1
|
Joshi KK, Nanda JS, Kumar P, Sahni G. Substrate kringle-mediated catalysis by the streptokinase-plasmin activator complex: Critical contribution of kringle-4 revealed by the mutagenesis approaches. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:326-33. [DOI: 10.1016/j.bbapap.2011.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 09/18/2011] [Accepted: 10/19/2011] [Indexed: 10/16/2022]
|
2
|
Kassam G, Kwon M, Yoon CS, Graham KS, Young MK, Gluck S, Waisman DM. Purification and characterization of A61. An angiostatin-like plasminogen fragment produced by plasmin autodigestion in the absence of sulfhydryl donors. J Biol Chem 2001; 276:8924-33. [PMID: 11114303 DOI: 10.1074/jbc.m009071200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasmin, a broad spectrum proteinase, is inactivated by an autoproteolytic reaction that results in the destruction of the heavy and light chains of the protein. Recently we demonstrated that a 61-kDa plasmin fragment was one of the major products of this autoproteolytic reaction (Fitzpatrick, S. L., Kassam, G., Choi, K. S., Kang, H. M., Fogg, D. K., and Waisman, D. M. (2000)Biochemistry 39, 1021-1028). In the present communication we have identified the 61-kDa plasmin fragment as a novel four kringle-containing protein consisting of the amino acid sequence Lys(78)-Lys(468). To avoid confusion with the plasmin(ogen) fragment, angiostatin(R) (Lys(78)-Ala(440)), we have named this protein A(61). Unlike angiostatin, A(61) was produced in vitro from plasmin autodigestion in the absence of sulfhydryl donors. A(61) bound to lysine-Sepharose and also underwent a large increase in fluorescence yield upon binding of the lysine analogue, trans-4-aminomethylcyclohexanecarboxylic acid. Circular dichroism suggested that A(61) was composed of 21% beta-strand, 14% beta-turn, 18% 3(1)-helix and 8% 3(10)-helix. A(61) was an anti-angiogenic protein as indicated by the inhibition of bovine capillary endothelial cell proliferation. Plasminogen was converted to A(61) by HT1080 cells and bovine capillary endothelial cells. Furthermore, a plasminogen fragment similar to A(61) was present in the serum of humans as well as normal and tumor-bearing mice. These results establish that plasmin turnover can generate anti-angiogenic plasmin fragments in a nonpathological setting.
Collapse
Affiliation(s)
- G Kassam
- Cancer Biology Research Group, Department of Biochemistry, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | |
Collapse
|
3
|
Stahl SJ, Wingfield PT, Kaufman JD, Pannell LK, Cioce V, Sakata H, Taylor WG, Rubin JS, Bottaro DP. Functional and biophysical characterization of recombinant human hepatocyte growth factor isoforms produced in Escherichia coli. Biochem J 1997; 326 ( Pt 3):763-72. [PMID: 9307026 PMCID: PMC1218731 DOI: 10.1042/bj3260763] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hepatocyte growth factor (HGF) is a pluripotent secreted protein that stimulates a wide array of cellular targets, including hepatocytes and other epithelial cells, melanocytes, endothelial and haematopoietic cells. Multiple mRNA species transcribed from a single HGF gene encode at least three distinct proteins: the full-length HGF protein and two truncated HGF isoforms that encompass the N-terminal (N) domain through kringle 1 (NK1) or through kringle 2 (NK2). We report the high-level expression in Escherichia coli of NK1 and NK2, as well as the individual kringle 1 (K1) and N domains of HGF. All proteins accumulated as insoluble aggregates that were solubilized, folded and purified in high yield using a simple procedure that included two gel-filtration steps. Characterization of the purified proteins indicated chemical and physical homogeneity, and analysis by CD suggested native conformations. Although the K1 and N-terminal domains of HGF have limited biological activity, spectroscopic evidence indicated that the conformation of each matched that observed when the domains were components of biologically active NK1. Both NK1 and NK2 produced in bacteria were functionally equivalent to proteins generated by eukaryotic systems, as indicated by mitogenicity, cell scatter, and receptor binding and activation assays. These data indicate that all four bacterially produced HGF derivatives are well suited for detailed structural analysis.
