1
|
Abstract
Significance: Aging is a natural process that affects most living organisms, resulting in increased mortality. As the world population ages, the prevalence of age-associated diseases, and their associated health care costs, has increased sharply. A better understanding of the molecular mechanisms that lead to cellular dysfunction may provide important targets for interventions to prevent or treat these diseases. Recent Advances: Although the mitochondrial theory of aging had been proposed more than 40 years ago, recent new data have given stronger support for a central role for mitochondrial dysfunction in several pathways that are deregulated during normal aging and age-associated disease. Critical Issues: Several of the experimental evidence linking mitochondrial alterations to age-associated loss of function are correlative and mechanistic insights are still elusive. Here, we review how mitochondrial dysfunction may be involved in many of the known hallmarks of aging, and how these pathways interact in an intricate net of molecular relationships. Future Directions: As it has become clear that mitochondrial dysfunction plays causative roles in normal aging and age-associated diseases, it is necessary to better define the molecular interactions and the temporal and causal relationship between these changes and the relevant phenotypes seen during the aging process. Antioxid. Redox Signal. 36, 824-843.
Collapse
Affiliation(s)
- Caio M P F Batalha
- Lab. Genética Mitocondrial, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Anibal Eugênio Vercesi
- Departamento de Patologia Clínica, Faculdade de Medicina, Universidade de Campinas, Campinas, Brazil
| | - Nadja C Souza-Pinto
- Lab. Genética Mitocondrial, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Kruglov AG, Kharechkina ES, Nikiforova AB, Odinokova IV, Kruglova SA. Dynamics of the permeability transition pore size in isolated mitochondria and mitoplasts. FASEB J 2021; 35:e21764. [PMID: 34245631 DOI: 10.1096/fj.202100596r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 11/11/2022]
Abstract
The size of the permeability transition pore (PTP) is accepted to be ≤1.5 kDa. However, different authors reported values from 650 to 4000 Da. The present study is focused on the variability of the average PTP size in and between mitochondrial samples, its reasons and relations with PTP dynamics. Measurement of PTP size by the standard method revealed its 500 Da-range variability between mitochondrial samples. Sequential measurements in the same sample showed that the PTP size tends to grow with time and Ca2+ concentration. Selective damage to the mitochondrial outer membrane (MOM) reduced the apparent PTP size by ~200-300 Da. Hypotonic and hypertonic osmotic shock and partial removal of the MOM with the preservation of the mitochondrial inner membrane intactness decreased the apparent PTP size by ~50%. We developed an approach to continuous monitoring of the PTP size that revealed the existence of stable PTP states with different pore sizes (~700, 900-1000, ~1350, 1700-1800, and 2100-2200 Da) and transitions between them. The transitions were accelerated by elevating the Ca2+ concentration, temperature, and osmotic pressure, which demonstrates an increased capability of PTP to accommodate to large molecules (plasticity). Cyclosporin A inhibited the transitions between states. The analysis of PTP size dynamics in osmotically shocked mitochondria and mitoplasts confirmed the importance of the MOM for the stabilization of PTP structure. Thus, this approach provides a new tool for PTP studies and the opportunity to reconcile data on the PTP size and mitochondrial megachannel conductance.
Collapse
Affiliation(s)
- Alexey G Kruglov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Ekaterina S Kharechkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Anna B Nikiforova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Irina V Odinokova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Svetlana A Kruglova
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
3
|
Oliveira HCF, Vercesi AE. Mitochondrial bioenergetics and redox dysfunctions in hypercholesterolemia and atherosclerosis. Mol Aspects Med 2019; 71:100840. [PMID: 31882067 DOI: 10.1016/j.mam.2019.100840] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
In the first part of this review, we summarize basic mitochondrial bioenergetics concepts showing that mitochondria are critical regulators of cell life and death. Until a few decades ago, mitochondria were considered to play essential roles only in respiration, ATP formation, non-shivering thermogenesis and a variety of metabolic pathways. However, the concept presented by Peter Mitchell regarding coupling between electron flow and ATP synthesis through the intermediary of a H+ electrochemical potential leads to the recognition that the proton-motive force also regulates a series of relevant cell signalling processes, such as superoxide generation, redox balance and Ca2+ handling. Alterations in these processes lead to cell death and disease states. In the second part of this review, we discuss the role of mitochondrial dysfunctions in the specific context of hypercholesterolemia-induced atherosclerosis. We provide a literature analysis that indicates a decisive role of mitochondrial redox dysfunction in the development of atherosclerosis and discuss the underlying molecular mechanisms. Finally, we highlight the potential mitochondrial-targeted therapeutic strategies that are relevant for atherosclerosis.
Collapse
Affiliation(s)
- Helena C F Oliveira
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Campinas, SP, Brazil.
| | - Anibal E Vercesi
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
4
|
Vercesi AE, Castilho RF, Kowaltowski AJ, de Oliveira HCF, de Souza-Pinto NC, Figueira TR, Busanello ENB. Mitochondrial calcium transport and the redox nature of the calcium-induced membrane permeability transition. Free Radic Biol Med 2018; 129:1-24. [PMID: 30172747 DOI: 10.1016/j.freeradbiomed.2018.08.034] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022]
Abstract
Mitochondria possess a Ca2+ transport system composed of separate Ca2+ influx and efflux pathways. Intramitochondrial Ca2+ concentrations regulate oxidative phosphorylation, required for cell function and survival, and mitochondrial redox balance, that participates in a myriad of signaling and damaging pathways. The interaction between Ca2+ accumulation and redox imbalance regulates opening and closing of a highly regulated inner membrane pore, the membrane permeability transition pore (PTP). In this review, we discuss the regulation of the PTP by mitochondrial oxidants, reactive nitrogen species, and the interactions between these species and other PTP inducers. In addition, we discuss the involvement of mitochondrial redox imbalance and PTP in metabolic conditions such as atherogenesis, diabetes, obesity and in mtDNA stability.
