medium: oxidation of 4-methylcatechol to yield 4-methyl-o-benzoquinone. This reaction was studied using the preceding ternary system with adequate amounts of each component to make up reverse micelles. 4-Methyl-o-benzoquinone stability was demonstrated in isooctane even at alkaline pH values. Apparent K(m) and V(max) were similar to those in water, but substrate inhibition was more evident. The pH and temperature appear to be shifted toward high and low values, respectively. Characteristic parameters of reverse micelles, omega(0) (= H(2)O/AOT) and percentage of H(2)O (v/v), were investigated. The results obtained showed that the steady-state rate varies either with omega(0) or with percentage of H(2)O. The variation observed with omega(0) showed an optimal value while an increase in percentage of H(2)O can lead to decreased or increased activity depending on substrate concentration.
Collapse
Affiliation(s)
- R Bru
- Departamento de Bioquímica, Universidad de Murcia, Murcia, Spain
| | | | | |
Collapse
|
24
|
Periodate oxidation and its contribution to instrumental methods of micro-analysis—A review. Anal Chim Acta 2009; 652:85-127. [DOI: 10.1016/j.aca.2009.06.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/09/2009] [Accepted: 06/30/2009] [Indexed: 11/21/2022]
|
25
|
Munoz-Munoz JL, García-Molina F, Varón R, Tudela J, García-Cánovas F, Rodríguez-López JN. Generation of hydrogen peroxide in the melanin biosynthesis pathway. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1017-29. [PMID: 19374959 DOI: 10.1016/j.bbapap.2009.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 04/01/2009] [Accepted: 04/06/2009] [Indexed: 11/16/2022]
Abstract
The generation of H(2)O(2) in the melanin biosynthesis pathway is of great importance because of its great cytotoxic capacity. However, there is controversy concerning the way in which H(2)O(2) is generated in this pathway. In this work we demonstrate that it is generated in a series of chemical reactions coupled to the enzymatic formation of o-quinones by tyrosinase acting on monophenols and o-diphenols and during the auto-oxidation of the o-diphenols and other intermediates in the pathway. The use of the enzymes such as catalase, superoxide dismutase and peroxidase helps reveal the H(2)O(2) generated. Based on the results obtained, we propose a scheme of enzymatic and non-enzymatic reactions that lead to the biosynthesis of melanins, which explains the formation of H(2)O(2).
Collapse
Affiliation(s)
- Jose Luis Munoz-Munoz
- GENZ: Grupo de Investigación de Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, E-30100, Espinardo, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Garrido-Del Solo C, Yago JM, García-Moreno M, Havsteen BH, García-Cánovas F, Varón R. The influence of product instability on slow-binding inhibition. J Enzyme Inhib Med Chem 2008; 20:309-16. [PMID: 16206824 DOI: 10.1080/14756360500096651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
We present a kinetic study of an enzyme reaction that takes place with slow-binding inhibition where the immediate product undergoes a spontaneous or induced process of decomposition. A kinetic study of an enzyme process, in which a slow-binding inhibition process and a decomposition of the immediate product of the reaction take place simultaneously is performed. The corresponding explicit concentration-time equations were obtained. Using the analytical solutions obtained, which were tested numerically, we suggest a procedure that allows the discrimination between the particular cases considered and the evaluation of the principal kinetic parameters of the reaction.
Collapse
Affiliation(s)
- C Garrido-Del Solo
- Departamento de Química-Física, Escuela Politécnica Superior, Universidad de Castilla-La Mancha Avda, España, s/n Campus Universitario, E-02071 Albacete, Spain
| | | | | | | | | | | |
Collapse
|
27
|
García-Molina F, Muñoz JL, Varón R, Rodríguez-López JN, García-Cánovas F, Tudela J. A review on spectrophotometric methods for measuring the monophenolase and diphenolase activities of tyrosinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:9739-9749. [PMID: 17958393 DOI: 10.1021/jf0712301] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Tyrosinase is a copper enzyme with broad substrate specifity toward a lot of phenols with different biotechnological applications. The availability of quick and reliable measurement methods of the enzymatic activity of tyrosinase is of outstanding interest. A series of spectrophotometric methods for determining the monophenolase and diphenolase activities of tyrosinase are discussed. The product of both reactions is the o-quinone of the corresponding monophenol/diphenol. According to the stability and properties of the o-quinone, the substrate is classified as four substrate types. For each of these substrate types, we indicate the best method for measuring diphenolase activity (among eight methods) and, when applicable, for measuring monophenolase activity (among four methods). The analytical and numerical solutions to the system of differential equations corresponding to the reaction mechanism of each case confirm the underlying validity of the different spectrophotometric methods proposed for the kinetic characterization of tyrosinase in its action on different substrates.