Collapse
Affiliation(s)
- S J Stahl
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bldg 6B, Rm. 1B130, 6 Center Dr., MSC 2775, National Institutes of Health, Bethesda, MD 20892-2775, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Bányai L, Tordai H, Patthty L. Structure and domain-domain interactions of the gelatin binding site of human 72-kilodalton type IV collagenase (gelatinase A, matrix metalloproteinase 2). J Biol Chem 1996; 271:12003-8. [PMID: 8662603 DOI: 10.1074/jbc.271.20.12003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have shown previously that all three fibronectin type II modules of gelatinase A contribute to its gelatin affinity. In the present investigation we have studied the structure and module-module interactions of this gelatin-binding domain by circular dichroism spectroscopy and differential scanning calorimetry. Comparison of the Tm values of the thermal transitions of isolated type II modules with those of bimodular or trimodular proteins has shown that the second type II module is significantly more stable in the trimodular protein coll 123 (Tm = 54 degrees C) than in the single-module protein coll 2 (Tm = 44 degrees C) or in the bimodular proteins coll 23 (Tm = 47 degrees C) and coll 12 (Tm = 48 degrees C). Analysis of the enthalpy changes associated with thermal unfolding of the second type II module suggests that it is stabilized by domain-domain interactions in coll 123. We propose that intimate contacts exist between the three tandem type 11 units and they form a single gelatin-binding site. Based on the three-dimensional structures of homologous metalloproteases and type II modules, a model is proposed in which the three type II units form an extension of the substrate binding cleft of gelatinase A.
Collapse
Affiliation(s)
- L Bányai
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | |
Collapse
|
5
|
LoGrasso P, Cornell-Kennon S, Boettcher B. Cloning, expression, and characterization of human apolipoprotein(a) kringle IV37. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31877-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
6
|
Cox M, Schaller J, Boelens R, Kaptein R, Rickli E, Llinás M. Kringle solution structures via NMR: two-dimensional 1H-NMR analysis of horse plasminogen kringle 4. Chem Phys Lipids 1994; 67-68:43-58. [PMID: 8187244 DOI: 10.1016/0009-3084(94)90123-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The kringle 4 domain of equine plasminogen (ePgn/K4), a close variant of the human homolog (hPgn/K4), contains residues, such as Trp32, which also appear in human apolipoprotein(a) kringle 4-type modules. The ePgn/K4 was investigated as a complex with epsilon-aminocaproic acid, an antifibrinolytic drug, by two-dimensional 1H-NMR spectroscopy at 500 MHz. Secondary structure elements were recognized from sequential medium and long-range dipolar (proton Overhauser) interactions, as well as from the identification of resonances originating from backbone amide protons with slow 1H-2H exchange in 2H2O. Antiparallel beta-sheets, consisting of strands 52-53, 61-65 and 71-75, were identified. Additionally, the segments 14-16 and 20-22 were found to assume characteristic interstrand antiparallel (beta-sheet-like) H-bond pairing. Four type I turns could be identified in strands 6-9, 16-19, 24-27 and 67-70. Ten structures were generated using distance geometry methods, followed by dynamic simulated annealing calculations. The root mean squares deviation of the distances was 2.79 A for all atoms and 1.81 A for backbone atoms only. Hydrogen bridges, involving side chain hydroxyl groups, were identified for Thr16 and Thr65. As observed for the hPgn/K4, the three-dimensional structure of the ePgn/K4 is mainly defined by two antiparallel beta-sheets, 14-16/20-22 and 62-66/71-75, which are oriented perpendicular to each other. Adjacent to these is a hydrophobic pocket, formed by Trp62, Tyr64, Trp72 and Phe74, whose side chains contribute a lipophilic component to the exposed lysine binding site surface. In contrast to the Trp25, Trp62 and Trp72 residues, conserved in the human and equine homologs, the spectrum of the Trp32 side chain reveals an unrestrained, solvent-exposed indole ring.