Collapse
Affiliation(s)
- Anibal E Vercesi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | - Roger F Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Helena C F de Oliveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, SP, Brazil
| | - Nadja C de Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tiago R Figueira
- Escola de Educação Física e Esporte de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Estela N B Busanello
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
5
|
Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase. Proc Natl Acad Sci U S A 2017; 114:3409-3414. [PMID: 28289229 DOI: 10.1073/pnas.1702357114] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The permeability transition in human mitochondria refers to the opening of a nonspecific channel, known as the permeability transition pore (PTP), in the inner membrane. Opening can be triggered by calcium ions, leading to swelling of the organelle, disruption of the inner membrane, and ATP synthesis, followed by cell death. Recent proposals suggest that the pore is associated with the ATP synthase complex and specifically with the ring of c-subunits that constitute the membrane domain of the enzyme's rotor. The c-subunit is produced from three nuclear genes, ATP5G1, ATP5G2, and ATP5G3, encoding identical copies of the mature protein with different mitochondrial-targeting sequences that are removed during their import into the organelle. To investigate the involvement of the c-subunit in the PTP, we generated a clonal cell, HAP1-A12, from near-haploid human cells, in which ATP5G1, ATP5G2, and ATP5G3 were disrupted. The HAP1-A12 cells are incapable of producing the c-subunit, but they preserve the characteristic properties of the PTP. Therefore, the c-subunit does not provide the PTP. The mitochondria in HAP1-A12 cells assemble a vestigial ATP synthase, with intact F1-catalytic and peripheral stalk domains and the supernumerary subunits e, f, and g, but lacking membrane subunits ATP6 and ATP8. The same vestigial complex plus associated c-subunits was characterized from human 143B ρ0 cells, which cannot make the subunits ATP6 and ATP8, but retain the PTP. Therefore, none of the membrane subunits of the ATP synthase that are involved directly in transmembrane proton translocation is involved in forming the PTP.
Collapse
|
6
|
Figueira TR, Barros MH, Camargo AA, Castilho RF, Ferreira JCB, Kowaltowski AJ, Sluse FE, Souza-Pinto NC, Vercesi AE. Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health. Antioxid Redox Signal 2013; 18:2029-74. [PMID: 23244576 DOI: 10.1089/ars.2012.4729] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitochondrially generated reactive oxygen species are involved in a myriad of signaling and damaging pathways in different tissues. In addition, mitochondria are an important target of reactive oxygen and nitrogen species. Here, we discuss basic mechanisms of mitochondrial oxidant generation and removal and the main factors affecting mitochondrial redox balance. We also discuss the interaction between mitochondrial reactive oxygen and nitrogen species, and the involvement of these oxidants in mitochondrial diseases, cancer, neurological, and cardiovascular disorders.
Collapse
Affiliation(s)
- Tiago R Figueira
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bernardi P. The mitochondrial permeability transition pore: a mystery solved? Front Physiol 2013; 4:95. [PMID: 23675351 PMCID: PMC3650560 DOI: 10.3389/fphys.2013.00095] [Citation(s) in RCA: 255] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/19/2013] [Indexed: 01/04/2023] Open
Abstract
The permeability transition (PT) denotes an increase of the mitochondrial inner membrane permeability to solutes with molecular masses up to about 1500 Da. It is presumed to be mediated by opening of a channel, the permeability transition pore (PTP), whose molecular nature remains a mystery. Here I briefly review the history of the PTP, discuss existing models, and present our new results indicating that reconstituted dimers of the FOF1 ATP synthase form a channel with properties identical to those of the mitochondrial megachannel (MMC), the electrophysiological equivalent of the PTP. Open questions remain, but there is now promise that the PTP can be studied by genetic methods to solve the large number of outstanding problems.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences, University of Padova Padova, Italy
| |
Collapse
|
8
|
Costa RAP, Fernandes MP, de Souza-Pinto NC, Vercesi AE. Protective effects of l-carnitine and piracetam against mitochondrial permeability transition and PC3 cell necrosis induced by simvastatin. Eur J Pharmacol 2013; 701:82-6. [PMID: 23333250 DOI: 10.1016/j.ejphar.2013.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/20/2012] [Accepted: 01/08/2013] [Indexed: 11/16/2022]
Abstract
Mitochondrial oxidative stress followed by membrane permeability transition (MPT) has been considered as a possible mechanism for statins cytotoxicity. Statins use has been associated with reduced risk of cancer incidence, especially prostate cancer. Here we investigated the pathways leading to simvastatin-induced prostate cancer cell death as well as the mechanisms of cell death protection by l-carnitine or piracetam. These compounds are known to prevent and/or protect against cell death mediated by oxidative mitochondrial damage induced by a variety of conditions, either in vivo or in vitro. The results provide evidence that simvastatin induced MPT and cell necrosis were sensitive to either l-carnitine or piracetam in a dose-dependent fashion and mediated by additive mechanisms. When combined, l-carnitine and piracetam acted at concentrations significantly lower than they act individually. These results shed new light into both the cytotoxic mechanisms of statins and the mechanisms underlying the protection against MPT and cell death by the compounds l-carnitine and piracetam.
Collapse
Affiliation(s)
- Rute A P Costa
- Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | | | | | |
Collapse
|
9
|
Reactive oxygen species and permeability transition pore in rat liver and kidney mitoplasts. J Bioenerg Biomembr 2011; 43:709-15. [PMID: 21964737 DOI: 10.1007/s10863-011-9384-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
Abstract
Mitochondrial permeability transition is typically characterized by Ca(2+) and oxidative stress-induced opening of a nonselective proteinaceous membrane pore sensitive to cyclosporin A, known as the permeability transition pore (PTP). Data from our laboratory provide evidence that the PTP is formed when inner membrane proteins aggregate as a result of disulfide cross-linking caused by thiol oxidation. Here we compared the redox properties between PTP in intact mitochondria and mitoplasts. The rat liver mitoplasts retained less than 5% and 10% of the original outer membrane markers monoamine oxidase and VDAC, respectively. Kidney mitoplasts also showed a partial depletion of hexokinase. In line with the redox nature of the PTP, mitoplasts that were more susceptible to PTP opening than intact mitochondria showed higher rates of H(2)O(2) generation and decreased matrix NADPH-dependent antioxidant activity. Mitoplast PTP was also sensitive to the permeability transition inducer tert-butyl hydroperoxide and to the inhibitors cyclosporin A, EGTA, ADP, dithiothreitol and catalase. Taken together, these data indicate that, in mitoplasts, PTP exhibits redox regulatory characteristics similar to those described for intact mitochondria.