Collapse
Affiliation(s)
- F García-Molina
- GENZ: Grupo de Investigación de Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, E-30100 Espinardo, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Xiang L, Lin Y, Yu P, Su L, Mao L. Laccase-catalyzed oxidation and intramolecular cyclization of dopamine: A new method for selective determination of dopamine with laccase/carbon nanotube-based electrochemical biosensors. Electrochim Acta 2007. [DOI: 10.1016/j.electacta.2006.11.040] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Yamada K, Aoki T, Ikeda N, Hirata M. Application of enzymatically gelled chitosan solutions to water-resistant adhesives. J Appl Polym Sci 2007. [DOI: 10.1002/app.25833] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Gandía-Herrero F, Escribano J, García-Carmona F. Characterization of the monophenolase activity of tyrosinase on betaxanthins: the tyramine-betaxanthin/dopamine-betaxanthin pair. PLANTA 2005; 222:307-18. [PMID: 15968512 DOI: 10.1007/s00425-005-1526-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 02/22/2005] [Indexed: 05/03/2023]
Abstract
Tyrosinase or polyphenol oxidase (EC 1.14.18.1) is the key enzyme responsible for melanin biosynthesis and for the enzymatic browning of fruits and vegetables. Although the function of tyrosinase in the secondary metabolism of plants remains unclear, it has been proposed that the enzyme plays a role in the betalain biosynthetic pathway. Betalains are an important class of water-soluble pigments, characteristic of plants belonging to the order Caryophyllales. In the present work, the betaxanthins tyramine-betaxanthin (miraxanthin III) and dopamine-betaxanthin (miraxanthin V) are reported as new natural substrates for tyrosinase. The result of the diphenolase activity of the enzyme on dopamine-betaxanthin was a series of products identified by HPLC and ESI-MS as quinone-derivatives. Data indicate that dopamine-betaxanthin-quinone is obtained and evolves to more stable species by intramolecular cyclization. The kinetic parameters evaluated for the diphenolase activity were V(m) = 74.4 microM min(-1), K(m) = 94.7 microM. Monophenolase activity on tyramine-betaxanthin yielded the same compounds in the absence of a reducing agent, but when ascorbic acid was present enzymatic conversion to dopamine-betaxanthin could be found. For the first time, kinetic characterization of the monophenolase activity of tyrosinase on betaxanthins is provided (V(m) = 10.4 microM min(-1) and K(m) = 126.9 microM) and a lag period is described and analyzed according to the mechanism of action of the enzyme. The high affinity shown by tyrosinase for these substrates may be indicative of a previously unconsidered physiological role in betalain metabolism. A possible mechanism for the formation of 2-descarboxy-betacyanins from tyramine-betaxanthin by tyrosinase is also discussed.
Collapse
Affiliation(s)
- Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Universidad de Murcia, 30100, Espinardo, Spain
| | | | | |
Collapse
|
31
|
Oxidation of caffeic acid in the presence of l-cysteine: isolation of 2-S-cysteinylcaffeic acid and evaluation of its antioxidant properties. Food Res Int 2005. [DOI: 10.1016/j.foodres.2004.10.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
d’Ischia M, Napolitano A, Pezzella A, Land EJ, Ramsden CA, Riley PA. 5,6-Dihydroxyindoles and Indole-5,6-diones. ADVANCES IN HETEROCYCLIC CHEMISTRY 2005. [DOI: 10.1016/s0065-2725(05)89001-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Fiore G, Poli A, Di Cosmo A, d'Ischia M, Palumbo A. Dopamine in the ink defence system of Sepia officinalis: biosynthesis, vesicular compartmentation in mature ink gland cells, nitric oxide (NO)/cGMP-induced depletion and fate in secreted ink. Biochem J 2004; 378:785-91. [PMID: 14670074 PMCID: PMC1224026 DOI: 10.1042/bj20031864] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Accepted: 12/11/2003] [Indexed: 02/02/2023]
Abstract
The biosynthesis, localization and fate of catecholamines in the ink gland of the cuttlefish Sepia officinalis were investigated by combined biochemical and immunohistocytochemical methodologies. HPLC analysis of crude ink gland extracts indicated the presence of dopa (2.18+/-0.82 nmol/mg of protein) and DA (dopamine, 0.06+/-0.02 nmol/mg of protein), but no detectable noradrenaline or adrenaline. DA was shown to derive from L-tyrosine, according to experiments performed by incubating intact ink glands with [L-14C]tyrosine. The biosynthetic process involves a tyrosine hydroxylase and a dopa decarboxylase pathway and is independent of tyrosinase. The tyrosine hydroxylase activity was detected under