Collapse
Affiliation(s)
- M Cox
- Bijvoet Centre for Biomolecular Research, University of Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
7
|
Guevara J, Knapp RD, Honda S, Northup SR, Morrisett JD. A structural assessment of the apo[a] protein of human lipoprotein[a]. Proteins 1992; 12:188-99. [PMID: 1318546 DOI: 10.1002/prot.340120212] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Apolipoprotein[a], the highly glycosylated, hydrophilic apoprotein of lipoprotein[a] (Lp[a]), is generally considered to be a multimeric homologue of plasminogen, and to exhibit atherogenic/thrombogenic properties. The cDNA-inferred amino acid sequence of apo[a] indicates that apo[a], like plasminogen and some zymogens, is composed of a kringle domain and a serine protease domain. To gain insight into possible positive functions of Lp[a], we have examined the apo[a] primary structure by comparing its sequence with those of other proteins involved in coagulation and fibrinolysis, and its secondary structure by using a combination of structure prediction algorithms. The kringle domain encompasses 11 distinct types of repeating units, 9 of which contain 114 residues. These units, called kringles, are similar but not identical to each other or to PGK4. Each apo[a] kringle type was compared with kringles which have been shown to bind lysine and fibrin, and with bovine prothrombin kringle 1. Apo[a] kringles are linked by serine/threonine- and proline-rich stretches similar to regions in immunoglobulins, adhesion molecules, glycoprotein Ib-alpha subunit, and kininogen. In comparing the protease domains of apo[a] and plasmin, apo[a] contains a region between positions 4470 and 4492 where 8 substitutions, 9 deletions, and 1 insertion are apparent. Our analysis suggests that apo[a] kringle-type 10 has a high probability of binding to lysine in the same way as PGK4. In the only human apo[a] polymorph sequenced to date, position 4308 is occupied by serine, whereas the homologous position in plasmin is occupied by arginine and is an important site for proteolytic cleavage and activation. An alternative site for the proteolytic activation of human apo[a] is proposed.
Collapse
Affiliation(s)
- J Guevara
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | |
Collapse
|
8
|
Mulichak AM, Tulinsky A, Ravichandran KG. Crystal and molecular structure of human plasminogen kringle 4 refined at 1.9-A resolution. Biochemistry 1991; 30:10576-88. [PMID: 1657148 DOI: 10.1021/bi00107a029] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The crystal structure of human plasminogen kringle 4 (PGK4) has been solved by molecular replacement using the bovine prothrombin kringle 1 (PTK1) structure as a model and refined by restrained least-squares methods to an R factor of 14.2% at 1.9-A resolution. The K4 structure is similar to that of PTK1, and an insertion of one residue at position 59 of the latter has minimal effect on the protein folding. The PGK4 structure is highly stabilized by an internal hydrophobic core and an extensive hydrogen-bonding network. Features new to this kringle include a cis peptide bond at Pro30 and the presence of two alternate, perpendicular, and equally occupied orientations for the Cys75 side chain. The K4 lysine-binding site consists of a hydrophobic trough formed by the Trp62 and Trp72 indole rings, with anionic (Asp55/Asp57) and cationic (Lys35/Arg71) charge pairs at either end. With the adjacent Asp5 and Arg32 residues, these result in triply charged anionic and cationic clusters (pH of crystals at 6.0), which, in addition to the unusually high accessibility of the Trp72 side chain, serve as an obvious marker of the binding site on the K4 surface. A complex intermolecular interaction occurs between the binding sites of symmetry-related molecules involving a highly ordered sulfate anion of solvation in which the Arg32 side chain of a neighboring kringle occupies the binding site.
Collapse
Affiliation(s)
- A M Mulichak
- Department of Chemistry, Michigan State University, East Lansing 48824
| | | | | |
Collapse
|
9
|
Wu DW, Duman JG, Cheng CHC, Castellino FJ. Purification and characterization of antifreeze proteins from larvae of the beetle Dendroides canadensis. J Comp Physiol B 1991. [DOI: 10.1007/bf00262308] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Kelley RF, Winkler ME. Folding of Eukaryotic Proteins Produced in Escherichia Coli. GENETIC ENGINEERING 1990; 12:1-19. [PMID: 1366701 DOI: 10.1007/978-1-4613-0641-2_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Although intracellular expression in E. coli may result in accumulation of the eukaryotic protein in inclusion bodies, the protein may often be recovered by first solubilizing with denaturant followed by refolding. Some general guidelines for developing a refolding procedure are apparent but the specific protocol must be empirically determined for each protein. Convenient and rapid assays for detecting native protein are critical for developing a refolding procedure. Maintaining solubility during refolding is a common feature of recovery processes. Proper folding should be assessed by a number of methods including activity, spectroscopic and stability measurements. For some proteins, properly folded protein may be obtained by secretion from E. coli; however, secretion does not ensure correct folding and protection from proteolytic degradation.