Collapse
|
10
|
Bernardi P, Krauskopf A, Basso E, Petronilli V, Blachly-Dyson E, Blalchy-Dyson E, Di Lisa F, Forte MA. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J 2006; 273:2077-99. [PMID: 16649987 DOI: 10.1111/j.1742-4658.2006.05213.x] [Citation(s) in RCA: 481] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mitochondrial permeability transition pore is a high conductance channel whose opening leads to an increase of mitochondrial inner membrane permeability to solutes with molecular masses up to approximately 1500 Da. In this review we trace the rise of the permeability transition pore from the status of in vitro artifact to that of effector mechanism of cell death. We then cover recent results based on genetic inactivation of putative permeability transition pore components, and discuss their meaning for our understanding of pore structure. Finally, we discuss evidence indicating that the permeability transition pore plays a role in pathophysiology, with specific emphasis on in vivo models of disease.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences and CNR Institute of Neurosciences, University of Padova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Heininger K. The cerebral glucose-fatty acid cycle: evolutionary roots, regulation, and (patho)physiological importance. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 51:103-58. [PMID: 12420358 DOI: 10.1016/s0074-7742(02)51004-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kurt Heininger
- Department of Neurology, Heinrich Heine University, D-40597 Düsseldorf, Germany
| |
Collapse
|
12
|
Zago EB, Castilho RF, Vercesi AE. The redox state of endogenous pyridine nucleotides can determine both the degree of mitochondrial oxidative stress and the solute selectivity of the permeability transition pore. FEBS Lett 2000; 478:29-33. [PMID: 10922464 DOI: 10.1016/s0014-5793(00)01815-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Acetoacetate, an NADH oxidant, stimulated the ruthenium red-insensitive rat liver mitochondrial Ca(2+) efflux without significant release of state-4 respiration, disruption of membrane potential (Deltapsi) or mitochondrial swelling. This process is compatible with the opening of the currently designated low conductance state of the permeability transition pore (PTP) and, under our experimental conditions, was associated with a partial oxidation of the mitochondrial pyridine nucleotides. In contrast, diamide, a thiol oxidant, induced a fast mitochondrial Ca(2+) efflux associated with a release of state-4 respiration, a disruption of Deltapsi and a large amplitude mitochondrial swelling. This is compatible with the opening of the high conductance state of the PTP and was associated with extensive oxidation of pyridine nucleotides. Interestingly, the addition of carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone to the acetoacetate experiment promoted a fast shift from the low to the high conductance state of the PTP. Both acetoacetate and diamide-induced mitochondrial permeabilization were inhibited by exogenous catalase. We propose that the shift from a low to a high conductance state of the PTP can be promoted by the oxidation of NADPH. This impairs the antioxidant function of the glutathione reductase/peroxidase system, strongly strengthening the state of mitochondrial oxidative stress.
Collapse
Affiliation(s)
- E B Zago
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, 13083-970, SP, Campinas, Brazil
| | | | | |
Collapse
|
13
|
Catisti R, Vercesi AE. The participation of pyridine nucleotides redox state and reactive oxygen in the fatty acid-induced permeability transition in rat liver mitochondria. FEBS Lett 1999; 464:97-101. [PMID: 10611491 DOI: 10.1016/s0014-5793(99)01677-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability of low concentrations (5-15 microM) of long-chain fatty acids to open the permeability transition pore (PTP) in Ca(2+)-loaded mitochondria has been ascribed to their protonophoric effect mediated by mitochondrial anion carriers, as well as to a direct interaction with the pore assembly [M.R. Wieckowski and L. Wojtczak, FEBS Lett. 423 (1998) 339-342]. Here, we have compared the PTP opening ability of arachidonic acid (AA) with that of carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) at concentrations that cause similar quantitative dissipation of the membrane potential (DeltaPsi) in Ca(2+)-loaded rat liver mitochondria respiring on succinate. The initial protonophoric effects of AA and FCCP were only slightly modified by carboxyatractyloside and were followed by PTP opening, as indicated by a second phase of DeltaPsi disruption sensitive to EGTA, ADP, dithiothreitol and cyclosporin A. This second phase of DeltaPsi dissipation could also be prevented by rotenone or NAD(P)H-linked substrates which decrease the pyridine nucleotide (PN) oxidation that follows the stimulation of oxygen consumption induced by AA or FCCP. These results suggest that, under the experimental conditions used here, the PTP opening induced by AA or FCCP was a consequence of PN oxidation. Exogenous catalase also inhibited both AA- and FCCP-induced PTP opening. These results indicate that a condition of oxidative stress associated with the oxidized state of PN underlies membrane protein thiol oxidation and PTP opening.
Collapse
Affiliation(s)
- R Catisti
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, 13083-970, Campinas, Brazil
| | | |
Collapse
|
14
|
Abstract
This review provides a selective history of how studies of mitochondrial cation transport (K+, Na+, Ca2+) developed in relation to the major themes of research in bioenergetics. It then covers in some detail specific transport pathways for these cations, and it introduces and discusses open problems about their nature and physiological function, particularly in relation to volume regulation and Ca2+ homeostasis. The review should provide the basic elements needed to understand both earlier mitochondrial literature and current problems associated with mitochondrial transport of cations and hopefully will foster new interest in the molecular definition of mitochondrial cation channels and exchangers as well as their roles in cell physiology.
Collapse
Affiliation(s)
- P Bernardi
- Department of Biomedical Sciences, University of Padova, and Consiglio Nazionale delle Ricerche Center for the Study of Biomembranes, Padova, Italy.
| |
Collapse
|
15
|
Broekemeier KM, Klocek CK, Pfeiffer DR. Proton selective substate of the mitochondrial permeability transition pore: regulation by the redox state of the electron transport chain. Biochemistry 1998; 37:13059-65. [PMID: 9748311 DOI: 10.1021/bi980820c] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The permeability transition pore of rat liver mitochondria can be closed by chelating free Ca2+, with respect to the passage of large molecules such as mannitol and sucrose. However, an apparent H+-conducting substate remains open under these conditions, as indicated by the persistence of maximal O2 consumption rates and by the failure to recover a membrane potential. Agents which favor a closed pore, such as cyclosporin A, ADP, Mg2+, or bovine serum albumin, do not close the H+-conducting substate, but it closes spontaneously when respiration becomes limited by the availability of O2. Closure provoked by an O2 limitation requires free Mg2+ in the sub-micromolar concentration range and becomes less efficient with increasing time spent in the presence of free Ca2+. The H+-conducting substate is apparently regulated by the redox status of the electron transport chain, with a reduced form favoring closure. A physical association (or equivalence) between the pore and one of the respiratory chain complexes is supported. These characteristics suggest that the transition is irreversible in vivo, if it involves a small fraction of total mitochondria, and would lead to their elimination and/or replacement by the cell. The implications of this proposal are considered, as they relate to a possible role for the transition in cellular apoptosis and the elimination of mitochondria containing mutated DNA.