conditions of tyrosinase suppression in the cytosolic fraction, but not in the melanosomal fraction, of ink gland extracts, and the presence of the enzyme was confirmed by Western-blot analysis. Dopa and DA were found to be released from the ink glands by processes controlled through the NMDA-nitric oxide-cGMP (where NMDA stands for N -methyl-D-aspartate) signalling pathway, as apparent from incubation experiments performed with [L-14C]tyrosine in the presence of NMDA, diethylamine NONOate (diethylamine diazeniumdiolate), a nitric oxide donor, 8-bromo-cGMP or a guanylyl cyclase inhibitor. Immunohistochemical results coupled with electron microscopy indicated that DA was concentrated in vesicles specifically localized in the mature melanin-producing cells of the ink gland proximal to the lumen and separated from the melanin-containing melanosomes. NMDA receptor stimulation or exposure to an NO donor caused a marked loss of DA immunoreactivity in mature cells, consistent with a release process. In the lumen of the ink gland, where mature exhausted cells pour their contents, DA immunoreactivity was found to be associated with the melanin granules, due apparently to physical adsorption. Overall, these results point to DA as a marker of cell maturation in Sepia ink gland subject to release by the NO/cGMP signalling pathway, and disclose apparently overlooked DA-melanin interactions in secreted ink of possible relevance to the defence mechanism.
Collapse
Affiliation(s)
- Gabriella Fiore
- Zoological Station Anton Dohrn, Villa Comunale I-80121, Naples, Italy
| | | | | | | | | |
Collapse
|
34
|
Fenoll LG, Peñalver MJ, Rodríguez-López JN, Varón R, García-Cánovas F, Tudela J. Tyrosinase kinetics: discrimination between two models to explain the oxidation mechanism of monophenol and diphenol substrates. Int J Biochem Cell Biol 2004; 36:235-46. [PMID: 14643889 DOI: 10.1016/s1357-2725(03)00234-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The kinetic behaviour of tyrosinase is very complex because the enzymatic oxidation of monophenol and o-diphenol to o-quinones occurs simultaneously with the coupled non-enzymatic reactions of the latter. Both reaction types are included in the kinetic mechanism proposed for tyrosinase (Mechanism I [J. Biol. Chem. 267 (1992) 3801-3810]). We previously confirmed the validity of the rate equations by the oxidation of numerous monophenols and o-diphenols catalysed by tyrosinase from different fruits and vegetables. Other authors have proposed a simplified reaction mechanism for tyrosinase (Mechanism II [Theor. Biol. 203 (2000) 1-12]), although without deducing the rate equations. In this paper, we report new experimental work that provides the lag period value, the steady-state rate, o-diphenol concentration released to the reaction medium. The contrast between these experimental data and the respective numerical simulations of both mechanisms demonstrates the feasibility of Mechanism I. The need for the steps omitted from Mechanism II to interpret the experimental data for tyrosinase, based on the rate equations previously deduced for Mechanism I is explained.
Collapse
Affiliation(s)
- L G Fenoll
- GENZ-Grupo de Investigación Enzimologi;a, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, A. Correos 4021 E-30080, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Valero E, Varón R, García-Carmona F. Catalytic oxidation of acetaminophen by tyrosinase in the presence of L-proline: a kinetic study. Arch Biochem Biophys 2003; 416:218-26. [PMID: 12893300 DOI: 10.1016/s0003-9861(03)00288-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A kinetic study of acetaminophen oxidation by tyrosinase in the presence of a physiological nucleophilic agent such as the amino acid L-proline is performed in the present paper. The o-quinone product of the catalytic activity, 4-acetamido-o-benzoquinone, becomes unstable through the chemical addition of L-proline, in competition with the nucleophilic addition of hydroxide ion from water. In both cases, the catechol intermediate, 3(')-hydroxyacetaminophen, is generated, as can be demonstrated by liquid chromatography. When the effect of the presence of the nucleophilic agent on the time course of the enzymatic reaction was kinetically analyzed, it was seen to decrease the duration of the lag period and increase the steady-state rate. Rate constants for the reaction of 4-acetamido-o-benzoquinone with water and L-proline were also determined. The results obtained in this paper open a new possibility to acetaminophen toxicity, that has been attributed hitherto to its corresponding p-quinone, N-acetyl-p-benzoquinone imine.