Collapse
Affiliation(s)
- R F Kelley
- Department of Biomolecular Chemistry, Genentech, Inc., South San Francisco, CA 94080
| | | |
Collapse
|
11
|
Hwang SH, Nowak T. Stereoselective ligand interactions of chicken liver phosphoenolpyruvate carboxykinase with fluorophosphoenolpyruvate. Arch Biochem Biophys 1989; 269:646-63. [PMID: 2919888 DOI: 10.1016/0003-9861(89)90150-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The stereospecific interactions of chicken liver phosphoenolpyruvate carboxykinase (P-enolpyruvate carboxykinase) with the two geometric isomers of 3-fluorophosphoenolpyruvate (F-P-enolpyruvate) were examined. Previous studies have shown that the Z isomer of F-P-enolpyruvate is a substrate for P-enolpyruvate carboxykinase but the E isomer is a competitive inhibitor [T. H. Duffy and T. Nowak (1984) Biochemistry 23, 661-670]. The reasons for this substrate selectivity were investigated. Studies of the 1H, 19F, and 31P relaxation rates of the ligands in the binary Mn-ligand complexes indicate the formation of direct coordination complexes. The temperature and frequency dependence of the proton relaxation rates (PRR) of the respective enzyme-Mn-ligand complexes demonstrates that the perturbation of the electronic environment at the Mn(II) site on the enzyme is different upon binding of the inhibitor (E-F-P-enolpyruvate) in contrast to the binding of substrates (P-enolpyruvate or Z-F-P-enolpyruvate). Structural studies demonstrate that Z-F-P-enolpyruvate forms a second sphere coordination complex with enzyme-bound Mn(II). E-F-P-enolpyruvate exchanges slowly from the ternary complex and binds less than or equal to 10 A from the bound Mn(II). CD studies in the far-uv region demonstrate that the alpha-helical content of P-enolpyruvate carboxykinase is increased at the expense of antiparallel and parallel beta-sheet structure upon binding of Mn(II) and substrate (P-enolpyruvate or Z-F-P-enolpyruvate) to the apoenzyme, but show no such structural change upon binding of Mn(II) and E-F-P-enolpyruvate. Analogous results are observed from CD studies at the aromatic amino acid region (250-350 nm). The stereoselective catalytic activities of P-enolpyruvate carboxykinase with F-P-enolpyruvate analogs can be explained by different interactions of these ligands within the catalytic site of the enzyme.