Collapse
Affiliation(s)
- K M Broekemeier
- Department of Medical Biochemistry, The Ohio State University, Columbus 43210-1218, USA
| | | | | |
Collapse
|
16
|
Yang JC, Cortopassi GA. dATP causes specific release of cytochrome C from mitochondria. Biochem Biophys Res Commun 1998; 250:454-7. [PMID: 9753651 DOI: 10.1006/bbrc.1998.9333] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The induction of the Mitochondrial Permeability Transition (MPT) has recently been associated with the release of apoptogenic cytochrome c, which could come about in a swelling-dependent or swelling-independent manner. We observed that canonical inducers of MPT (Ca2+, t-butyl hydroperoxide, atractyloside) induce a swelling-dependent release of cytochrome c, and that osmotic support of mitochondria with PEG-1000 abolishes mitochondrial swelling, protein release, and cytochrome c release by these inducers. By contrast, it was observed that dATP is a potent inducer that caused release of cytochrome c in a swelling independent manner, i.e. even in the presence of osmotic support by PEG-1000; in addition this release of cytochrome c is inhibitable by cyclosporin A. The dATP-dependent and swelling-independent release of cytochrome c from mitochondria is not inhibitable by the protease inhibitor z-VAD, suggesting that it is not mediated by upstream caspases. This is the first report to our knowledge that a chemical compound may directly cause release of cytochrome c from mitochondria, and could explain the toxicity of dATP in the context of the genetic immunodeficiency diseases Adenosine Deaminase deficiency and Purine Nucleotide Phosphorylase deficiency.
Collapse
Affiliation(s)
- J C Yang
- Department of Molecular Biosciences, University of California, Davis 95616, USA
| | | |
Collapse
|
17
|
Jung DW, Bradshaw PC, Pfeiffer DR. Properties of a cyclosporin-insensitive permeability transition pore in yeast mitochondria. J Biol Chem 1997; 272:21104-12. [PMID: 9261114 DOI: 10.1074/jbc.272.34.21104] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Yeast mitochondria (Saccharomyces cerevisiae) contain a permeability transition pore which is regulated differently than the pore in mammalian mitochondria. In a mannitol medium containing 10 mM Pi and ethanol (oxidizable substrate), yeast mitochondria accumulate large amounts of Ca2+ (>400 nmol/mg of protein) upon the addition of an electrophoretic Ca2+ ionophore (ETH129). Pore opening does not occur following Ca2+ uptake, even though ruthenium red-inhibited rat liver mitochondria undergo rapid pore opening under analogous conditions. However, a pore does arise in yeast mitochondria when Ca2+ and Pi are not present, as monitored by swelling, ultrastructure, and matrix solute release. Pore opening is slow unless a respiratory substrate is provided (ethanol or NADH) but also occurs rapidly in response to ATP (2 mM) when oligomycin is present. Pi and ADP inhibit pore opening (EC50 approximately 1 and 4 mM, respectively), however, cyclosporin A (7 microg/ml), oligomycin (20 microg/ml), or carboxyatractyloside (25 microM) have no effect. The pore arising during respiration is also inhibited by nigericin or uncoupler, indicating that an acidic matrix pH antagonizes the process. Pi also inhibits pore opening by lowering the matrix pH (Pi/OH- antiport). However, inhibition of the ATP-induced pore by Pi is seen in the presence of mersalyl, suggesting a second mechanism of action. Since pore induction by ATP is not sensitive to carboxyatractyloside, ATP appears to act at an external site and Pi may antagonize the interaction. Isoosmotic polyethylene glycol-induced contraction of yeast mitochondria swollen during respiration, or in the presence of ATP, is 50% effective at a solute size of 1.0-1.1 kDa. This suggests that the same pore is induced in both cases and is comparable in size with the permeability transition pore of heart and liver mitochondria.
Collapse
Affiliation(s)
- D W Jung
- Department of Medical Biochemistry, The Ohio State University, Columbus, Ohio 43210-1218, USA.
| | | | | |
Collapse
|
18
|
Castilho RF, Kowaltowski AJ, Vercesi AE. The irreversibility of inner mitochondrial membrane permeabilization by Ca2+ plus prooxidants is determined by the extent of membrane protein thiol cross-linking. J Bioenerg Biomembr 1996; 28:523-9. [PMID: 8953384 DOI: 10.1007/bf02110442] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have previously shown that mitochondrial membrane potential (delta psi) drop promoted by prooxidants and Ca2+ can be reversed but not sustained by ethylene glycol-bis(beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) unless dithiothreitol (DTT), a disulfide reductant, is also added [Valle, V. G. R., Fagian, M. M., Parentoni, L. S., Meinicke, A. R., and Vercesi, A. E. (1993). Arch. Biochem. Biophys. 307, 1-7]. In this study we show that catalase or ADP are also able to potentiate this EGTA effect. When EGTA is added long after (12 min) the completion of swelling or delta psi elimination, no membrane resealing occurs unless the EGTA addition was preceded by the inclusion of DTT, ADP, or catalase soon after delta psi was collapsed. Total delta psi recovery by EGTA is obtained only in the presence of ADP. The sensitivity of the ADP effect to carboxyatractyloside strongly supports the involvement of the ADP/ATP carrier in this mechanism. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of solubilized membrane proteins shows that protein aggregation due to thiol cross-linkage formed during delta psi drop continues even after delta psi is already eliminated. Titration with 5,5'-dithio-bis(2-nitrobenzoic acid) supports the data indicating that the formation of protein aggregates is paralleled by a decrease in the content of membrane protein thiols. Since the presence of ADP and EGTA prevents the progress of protein aggregation, we conclude that this process is responsible for both increased permeability to larger molecules and the irreversibility of delta psi drop. The protective effect of catalase suggests that the continuous production of protein thiol cross-linking is mediated by mitochondrial generated reactive oxygen species.