Collapse
Affiliation(s)
- Edelmira Valero
- GMB: Grupo de Modelización en Bioquímica, Departamento de Química-Física, Escuela Politécnica Superior de Albacete, Universidad de Castilla-La Mancha, Campus Universitario, Albacete E-02071, Spain.
| | | | | |
Collapse
|
36
|
Abstract
Chitosan-phenolics systems were investigated as wood adhesives. Adhesion between two pieces of wood veneer developed only when all three components-chitosan, a phenolic compound, and laccase-were present. For the adhesive systems containing a phenolic compound with only one phenolic hydroxyl group, adhesive strengths were highly dependent upon the chemical structures of phenolic compounds used in the system and the relative oxidation rates of the phenolic compounds by laccase. The adhesive strengths were also directly related to the viscosity of the adhesive systems. However, for the adhesive systems containing a phenolic compound with two or three phenolic hydroxyl groups adjacent to each other, no correlations among adhesive strengths, relative oxidation rates of the phenolic compounds by laccase, and viscosities were observed. The adhesion mechanisms of these chitosan-phenolics systems were proposed to be similar to those of mussel adhesive proteins.
Collapse
Affiliation(s)
- Svetlana Peshkova
- Department of Wood Science and Engineering, Oregon State University, Corvallis, OR 97331-5751, USA
| | | |
Collapse
|
37
|
Chen T, Vazquez-Duhalt R, Wu CF, Bentley WE, Payne GF. Combinatorial screening for enzyme-mediated coupling. Tyrosinase-catalyzed coupling to create protein--chitosan conjugates. Biomacromolecules 2003; 2:456-62. [PMID: 11749206 DOI: 10.1021/bm000125w] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In nature, tyrosinase-generated o-quinones are commonly involved in processes that lead to functional biomaterials. These biomaterials are chemically complex and have been difficult to analyze. Furthermore, the cascade of reactions involving o-quinones is poorly understood, and it has been difficult to mimic ex vivo for materials processing. We report the use of a combinatorial approach to learn how tyrosinase and low molecular weight phenolic precursors can be used to generate biologically active protein-polysaccharide conjugates. Specifically, we screened various phenolic coupling precursors and various reaction conditions for the coupling of proteins onto the polysaccharide chitosan. Several natural phenols were identified as appropriate precursors for the coupling of polyhistidine tagged organophosphorus hydrolase (His-OPH) onto chitosan films. OPH activity was retained upon coupling and subsequent studies indicated that the histidine tag was not necessary for coupling. Using conditions identified for His-OPH coupling, we observed that various biologically active proteins (cytochrome c, OPH, and His-CAT) could be coupled onto chitosan films. The glycosylated protein horseradish peroxidase was not effectively coupled onto chitosan under the conditions studied. In all cases studied, we observed that coupling required a phenolic precursor, suggesting that tyrosinase is unable to couple by reaction with surface tyrosyl residues of the target protein. In conclusion, this study illustrates a combinatorial approach for the "discovery" of conditions to couple biologically active proteins onto chitosan through natural, quinone-based processes.
Collapse
Affiliation(s)
- T Chen
- Center for Agricultural Biotechnology, 5115 Plant Sciences Building, University of Maryland Biotechnology Institute, College Park, Maryland 20742, USA
| | | | | | | | | |
Collapse
|
38
|
Fenoll LG, Rodríguez-López JN, Varón R, García-Ruiz PA, García-Cánovas F, Tudela J. Kinetic characterisation of the reaction mechanism of mushroom tyrosinase on tyramine/dopamine and L-tyrosine methyl esther/L-dopa methyl esther. Int J Biochem Cell Biol 2002; 34:1594-1607. [PMID: 12379281 DOI: 10.1016/s1357-2725(02)00076-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tyrosinase or polyphenol oxidase is the key enzyme in melanin biosynthesis and for the enzymatic browning of fruits and vegetables. Our research group previously proposed a kinetic reaction mechanism for tyrosinase acting on some phenolic substrates, whose reliability was demonstrated for tyrosinases from several fruits and vegetables. A kinetic analysis and an experimental design for testing the reliability of the kinetic reaction mechanism of tyrosinase are reported. The applicability of the mechanism to the oxidation of tyramine/dopamine and L-tyrosine methyl esther/L-dopa methyl esther has been checked. Some structure/activity topics are discussed. A complete kinetic characterisation of the oxidation of these phenolic substrates has been made. This will be useful for further studies about the control of depigmenting agents, antimelanome drugs and antibrowning reagents acting on tyrosinase.