Collapse
Affiliation(s)
- S H Hwang
- Department of Chemistry, University of Notre Dame, Indiana 46556
| | | |
Collapse
|
12
|
Cleary S, Mulkerrin MG, Kelley RF. Purification and characterization of tissue plasminogen activator kringle-2 domain expressed in Escherichia coli. Biochemistry 1989; 28:1884-91. [PMID: 2497771 DOI: 10.1021/bi00430a068] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have expressed the 174-263 fragment (kringle-2 domain) of human tissue-type plasminogen activator (t-PA) in Escherichia coli by secretion into the periplasmic space using the alkaline phosphatase promoter and stII enterotoxin signal sequence. A large portion of the secreted protein is associated with an insoluble cellular fraction. This material can be solubilized by extraction with denaturant and reducing agent and then recovered in active form by refolding in the presence of reduced and oxidized glutathione. Kringle-2 is then easily purified by affinity chromatography on lysine-Sepharose followed by cation-exchange chromatography. The isolated protein has an amino acid composition and N-terminal sequence as expected for the 174-263 fragment of t-PA, indicating that the signal peptide has been properly removed. Circular dichroic spectra suggest that the protein is folded similar to the kringle-4 domain of plasminogen [Castellino et al. (1986) Arch. Biochem. Biophys. 247, 312-320]. Equilibrium dialysis experiments indicate a single binding site on kringle-2 for L-lysine having a KD of 100 microM. Using a method based on elution of kringle from lysine-Separose with omega-aminocarboxylic acids [Winn et al. (1980) Eur. J. Biochem. 104, 579-586], we have shown the lysine binding site of t-PA kringle-2 to have a preference for a ligand with 8.8-A separation between amine and carboxylate functions. Charge interactions with the epsilon-amino group of L-lysine are important in binding since the affinities for N epsilon-acetyl-L-lysine, L-arginine, and gamma-guanidinobutyric acid are decreased greater than 2000-fold, 200-fold, and 12-fold, respectively, relative to the affinity for L-lysine.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Cleary
- Biomolecular Chemistry Department, Genentech, Inc., South San Francisco, California 94080
| | | | | |
Collapse
|
13
|
Cheng KC, Nowak T. Arginine Residues at the Active Site of Avian Liver Phosphoenolpyruvate Carboxykinase. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)94068-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Beals JM, Castellino FJ. Circular dichroism analysis of the secondary structures of bovine blood coagulation factor IX, factor X, and prothrombin. JOURNAL OF PROTEIN CHEMISTRY 1988; 7:593-612. [PMID: 3255380 DOI: 10.1007/bf01024877] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Analysis of the far-ultraviolet circular dichroism spectrum of bovine blood coagulation factor IX reveals the presence of approximately 14% helical structures 26% beta-sheets, 20% beta-turns, and 40% coils. These values are essentially the same for the activation products of this zymogen, factor IX alpha alpha and factor IX alpha beta. Similar analysis for bovine factor X permits calculation of these secondary structural as approximately 11% helices, 31% beta-structures, 22% beta-turns, and 36% random structures. Bovine prothrombin contains approximately 12% helical structures, 35% beta-structures, 24% beta-turns, and 29% coils. None of these values is substantially altered as a result of increase of the pH from 7.4 to 10.5, or upon addition of Ca2+ to a concentration of at least 20 mM. Analysis of the near-ultraviolet spectra of factor IX and prothrombin suggests that several aromatic amino acid residues and the disulfide bond present in their gamma-carboxyglutamic acid-containing regions are exposed to solvent and are perturbed by the above pH adjustment and Ca2+ addition. Similar effects are observed in the case of factor X; in addition, the Trp residue at the amino terminus of the heavy chain appears to be influenced by the above pH alteration. The results reported in this paper show that these vitamin K-dependent blood coagulation proteins are similar in their ordered secondary structures, which are dominated by beta-sheets and beta-turns. Their overall secondary structures are not influenced by Ca2+ binding and are stable to alkaline pH changes. However, these same environmental alterations appear to be effective probes of aromatic residues in the gamma-carboxyglutamic acid regions.
Collapse
Affiliation(s)
- J M Beals
- Department of Chemistry, University of Notre Dame, Indiana 46556
| | | |
Collapse
|
15
|
Beals JM, Weber J, Derwent P, Grant KL, Castellino FJ. Prediction of the secondary structures of bovine blood coagulation factor IX, factor X, and prothrombin. JOURNAL OF PROTEIN CHEMISTRY 1988; 7:613-32. [PMID: 3255381 DOI: 10.1007/bf01024878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The secondary structures of bovine blood coagulation factors IX and X, as well as that of bovine prothrombin, were predicted on the basis of a computerized combination of the Chou-Fasman and Burgess algorithms. Refinements in the predictions were made after consideration of the content of various secondary structures, as determined by circular dichroism studies of these same proteins. The final turn assignments were in good agreement with those assigned with use of an algorithm involving pattern matching of beta-turns in proteins of known structure.