Collapse
Affiliation(s)
- R F Castilho
- Departamento de Bioquímica, Universidade Estadual de Campinas, Brasil
| | | | | |
Collapse
|
19
|
Affiliation(s)
- M Zoratti
- CNR Unit for the Physiology of Mitochondria, Department of Biomedical Sciences, Padova, Italy
| | | |
Collapse
|
20
|
Pfeiffer DR, Gudz TI, Novgorodov SA, Erdahl WL. The peptide mastoparan is a potent facilitator of the mitochondrial permeability transition. J Biol Chem 1995; 270:4923-32. [PMID: 7876267 DOI: 10.1074/jbc.270.9.4923] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mastoparan facilitates opening of the mitochondrial permeability transition pore through an apparent bimodal mechanism of action. In the submicromolar concentration range, the action of mastoparan is dependent upon the medium Ca2+ and phosphate concentration and is subject to inhibition by cyclosporin A. At concentrations above 1 microM, pore induction by mastoparan occurs without an apparent Ca2+ requirement and in a cyclosporin A insensitive manner. Studies utilizing phospholipid vesicles show that mastoparan perturbs bilayer membranes across both concentration ranges, through a mechanism which is strongly dependent upon transmembrane potential. However, solute size exclusion studies suggest that the pores formed in mitochondria in response to both low and high concentrations of mastoparan are the permeability transition pore. It is proposed that low concentrations of mastoparan influence the pore per se, with higher concentrations having the additional effect of depolarizing the mitochondrial inner membrane through an action exerted upon the lipid phase. It may be the combination of these effects which allow pore opening in the absence of Ca2+ and in the presence of cyclosporin A, although other interpretations remain viable. A comparison of the activities of mastoparan and its analog, MP14, on mitochondria and phospholipid vesicles provides an initial indication that a G-protein may participate in regulation of the permeability transition pore. These studies draw attention to peptides, in a broad sense, as potential pore regulators in cells, under both physiological and pathological conditions.
Collapse
Affiliation(s)
- D R Pfeiffer
- Department of Medical Biochemistry, College of Medicine, Ohio State University, Columbus 43210
| | | | | | | |
Collapse
|
21
|
Weis M, Kass GE, Orrenius S. Further characterization of the events involved in mitochondrial Ca2+ release and pore formation by prooxidants. Biochem Pharmacol 1994; 47:2147-56. [PMID: 7518235 DOI: 10.1016/0006-2952(94)90249-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Addition of the prooxidant 3,5-dimethyl-N-acetyl-p-benzoquinone imine (3,5(Me)2NAPQI) to Ca(2+)-loaded mitochondria caused a rapid and extensive release of the sequestered Ca2+. Ca2+ release was accompanied by irreversible NAD(P)H oxidation and was followed by the release of adenine and pyridine nucleotides into the extramitochondrial medium; this is evidence of the opening of the pore in the inner mitochondrial membrane. Preincubation of the mitochondria with ADP, cyclosporin A (CSA), m-iodobenzylguanidine (MIBG) or Mg2+ inhibited the prooxidant-induced Ca2+ release and prevented pore-opening. When mitochondria were preincubated with ruthenium red, Ca2+ release was only minimally stimulated by 3,5(Me)2NAPQI. However, increasing the concentration of the prooxidant caused release of an increasing fraction of the sequestered Ca2+. Alternatively, increasing the intramitochondrial Ca2+ load resulted in a lowering of the concentration of 3,5(Me)2NAPQI required for near complete Ca2+ release to occur. In the presence of ruthenium red, 3,5(Me)2NAPQI-induced Ca2+ release was accompanied by irreversible pyridine nucleotide oxidation and followed by the release of nucleotides into the extramitochondrial medium, events which were prevented on preincubation with CSA. Similarly, the addition of CSA, ADP or MIBG during 3,5(Me)2NAPQI-induced Ca2+ release arrested further Ca2+ release. In addition to their inhibitory effect on the 3,5(Me)2NAPQI-induced Ca2+ release, CSA, ADP or MIBG also decreased the rate of the basal, ruthenium red-induced mitochondrial Ca2+ release by 45-70%. It is proposed that the basal, ruthenium red-induced and the prooxidant-induced mitochondrial Ca2+ release occur through a common component that is sensitive to inhibition by CSA, ADP and MIBG and that is involved in mitochondrial pore formation. Furthermore, 3,5(Me)2NAPQI-induced pore opening does not involve Ca(2+)-cycling, but rather involves a site(s) that is (are) synergistically activated by Ca2+ and the prooxidant.
Collapse
Affiliation(s)
- M Weis
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
22
|
Pieri C, Moroni F, Recchioni R. Vitamin E deficiency impairs the modifications of mitochondrial membrane potential and mass in rat splenocytes stimulated to proliferate. Free Radic Biol Med 1993; 15:661-5. [PMID: 7511124 DOI: 10.1016/0891-5849(93)90170-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study was designed to evaluate the time-dependent changes of mitochondrial membrane potential and mass during Con-A-induced proliferation of splenic lymphocytes from rat fed a normal or a vitamin E deficient diet. Rhodamine 123 and Nonyl Acridine Orange were used as specific probes to monitor the membrane potential and mass of mitochondria, respectively, by means of flow cytometry. The results demonstrate that the increase of Rh-123 and NAO uptake observed in cells from normally fed rats was prevented by vitamin E deficiency, at any time considered. After 72 h from Con A stimulation, 62% of cells from controls, as against 16% of cells from vitamin E deficient rats, showed hyperpolarized mitochondria. At the same time, in this last group, 60% of cells had depolarized organelles. The same pattern was observed considering the changes of mitochondrial mass, measured using NAO as a probe. These data support that mitogenic stimulation induced an increase of the respiratory activity of mitochondria with subsequent production of superoxide radicals. This resulted in depolarization and loss of mass of the organelles if the intracellular level of vitamin E is not adequate.
Collapse
Affiliation(s)
- C Pieri
- Cytology Center, Gerontol. Res. Dept. of I.N.R.C.A., Ancona, Italy
| | | | | |
Collapse
|
23
|
Pieri C, Recchioni R, Moroni F. Age-dependent modifications of mitochondrial trans-membrane potential and mass in rat splenic lymphocytes during proliferation. Mech Ageing Dev 1993; 70:201-12. [PMID: 8246634 DOI: 10.1016/0047-6374(93)90048-v] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The specific fluorescent probes, Rhodamine 123 (Rh-123) and Nonyl-Acridine Orange (NAO) were, respectively, used to monitor the changes in membrane potential and mass of lymphocyte mitochondria during aging and proliferation. An age-dependent increase of the uptake of both fluorochromes was observed in resting cells; however, NAO fluorescence increased to a greater extent when compared with the Rh-123 probe. This resulted in a lower respiratory activity per unit of mitochondrial mass in old cells than in the young ones. Following mitogenic stimulation, most of the lymphocytes from young rats showed an increase in their membrane potential and mass. On the contrary about 50% of cells from old rats had depolarized mitochondria after 72 h from the stimulation. Present data support that mitochondria of lymphocytes from old rats are extremely sensitive to the stressing conditions resulting from mitogenic stimulation.