Collapse
Affiliation(s)
- Lorena G Fenoll
- GENZ: Grupo de Investigación Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, A. Correos 4021, E-30080 Murcia, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Peñalver MJ, Hiner ANP, Rodríguez-López JN, García-Cánovas F, Tudela J. Mechanistic implications of variable stoichiometries of oxygen consumption during tyrosinase catalyzed oxidation of monophenols and o-diphenols. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1597:140-8. [PMID: 12009413 DOI: 10.1016/s0167-4838(02)00264-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The stoichiometry of oxygen consumption during tyrosinase-catalyzed oxidation of an o-diphenol (4-tert-butylcatechol, TBC) and a monophenol (4-tert-butylphenol, TBP) has been determined. At high [substrate]/[enzyme] ratios, in the case of o-diphenols, the stoichiometry of the enzyme-catalyzed reaction was always 1 O(2)/2 o-diphenols, although if the o-quinone product was unstable, the apparent stoichiometry could tend to 1 O(2)/1 o-diphenol due to regeneration of an o-diphenol in a side reaction. In the case of monophenols, the stoichiometry could be 1 O(2)/1 monophenol or 1.5 O(2)/1 monophenol depending if the o-quinone product was stable or unstable, respectively. However, at low [substrate]/[enzyme] ratios, the oxygen/substrate stoichiometry could, even in the case where stable products are formed, be lower than 1 O(2)/2 substrates for o-diphenols or higher than 1 O(2)/1 substrate for monophenols. These data supported the mechanism proposed by Rodríguez-López et al. [J. Biol. Chem. 267 (1992) 3801-3810], in which, during hydroxylation of monophenols, tyrosinase first transformed monophenol to o-diphenol and then either catalyzed a further oxidation to form o-quinone or released it into the reaction medium. In this second case, subsequent oxidation of the o-diphenol resulted in additional oxygen consumption.
Collapse
Affiliation(s)
- María José Peñalver
- GENZ: Grupo de Investigación de Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, A. Correos 4021, E-30080 Espinardo, Murcia, Spain
| | | | | | | | | |
Collapse
|
40
|
Fenoll LG, Rodríguez-López JN, García-Molina F, García-Cánovas F, Tudela J. Michaelis constants of mushroom tyrosinase with respect to oxygen in the presence of monophenols and diphenols. Int J Biochem Cell Biol 2002; 34:332-6. [PMID: 11854032 DOI: 10.1016/s1357-2725(01)00133-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complex reaction mechanism of tyrosinase involves three enzymatic forms, two overlapping catalytic cycles and a dead-end complex. Analytical expressions for the catalytic and Michaelis constants of tyrosinase towards phenols and oxygen were derived for both, monophenolase and diphenolase activities of the enzyme. Thus, the Michaelis constants of tyrosinase towards the oxygen (K(mO(2))) are related with the respective catalytic constants for monphenols (k(M)(cat)) and o-diphenols (k(D)(cat)), as well as with the rate constant, k(+8). We recently determined the experimental value of the rate constant for the binding of oxygen to deoxytyrosinase (k(+8)) by stopped-flow assays. In this paper, we calculate theoretical values of K(mO(2)) from the experimental values of catalytic constants and k(+8) towards several monophenols and o-diphenols. The reliability and the significance of the values of K(mO(2)) are discussed.