Collapse
Affiliation(s)
- J M Beals
- Department of Chemistry, University of Notre Dame, Indiana 46556
| | | | | | | | | |
Collapse
|
16
|
Tulinsky A, Park CH, Skrzypczak-Jankun E. Structure of prothrombin fragment 1 refined at 2.8 A resolution. J Mol Biol 1988; 202:885-901. [PMID: 2845102 DOI: 10.1016/0022-2836(88)90565-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The structure of prothrombin fragment 1, solved at 2.8 A resolution (1 A = 0.1 nm) by a combination of multiple and single isomorphous replacement methods utilizing solvent flattening, has been refined by restrained least-squares methods (R = 0.24), solvent not included, using fairly stringent restraints on the molecular geometry and individual thermal parameters. The inner kringle loop possesses significantly lower B-values than the outer loops even though the former also constitutes a surface of the folded kringle structure. This surface forms the Lys sub-site of the fibrin binding site of other kringles. The hydrogen bonding network and ion pair interactions of fragment 1 appear to maintain a compact folded structure among the various loops of the kringle structure. On the other hand, since there is only one hydrogen bond between the kringle and its preceding 30 residues, considerable flexibility is suggested for the Gla-domain consistent with its disorder in crystals. A chitobiose has been located at the Asn77 glycosylation site, but only a single N-acetyl-glucosamine is ordered at Asn101. The lysine binding site region of other kringles is not properly developed in fragment 1, accounting for its lack of Lys/fibrin affinity. Most of the conserved sequence among 11 different kringles is associated with either: (1) protecting the inner loop disulfides Cys87-127, Cys115-139 upon which the folding is based; or (2) a requirement of the lysine binding site. The remainder of the conservation is generally associated with the ten reverse turns of the folding; of these 40 residues, or about half the sequence, 14 are conserved among eight different turns. The intermolecular packing consists of infinite helical columns of fragment 1 molecules related by a crystallographic 4(3) screw axis, which are held together by van der Waals' interactions of aromatic clusters from different molecules related by a crystallographic 2-fold rotation axis.
Collapse
Affiliation(s)
- A Tulinsky
- Department of Chemistry, Michigan State University, East Lansing 48824
| | | | | |
Collapse
|
17
|
Castellino FJ, Beals JM. The genetic relationships between the kringle domains of human plasminogen, prothrombin, tissue plasminogen activator, urokinase, and coagulation factor XII. J Mol Evol 1987; 26:358-69. [PMID: 3131537 DOI: 10.1007/bf02101155] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A computer-based statistical evaluation of the optimal alignments of the kringle domains of human plasminogen, human prothrombin, human tissue plasminogen activator, human urokinase, and human coagulation Factor XIIa, as well as the putative kringle of human haptoglobin, has been performed. A variety of different alignments has been examined and scores calculated in terms of the number of standard deviations (SD) of a given match from randomness. With the exception of human haptoglobin, it was found that very high alignment scores (8.9-23.0 SD from randomness) were obtained between each of the kringles, with the kringle 1 and kringle 5 regions of human plasminogen displaying the highest similarity, and the S kringle of human prothrombin and the human Factor XII kringle showing the least similarity. The relationships obtained were employed to construct an evolutionary tree for the kringles. The predicted alignments have also allowed nucleotide mutations in these regions to be evaluated more accurately. For those regions for which nucleotide sequences are known, we have employed the maximal alignments from the protein sequences to assess nucleotide sequence similarities. It was found that a range of approximately 40-55% of the nucleotide bases were placed at identical positions in the kringles, with the highest number found in the alignment of the two kringles of human tissue plasminogen activator and the lowest number in the alignment of the S kringle of prothrombin with the second kringle of tissue plasminogen activator. From both protein and nucleotide alignments, we conclude that haptoglobin is not statistically homologous to any other kringle. Secondary structural comparisons of the kringle regions have been predicted by a combination of the Burgess and Chou-Fasman methods. In general, the kringles display a very high number of beta-turns, and very low alpha-helical contents. From analysis of the predicted structures in relationship to the functional properties of these domains, it appears as though many of their functional differences can be related to possible conformational alterations resulting from amino acid substitutions in the kringles.
Collapse
Affiliation(s)
- F J Castellino
- Department of Chemistry, University of Notre Dame, Indiana 46556
| | | |
Collapse
|