Collapse
Affiliation(s)
- C Pieri
- Cytology Center, Gerontological Research Department of I.N.R.C.A., Ancona, Italy
| | | | | |
Collapse
|
24
|
Richter C, Schlegel J, Schweizer M. Prooxidant-induced Ca2+ release from liver mitochondria. Specific versus nonspecific pathways. Ann N Y Acad Sci 1992; 663:262-8. [PMID: 1336328 DOI: 10.1111/j.1749-6632.1992.tb38669.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ca2+ release from mitochondria can be induced by a variety of chemically different prooxidants. Release induced by these compounds is possibly regulated by protein mono(ADP)ribosylation, and leaves mitochondria initially intact. Excessive "cycling" (continuous release and uptake) of Ca2+ by mitochondria leads to their damage, as shown by a decreased membrane potential, fast Ca2+ release, and impairment of ATP synthesis. When cycling is prevented by Ca2+ chelators or by inhibition of the uptake route with ruthenium red, prooxidants still induce Ca2+ release but mitochondria remain intact. It has recently been suggested that formation of a "pore" in the inner mitochondrial membrane participates in the Ca2+ release mechanism. We find that the prooxidant-induced Ca2+ release is not paralleled by sucrose entry into, or K+ release from, or swelling of mitochondria, provided Ca2+ cycling is prevented. Thus, the prooxidant-induced Ca2+ release does not require formation of a "pore." We conclude that the release occurs via a specific pathway.
Collapse
Affiliation(s)
- C Richter
- Laboratory of Biochemistry I, Swiss Federal Institute of Technology (ETH), Zürich
| | | | | |
Collapse
|
25
|
Schlegel J, Schweizer M, Richter C. 'Pore' formation is not required for the hydroperoxide-induced Ca2+ release from rat liver mitochondria. Biochem J 1992; 285 ( Pt 1):65-9. [PMID: 1379041 PMCID: PMC1132745 DOI: 10.1042/bj2850065] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It has recently been suggested by several investigators that the hydroperoxide- and phosphate-induced Ca2+ release from mitochondria occurs through a non-specific 'pore' formed in the mitochondrial inner membrane. The aim of the present study was to investigate whether 'pore' formation actually is required for Ca2+ release. We find that the t-butyl hydroperoxide (tbh)-induced release is not accompanied by stimulation of sucrose entry into, K+ release from, and swelling of mitochondria provided re-uptake of the released Ca2+ ('Ca2+ cycling') is prevented. We conclude that (i) the tbh-induced Ca2+ release from rat liver mitochondria does not require 'pore' formation in the mitochondrial inner membrane, (ii) this release occurs via a specific pathway from intact mitochondria, and (iii) a non-specific permeability transition ('pore' formation) is likely to be secondary to Ca2+ cycling by mitochondria.
Collapse
Affiliation(s)
- J Schlegel
- Laboratory of Biochemistry I, Swiss Federal Institute of Technology (ETH), Zürich
| | | | | |
Collapse
|
26
|
Chávez E, Moreno-Sánchez R, Zazueta C, Reyes-Vivas H, Arteaga D. Intramitochondrial K+ as activator of carboxyatractyloside-induced Ca2+ release. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1070:461-6. [PMID: 1764458 DOI: 10.1016/0005-2736(91)90087-o] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The role of intramitochondrial K+ content on the increase in membrane permeability to Ca2+, as induced by carboxyatractyloside was studied. In mitochondria containing a high K+ concentration (83 nmol/mg), carboxyatractyloside induced a fast and extensive mitochondrial Ca2+ release, membrane de-energization, and swelling. Conversely, in K(+)-depleted mitochondria (11 nmol/mg), carboxyatractyloside was ineffective. The addition of 40 mM K+ to K(+)-depleted mitochondria restored the capability of atractyloside to induce an increase in membrane permeability to Ca2+ release. The determination of matrix free Ca2+ concentration showed that, at an external free-Ca2+ concentration of 0.8 microM, control mitochondria contained 3.9 microM of free Ca2+ whereas K(+)-depleted mitochondria contained 0.9 microM free Ca2+. It is proposed that intramitochondrial K+ affects the matrix free Ca2+ concentration required to induce a state of high membrane permeability.
Collapse
Affiliation(s)
- E Chávez
- Departamento de Bioquímica, Ignacio Chávez, México, D.F
| | | | | | | | | |
Collapse
|
27
|
Guidoux R. Acetoacetate and malate effects on succinate and energy production by O2-deprived liver mitochondria supplied with 2-oxoglutarate. Arch Biochem Biophys 1991; 287:397-402. [PMID: 1898011 DOI: 10.1016/0003-9861(91)90495-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Acetoacetate provision to Ca(2+)-loaded liver mitochondria (less than 40 micrograms-ion Ca2+ x g protein-1), supplied with 2 mM Pi and 2-oxoglutarate as substrate, was found to prevent the mitochondrial deenergization and Ca2+ release induced by either rotenone during aerobic incubations or by O2 deprivation. Under the latter condition, the acetoacetate-promoted Ca2+ retention was entirely supported by ATP produced anaerobically at the succinylthiokinase step of the tricarboxylic acid cycle and was therefore abolished by addition of oligomycin. Surprisingly, oligomycin was also found to trigger Ca2+ release in rotenone-inhibited mitochondria in the presence of acetoacetate under aerobic conditions, unless a Pi acceptor was supplied. ADP deprivation at the succinylthiokinase step is likely to be involved. As estimated from rates of succinate production in O2-deprived mitochondria or from respiration rates in rotenone-inhibited mitochondria at supramaximal acetoacetate concentrations (above 1.2 mM) in the presence of a Pi acceptor, ATP production by substrate-level phosphorylation was close to 10 mumol.g protein-1.min-1 and appeared to be limited by rates of ketone body transport across the inner membrane. The rates of anaerobic energy production obtained by coupling 2-oxoglutarate oxidation to acetoacetate reduction were markedly higher than those obtained by reactions involved in the anaerobic metabolism of amino acids, simulated by providing 2-oxoglutarate and malate to mitochondria. Energy production was limited by rates of oxidant equivalent generation under the latter condition. Our data suggest that acetoacetate could effectively contribute to sustaining anaerobic energy production from endogenous substrates in liver tissue.