Collapse
Affiliation(s)
- Lorena G Fenoll
- GENZ: Grupo de Investigación Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, A. Correos 4201 Universidad de Murcia, Espinardo, E-30080 Murcia, Spain
| | | | | | | | | |
Collapse
|
41
|
Hydroxyl Free Radical-Mediated Oxidative Degradation of Quercetin and Morin: A Preliminary Investigation. J Food Compost Anal 2002. [DOI: 10.1006/jfca.2001.1030] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Yamada K, Chen T, Kumar G, Vesnovsky O, Topoleski LD, Payne GF. Chitosan based water-resistant adhesive. Analogy to mussel glue. Biomacromolecules 2002; 1:252-8. [PMID: 11710108 DOI: 10.1021/bm0003009] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using analogies from nature, we investigated the possibility that tyrosinase-catalyzed reactions of 3,4-dihydroxyphenethylamine (dopamine) could confer water-resistant adhesive properties to semidilute solutions of the polysaccharide chitosan. Rheological measurements showed that the tyrosinase-catalyzed, and subsequent uncatalyzed, reactions lead to substantial increases in the viscosity of the chitosan solutions. Samples from these high-viscosity modified-chitosans were spread onto dry glass slides, the slides were lapped and clipped together either in air or after being submerged in water, and the bound slides were held under water for several hours. Adhesive shear strengths of over 400 kPa were observed for these modified chitosan samples, while control chitosan solutions conferred no adhesive strength (i.e., the glass slides separated in the absence of measurable forces). High viscosities and water-resistant adhesive strengths were also observed when semidilute chitosan solutions were treated with the known cross-linking agent, glutaraldehyde. Further studies indicate a relationship between the increased viscosities and water-resistant adhesion. These results demonstrate that the renewable biopolymer chitosan can be converted into a water-resistant adhesive.
Collapse
Affiliation(s)
- K Yamada
- Department of Industrial Chemistry, College of Industrial Technology, Nihon University, 1-2-1 Izumi-cho, Narashino, Chiba 275-8575, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Fenoll LG, Rodríguez-López JN, García-Sevilla F, García-Ruiz PA, Varón R, García-Cánovas F, Tudela J. Analysis and interpretation of the action mechanism of mushroom tyrosinase on monophenols and diphenols generating highly unstable o-quinones. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1548:1-22. [PMID: 11451433 DOI: 10.1016/s0167-4838(01)00207-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tyrosinase can act on monophenols because of the mixture of met- (E(m)) and oxy-tyrosinase (E(ox)) which exists in the native form of the enzyme. The latter form is active on monophenols, while the former is not. However, the kinetics are complicated because monophenols can bind to both enzyme forms. This situation becomes even more complex since the products of the enzymatic reaction, the o-quinones, are unstable and continue evolving to generate o-diphenols in the medium. In the case of substrates such as L-tyrosine, tyrosinase generates very unstable o-quinones, in which a process of cyclation and subsequent oxidation-reduction generates o-diphenol through non-enzymatic reactions. However, the release of o-diphenol through the action of the enzyme on the monophenol contributes to the concentration of o-diphenol in the first pseudo-steady-state [D(0)](ss). Hence, the system reaches an initial pseudo-steady state when t-->0 and undergoes a transition phase (lag period) until a final steady state is reached when the concentration of o-diphenol in the medium reaches the concentration of the final steady state [D(f)](ss). These results can be explained by taking into account the kinetic and structural mechanism of the enzyme. In this, tyrosinase hydroxylates the monophenols to o-diphenols, generating an intermediate, E(m)D, which may oxidise the o-diphenol or release it directly to the medium. We surmise that the intermediate generated during the action of E(ox) on monophenols, E(m)D, has axial and equatorial bonds between the o-diphenol and copper atoms of the active site. Since the orbitals are not coplanar, the concerted oxidation-reduction reaction cannot occur. Instead, a bond, probably that of C-4, is broken to achieve coplanarity, producing a more labile intermediate that will then release the o-diphenol to the medium or reunite it diaxially, involving oxidation to o-quinone. The non-enzymatic evolution of the o-quinone would generate the o-diphenol ([D(f)](ss)) necessary for the final steady state to be reached after the lag period.
Collapse
Affiliation(s)
- L G Fenoll
- GENZ: Grupo de Investigación Enzimologia, Departmento de Bioquímica y Biologia Molecular-A, Facultad de Biologia, Universidad de Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
44
|
Fenoll LG, Rodríguez-López JN, García-Sevilla F, Tudela J, García-Ruiz PA, Varón R, García-Cánovas F. Oxidation by mushroom tyrosinase of monophenols generating slightly unstable o-quinones. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5865-78. [PMID: 10998046 DOI: 10.1046/j.1432-1327.2000.01572.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tyrosinase can act on monophenols because of the mixture of mettyrosinase (Em) and oxytyrosinase (Eox) that exists in the native form of the enzyme. The latter form is active on monophenols although the former is not. However, the kinetics are complicated because monophenols can bind to both enzyme forms. This situation becomes even more complex as the products of the enzymatic reaction, the o-quinones, are unstable and continue evolving to generate o-diphenols in the medium. In the case of substrates such as 4-methoxyphenol, 4-ethoxyphenol and 4-tert-butylphenol, tyrosinase generates o-quinones which become unstable with small constants of approximately < 10-3 s-1. The system evolves from an initial steady state, reached when t-->0, through a transition state towards a final steady state, which is never reached because the substrate is largely consumed. The mechanisms proposed to explain the enzyme's action can be differentiated by the kinetics of the first steady state. The results suggest that tyrosinase hydroxylates monophenols to o-diphenols, generating an intermediate Em-diphenol in the process, which may oxidize the o-diphenol or release it directly into the medium. In the case of o-quinone formation, its slow instability generates o-diphenol which activates the enzymatic system yielding parabolic time recordings.
Collapse
Affiliation(s)
- L G Fenoll
- GENZ:Grupo de Investigación Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
45
|
Laveda F, Núñez-Delicado E, García-Carmona F, Sánchez-Ferrer A. Reversible sodium dodecyl sulfate activation of latent peach polyphenol oxidase by cyclodextrins. Arch Biochem Biophys 2000; 379:1-6. [PMID: 10864435 DOI: 10.1006/abbi.2000.1838] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The reversibility of the SDS-mediated activation of latent peach PPO has been studied using cyclodextrins as strip detergent agent. Cyclodextrins produced a combined inhibitory effect on enzymatic activity of latent peach PPO due to the complexation of detergent and the hydrophobic substrate 4-tert-butylcatechol (TBC) molecules. To study the reversibility of the activation process, this combined effect has to be separated. On the one hand, the enzyme was activated by acid-shocking and the activity was measured in the presence of cyclodextrins, using TBC as substrate. The inhibition curves obtained permitted study of the complexation of TBC into cyclodextrins. On the other hand, the enzyme was activated by SDS and the activity in the presence of cyclodextrins was measured using the highly hydrophilic o-diphenol dopamine as substrate. In this case, the inhibition curves obtained indicated the reversibility of the activation process when SDS was trapped by cyclodextrins. In addition, the complexation constant between SDS and 2-hydroxypropyl-beta-cyclodextrins was calculated by measuring conductivity (K(s) = 3500 M(-1)).
Collapse
Affiliation(s)
- F Laveda
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Campus de Espinardo, Murcia, E-30071, Spain
| | | | | | | |
Collapse
|
46
|
Sugumaran M. Oxidation chemistry of 1,2-dehydro-N-acetyldopamines: direct evidence for the formation of 1,2-dehydro-N-acetyldopamine quinone. Arch Biochem Biophys 2000; 378:404-10. [PMID: 10860558 DOI: 10.1006/abbi.2000.1839] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two-electron oxidation of catecholamines either by phenol oxidase or by chemical oxidants such as sodium periodate produces their corresponding o-quinones as observable products. But, in the case of 1,2-dehydro-N-acetyldopamine, an important insect cuticular sclerotizing precursor, phenol oxidase catalyzed oxidation has been reported to generate a quinone methide analog as a transient, but first observable product. ¿Sugumaran, M., Semensi, V., Kalyanaraman, B., Bruce, J. M., and Land, E. J. (1992) J. Biol. Chem. 267, 10355-10361. The corresponding quinone has escaped detection until now. However, in this paper, for the first time, we present direct evidence for the formation of dehydro-N-acetyldopamine quinone and show that it can readily be produced from the tautomeric quinone methide imine amide during the chemical oxidation of dehydro-N-acetyldopamine under acidic conditions. This situation is in sharp contrast to other known alkyl-substituted catechol oxidations, where quinone is the first observable product and quinone methide is the subsequently generated product. Dehydro-N-acetyldopamine quinone thus formed is also highly unstable. Semiempirical molecular orbital calculation also indicates that quinone methide imine amide is more stable than the quinone. Chemical considerations indicate that the quinone methide tautomer, and not the dehydro-N-acetyldopamine quinone, is responsible for crosslinking the structural proteins and chitin polymer in the insect cuticle. Therefore, the quinone methide tautomer, and not the quinone, is the key reactive intermediate aiding the hardening of insect cuticle.