Collapse
Affiliation(s)
- R Guidoux
- Nestec Ltd, Research Centre, Vers-chez-les-Blanc, Lausanne, Switzerland
| |
Collapse
|
28
|
Richter C, Kass GE. Oxidative stress in mitochondria: its relationship to cellular Ca2+ homeostasis, cell death, proliferation, and differentiation. Chem Biol Interact 1991; 77:1-23. [PMID: 1983962 DOI: 10.1016/0009-2797(91)90002-o] [Citation(s) in RCA: 247] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A variety of chemically different prooxidants causes Ca2+ release from mitochondria. This prooxidant-induced Ca2+ release occurs from intact mitochondria via a route which is physiologically relevant and may be regulated by protein monoADP-ribosylation. When the released Ca2+ is excessively 'cycled' by mitochondria (continuously taken up and released) the inner membrane is damaged. This leads to a decreased ability of mitochondria to retain Ca2+, uncoupling of mitochondria, and an impairment of ATP synthesis, which in turn deprives the cell of the energy necessary for the proper functioning of the Ca2+ ATPases of the endoplasmic (sarcoplasmic) reticulum, the nucleus and the plasma membrane. The ensuing rise of the cytosolic Ca2+ level cannot be counterbalanced by the damaged mitochondria which, under normoxic conditions, act as a safety device against an increase of the cytosolic Ca2+ concentration. The impaired ability of mitochondria to retain Ca2+ may lead to cell death. However, there is also evidence emerging that release of Ca2+ from mitochondria may be physiologically important for cell proliferation and differentiation.
Collapse
Affiliation(s)
- C Richter
- Swiss Federal Institute of Technology (ETH), Zurich
| | | |
Collapse
|
29
|
Membrane protein thiol cross-linking associated with the permeabilization of the inner mitochondrial membrane by Ca2+ plus prooxidants. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)45467-6] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
30
|
Possible involvement of mitochondrial calcium transport in causing cell injury in experimental hepatic chronic iron overload. J Electroanal Chem (Lausanne) 1990. [DOI: 10.1016/0022-0728(90)87476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Masini A, Ceccarelli D, Trenti T, Corongiu FP, Muscatello U. Perturbation in liver mitochondrial Ca2+ homeostasis in experimental iron overload: a possible factor in cell injury. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1014:133-40. [PMID: 2819086 DOI: 10.1016/0167-4889(89)90025-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The functional state of isolated mitochondria and specifically the integrity of the inner membrane, were investigated in the liver of rats made siderotic by dietary supplementation with carbonyl iron. The concentration of iron in the hepatic tissue increased progressively up to nearly 40 days and reached a steady-state level. When the iron content reached a threshold value (higher than 90 nmol/mg protein) the occurrence of in vivo lipid peroxidation in the mitochondrial membrane was detected. This process did not result in gross alterations in the mitochondrial membrane, as indicated by electron microscopy, phosphorylative capability and membrane potential measurements. On the contrary, the induction of lipoperoxidative reaction appeared to be associated with the activation of Ca2+ release from mitochondria. This was shown to occur as a consequence of rather subtle modifications in the inner membrane structure via a specific efflux route, which appeared to be linked to the oxidation level of mitochondrial pyridine nucleotides. The induction of this Ca2+ release from iron-treated mitochondria resulted in enhancement of Ca2+ cycling, a process which dissipates energy to reaccumulate into mitochondria the released Ca2+. The perturbation in mitochondrial Ca2+ homeostasis reported here may be a factor in the onset of cell damage in this experimental model of hepatic iron overload.
Collapse
Affiliation(s)
- A Masini
- Istituto di Patologia Generale, Università di Modena, Italy
| | | | | | | | | |
Collapse
|
32
|
Igbavboa U, Zwizinski CW, Pfeiffer DR. Release of mitochondrial matrix proteins through a Ca2+-requiring, cyclosporin-sensitive pathway. Biochem Biophys Res Commun 1989; 161:619-25. [PMID: 2500122 DOI: 10.1016/0006-291x(89)92644-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Induction of the inner membrane permeability transition, normally associated with the release of small molecules and ions from the mitochondrial matrix, also causes the release of matrix proteins. The release is linear with time and slow when compared to the time course of mitochondrial swelling. Transient induction of the high permeability state is reflected in transient release of proteins. Cyclosporin A (0.5 nmol/mg protein) or chelation of free Ca2+, which reverses the permeability transition, also block the subsequent release of protein even when added after extended preincubation. Possible mechanisms of protein release are discussed.
Collapse
Affiliation(s)
- U Igbavboa
- Hormel Institute, University of Minnesota, Austin 55912
| | | | | |
Collapse
|
33
|
Saris NE, van den Bosch H. Interaction of Sr2+ with Ca2+-induced Ca2+ release in mitochondria. J Bioenerg Biomembr 1988; 20:749-57. [PMID: 3243774 DOI: 10.1007/bf00762551] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Respiring rat liver mitochondria are known to spontaneously release the Ca2+ taken up when they have accumulated Ca2+ over a certain threshold, while Sr2+ and Mn2+ are well tolerated and retained. We have studied the interaction of Sr2+ with Ca2+ release. When Sr2+ was added to respiring mitochondria simultaneously with or soon after the addition of Ca2+, the release was potently inhibited or reversed. On the other hand, when Sr2+ was added before Ca2+, the release was stimulated. Ca2+-induced mitochondrial damage and release of accumulated Ca2+ is generally believed to be due to activation of mitochondrial phospholipase A (EC 3.1.1.4.) by Ca2+. However, isolated mitochondrial phospholipase A activity was little if at all inhibited by Sr2+. The Ca2+-release may thus be triggered by some Ca2+-dependent function other than phospholipase.
Collapse
Affiliation(s)
- N E Saris
- Department of Medical Chemistry, University of Helsinki, Finland
| | | |
Collapse
|
34
|
Vercesi AE, Ferraz VL, Macedo DV, Fiskum G. Ca2+-dependent NAD(P)+-induced alterations of rat liver and hepatoma mitochondrial membrane permeability. Biochem Biophys Res Commun 1988; 154:934-41. [PMID: 3136771 DOI: 10.1016/0006-291x(88)90229-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Deenergized rat liver or AS-30D hepatoma mitochondria underwent extensive swelling when incubated in the presence of Ca2+ and an oxidant of mitochondrial pyridine nucleotides. This swelling was stimulated by phosphate and inhibited by ruthenium red, Mg2+ plus ATP and dibucaine. The degree of inhibition by dibucaine was shown to vary inversely with the Ca2+ concentration. The inhibition caused by ruthenium red was completely removed by the Ca2+ ionophore ionomycin indicating that the effect of the cation is mediated by internal binding sites. Since mitochondria were totally deenergized the data definitely rule out the requirement for Ca2+ cycling across the membrane in this mechanism.
Collapse
Affiliation(s)
- A E Vercesi
- Departamento de Bioquímica, I.B., Unicamp, Campinas, Brasil
| | | | | | | |
Collapse
|
35
|
Abstract
A variety of chemically different prooxidants causes Ca2+ release from mitochondria. The prooxidant-induced Ca2+ release occurs from intact mitochondria via a route which is physiologically relevant and may be regulated by protein ADP-ribosylation. When the released Ca2+ is excessively cycled by mitochondria they are damaged. This leads to uncoupling, a decreased ATP supply, and a decreased ability of mitochondria to retain Ca2+. Excessive Ca2+ cycling by mitochondria will deprive cells of ATP. As a result, Ca2+ ATPases of the endoplasmic (sarcoplasmic) reticulum and the plasma membrane are stopped. The rising cytosolic Ca2+ level cannot be counterbalanced due to damage of mitochondria which, under normoxic conditions, act as safety device against increased cytosolic Ca2+. It is proposed that prooxidants are toxic because they impair the ability of mitochondria to retain Ca2+.
Collapse
Affiliation(s)
- C Richter
- Laboratory of Biochemistry, Swiss Federal Institute of Technology, Zurich
| | | |
Collapse
|
36
|
Vercesi AE. The participation of NADP, the transmembrane potential and the energy-linked NAD(P) transhydrogenase in the process of Ca2+ efflux from rat liver mitochondria. Arch Biochem Biophys 1987; 252:171-8. [PMID: 3813533 DOI: 10.1016/0003-9861(87)90021-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The pyridine nucleotide specificity, the participation of delta psi, and the energy-linked transhydrogenase in the process of Ca2+ efflux stimulated by the oxidized state of NAD(P) were examined in rat liver mitochondria energized by ascorbate + TMPD. The following observations were made: The Ca2+ efflux rate is independent of the redox state of mitochondrial NAD, but is at a minimum when mitochondrial NADP is in the reduced state and accelerated several-fold when it is in the oxidized state. When the redox state of NADP is shifted to a more oxidized state, the steady-state level of Ca2+ in the medium increased and delta psi decreased in proportion to the mitochondrial NADP+ level. The activity of the energy-linked NAD(P) transhydrogenase seems to be a key element in determining the redox state of NADP and thus of Ca2+ retention and efflux from mitochondria.
Collapse
|
37
|
Riley WW, Pfeiffer DR. The effect of Ca2+ and acyl coenzyme A:lysophospholipid acyltransferase inhibitors on permeability properties of the liver mitochondrial inner membrane. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)66974-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
38
|
Martins IS, Carnieri EG, Vercesi AE. Characteristics of Ca2+ transport by corn mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1986. [DOI: 10.1016/0005-2728(86)90007-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Garlid KD, Beavis AD. Evidence for the existence of an inner membrane anion channel in mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 853:187-204. [PMID: 2441746 DOI: 10.1016/0304-4173(87)90001-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mitochondria normally exhibit very low electrophoretic permeabilities to physiologically important anions such as chloride, bicarbonate, phosphate, succinate, citrate, etc. Nevertheless, considerable evidence has accumulated which suggests that heart and liver mitochondria contain a specific anion-conducting channel. In this review, a postulated inner membrane anion channel is discussed in the context of other known pathways for anion transport in mitochondria. This anion channel exhibits the following properties. It is anion-selective and inhibited physiologically by protons and magnesium ions. It is inhibited reversibly by quinine and irreversibly by dicyclohexylcarbodiimide. We propose that the inner membrane anion channel is formed by inner membrane proteins and that this pathway is normally latent due to regulation by matrix Mg2+. The physiological role of the anion channel is unknown; however, this pathway is well designed to enable mitochondria to restore their normal volume following pathological swelling. In addition, the inner membrane anion channel provides a potential futile cycle for regulated non-shivering thermogenesis and may be important in controlled energy dissipation.
Collapse
|
40
|
Relationships between Ca2+ release, Ca2+ cycling, and Ca2+-mediated permeability changes in mitochondria. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)38890-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
41
|
|
42
|
Abstract
Coupled mitochondria isolated from the white leaves of cabbage (Brassica Oleracea, var. capitata) were inactive in respiration-coupled Ca2+ accumulation, in contrast to mitochondria isolated from etiolated corn (Zea mays) which showed the ability to take up Ca2+ from the medium, although with a much lower activity than liver mitochondria. The addition of corn mitochondria to aerobic medium containing succinate as respiratory substrate and a free Ca2+ concentration of 40 microM resulted in Ca2+ uptake with a decrease in free Ca2+ concentration until a steady state of about 2.0 microM was reached and maintained constant for several minutes. Perturbation of this steady state by the addition of Ca2+ or EGTA was followed by Ca2+ uptake or release, respectively, until the steady state was attained at the original extramitochondrial free Ca2+ concentration. These results indicate that corn but not cabbage mitochondria, as with some animal mitochondria, have the ability to buffer external Ca2+ and may be involved in the maintenance of Ca2+ homeostasis in the cell.
Collapse
|
43
|
|
44
|
Pereira da Silva L, Bernardes CF, Vercesi AE. Inhibition of ruthenium red-induced Ca2+ efflux from liver mitochondria by the antibiotic X-537A. Biochem Biophys Res Commun 1984; 124:80-6. [PMID: 6208904 DOI: 10.1016/0006-291x(84)90919-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It has been reported (Becker, G.L., Fiskum, G. and Lehninger, A.L. (1980) J. Biol. Chem. 255, 9009-9012) that respiring rat liver mitochondria suspended in KC1 medium containing ATP, Mg2+ and phosphate, maintain a steady state extramitochondrial free Ca2+ concentration of about 0.5 microM. The results reported here show that the addition of the antibiotic X-537A, at concentrations far below those required for ionophorous activity, caused a perturbation in this steady state, lowering the extramitochondrial free Ca2+ concentration by about 0.20 microM. This shift in steady state was clarified by a study of X-537A inhibition of the Ca2+ efflux induced by ruthenium red; a half-maximum effect was observed at approximately 25 nM X-537A. No effect on Ca2+ transport through the influx uniporter was observed. The possibility of a generalized stabilizing action of the antibiotic on the mitochondrial membrane seems to be ruled out by its effectiveness at very low concentrations.
Collapse
|