Collapse
Affiliation(s)
- M Sugumaran
- Department of Biology, University of Massachusetts-Boston, Boston, Massachusetts 02125, USA.
| |
Collapse
|
47
|
Sugumaran M, Duggaraju P, Jayachandran E, Kirk KL. Formation of a new quinone methide intermediate during the oxidative transformation of 3,4-dihydroxyphenylacetic acids: implication for eumelanin biosynthesis. Arch Biochem Biophys 1999; 371:98-106. [PMID: 10525294 DOI: 10.1006/abbi.1999.1420] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidation of dopa and dopamine requires a net removal six electrons to produce indolequinones, the monomeric precursors of eumelanin pigment. On the other hand, their 6-fluoroderivatives suffer only four-electron oxidation to yield the same products (M. E. Rice, B. Mogaddam, C. R. Creveling, and K. L. Kirk, Anal. Chem. 59, 1534-1536, 1987). Taking advantage of this novel fluorochemistry, we reexamined the oxidative mechanism of 3,4-dihydroxyphenylacetic acid and 6-fluoro-3,4-dihydroxyphenylacetic acid to throw more light on the nature of reactive intermediates formed during the reaction. Enzymatic or chemical oxidation of 3,4-dihydroxyphenylacetic acid generated the transient o-quinone which exhibited rapid intramolecular cyclization and side chain modification to produce 2, 5,6-trihydrobenzofuran and 3,4-dihydroxymandelic acid, respectively. However, when 6-fluoro-3,4-dihydroxyphenylacetic acid was oxidized either by tyrosinase or by sodium periodate, the resultant quinone uniquely exhibited only cyclization coupled with loss of fluoride ion. This clean reaction allowed us to establish the structures of the transient reactive intermediates. Two interconvertable isomeric forms of the product were isolated and characterized from the reaction mixture. If the oxidation was carried out in water, a yellow quinolactone accumulated in the reaction mixture. This compound was instantaneously converted to a purple quinone methide upon addition of a trace amount of sodium phosphate. Passage through a C(18) HPLC column caused the reverse transformation. The structures of these products were established by semiempirical molecular orbital calculations and NMR spectrometry. Comparison of the oxidation mechanisms of melanin precursors, dopa and dopamine, with that of 3,4-dihydroxyphenylacetic acids reveals that a similar quinone methide intermediate is likely to be formed during eumelanin biosynthesis.
Collapse
Affiliation(s)
- M Sugumaran
- Department of Biology, University of Massachusetts-Boston, Boston, Massachusetts 02125, USA.
| | | | | | | |
Collapse
|
48
|
|
49
|
Galzigna L, Schiappelli MP, Rigo A, Scarpa M. A rat brain fraction and different purified peroxidases catalyzing the formation of dopaminochrome from dopamine. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1427:329-36. [PMID: 10350648 DOI: 10.1016/s0304-4165(99)00037-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dopaminochrome formation is catalyzed by commercially available purified peroxidases (EC 1.11.1.7) such as horseradish, lacto- and myelo-peroxidase using dopamine, hydrogen peroxide or promethazine sulfoxide as substrates. A rat brain fraction (RBF) catalyzes a similar reaction and its catalytic power increases after preincubation with hydrogen peroxide/ascorbic acid. The activity of both the purified enzymes and the RBF preparation is inhibited by carnosine and characterized by excess substrate inhibition. The enzymes recognize different substrates but show the highest affinity for dopamine. The RBF fraction is strongly buffered against oxidation by compounds such as glutathione and by bioreductive enzymes such as DT-diaphorase (EC 1.6.99.2) which can use as a substrate menadione or dopaminochrome. The rat brain dopamine peroxidizing activity appeared to be mostly bound to the synaptosomal fraction. The reaction catalyzed by the purified peroxidases was followed by electron spin resonance spectroscopy and, unlike that catalyzed by RBF, was shown to produce the signal of a transient dopamine-o-semiquinone radical.
Collapse
Affiliation(s)
- L Galzigna
- Department of Biological Chemistry, University of Padua, viale G. Colombo 3, 35121, Padua, Italy.
| | | | | | | |
Collapse
|
50
|
KAHN VARDA, SHALOM NOAHBEN, ZAKIN VARDA. EFFECT OF KOJIC ACID ON THE HYDROXYLATION OF L-TYROSINE AND TYRAMINE BY MUSHROOM TYROSINASE. J Food Biochem 1998. [DOI: 10.1111/j.1745-4514.1998.tb00256.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|