1
|
Traverso V, Morris JF, Flower RJ, Buckingham J. Lipocortin 1 (annexin 1) in patches associated with the membrane of a lung adenocarcinoma cell line and in the cell cytoplasm. J Cell Sci 1998; 111 ( Pt 10):1405-18. [PMID: 9570758 DOI: 10.1242/jcs.111.10.1405] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipocortin 1 (annexin I) is a calcium- and phospholipid-binding annexin protein which can be externalised from cells despite the lack of a signal sequence. To determine its cellular distribution lipocortin 1 in A549 human lung adenocarcinoma cells was localised by light- and electron-microscopic immunocytochemistry and by cell fractionation and western blotting. Lipocortin 1 immunoreactivity is concentrated in prominent patches associated with the plasma membrane. The intensity of these patches varied with the confluence and duration of the culture and was not detectably diminished by an EDTA wash before fixation. Tubulin and cytokeratin 8 were colocalized with lipocortin 1 in the patches. Within the cells lipocortin 1 was distributed throughout the cytoplasm. Electron microscopy revealed prominent immunoreactivity along the plasma membrane with occasional large clusters of gold particles in contact with the membrane surface of the cells; within the cytoplasm the membrane of some vesicle/vacuole structures and some small electron-dense bodies was immunoreactive, but no immunogold particles were associated with the multilamellar bodies. Subcellular fractionation, extraction and western blotting showed that lipocortin 1 in the membrane pellet was present as two distinct fractions; one, intimately associated with the lipid bilayer, which behaved like an integral membrane protein and one loosely attached which behaved like a peripheral membrane protein. The results show that a substantial amounts of lipocortin 1 is concentrated in focal structures associated with and immediately beneath the plasma membrane. These might form part of the mechanism by which lipocortin 1 is released from the cells.
Collapse
Affiliation(s)
- V Traverso
- Department of Human Anatomy, South Parks Road, Oxford, OX1 3QX, UK
| | | | | | | |
Collapse
|
2
|
Trotter PJ, Orchard MA, Walker JH. Relocation of annexin V to platelet membranes is a phosphorylation-dependent process. Biochem J 1997; 328 ( Pt 2):447-52. [PMID: 9371700 PMCID: PMC1218940 DOI: 10.1042/bj3280447] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Annexins are a family of calcium-binding proteins that have been implicated in a wide range of intracellular processes. We have previously reported that stimulation of platelets with agents that increase intracellular [Ca2+] induces the relocation of annexin V to membranes, and that this annexin V may be binding to a 50 kDa protein located within platelet membranes. We report here, using an in vitro reconstitution system, that the relocation of annexin V to membranes is enhanced by ATP. We also demonstrate that when adenosine 5'-[gamma-thio]-triphosphate, which can replace ATP in phosphorylation reactions, is substituted for ATP, the amount of annexin V that binds to membranes is further increased. In separate experiments using intact cells, we show that the protein phosphatase inhibitor okadaic acid mimics the action of the physiological agonist thrombin, in that it induces annexin V to bind to membranes and that the addition of the protein kinase inhibitor staurosporine inhibits A23187-induced relocation of annexin V. In addition, alkaline phosphatase, when added to isolated membranes, was found to remove endogenous annexin V from the membranes. Furthermore, immunoprecipitation of 33P-labelled proteins indicated that annexin V may form a multi-protein complex including phosphoproteins of 25, 50 and 83 kDa. Taken together these observations suggest that, following physiological activation, the phosphorylation of one or more proteins is responsible for the tight association of annexin V with platelet membranes and the subsequent regulation of membrane localized processes.
Collapse
Affiliation(s)
- P J Trotter
- Department of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | | | | |
Collapse
|
3
|
Luckcuck T, Trotter PJ, Walker JH. Localization of annexin V in the adult and neonatal heart. Biochem Biophys Res Commun 1997; 238:622-8. [PMID: 9299563 DOI: 10.1006/bbrc.1997.7350] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Annexins are a major family of intracellular Ca2+-binding proteins which have been implicated in a variety of cellular functions. Several conflicting reports have been published on the location of annexin V in the heart. In this paper we have used confocal microscopy to demonstrate that annexin V is associated with the sarcolemma and intercalated discs of cardiac myocytes in sections of adult porcine and rat heart. In addition, we have used confocal microscopy of isolated rat myocytes to show that this association is stable even after cells were treated with the intracellular calcium chelator BAPTA-AM, to reduce cytosolic calcium levels to very low levels. This demonstrates that annexin V associates tightly with the sarcolemma and suggests that components in addition to phospholipid are involved in binding annexin V to the membrane. Furthermore, we show that, in sections of the neonatal rat left ventricle, annexin V has a different subcellular location than that observed in the terminally differentiated adult myocyte. In these differentiating neonatal cells, annexin V is also located in the nucleoplasm and at the periphery of the nucleus. These results demonstrate that the subcellular location of annexin V is differentially regulated and suggest that annexin V regulates calcium-dependent processes at both the sarcolemma and the nucleus.
Collapse
Affiliation(s)
- T Luckcuck
- Department of Biochemistry and Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | | | | |
Collapse
|
4
|
Trotter PJ, Orchard MA, Walker JH. Ca2+ concentration during binding determines the manner in which annexin V binds to membranes. Biochem J 1995; 308 ( Pt 2):591-8. [PMID: 7772046 PMCID: PMC1136967 DOI: 10.1042/bj3080591] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Annexins are a family of calcium-binding proteins that have been implicated in a wide range of intracellular processes. We have previously reported that stimulation of platelets with thrombin can induce the association of intracellular annexin V with membranes in two distinct ways. First, in such a way that it can be eluted from the membrane with EGTA and secondly in a manner such that it is tightly bound to the membrane and requires the non-ionic detergent Triton X-100 for its solubilization. We report that exposure of platelets to the calcium ionophore A23187 mimics the relocation induced by stimulation with thrombin. In separate experiments we demonstrate that a calcium ion concentration [Ca2+] of 0.8 microM is sufficient for maximum binding of the EGTA-resistant form to membranes. In contrast a higher [Ca2+] was required to induce maximal binding of the annexin V which could be extracted with EGTA. We demonstrate that following temperature-induced phase separation in Triton X-114, the membrane-associated annexin V partitions predominantly into the aqueous phase. We also show that the isoelectric point of annexin V does not change following membrane association. These observations suggest that a covalent modification, of annexin V itself, is not responsible for its association with the membrane. Millimolar [Ca2+] is required for maximal binding of purified annexin V to phospholipid vesicles. We show that binding to phospholipids can be reversed entirely by subsequent treatment with EGTA. This suggests that the EGTA-resistant form of annexin V is binding to a membrane component other than phosphatidylserine. Annexin V has previously been shown to bind to protein kinase C. Relocation of annexin V to membranes paralleled that of protein kinase C in thrombin-stimulated cells but not in cells treated with A23187, suggesting that these proteins are not functionally linked in platelet activation. Using bifunctional cross-linking reagents we have identified an 85 kDa complex containing annexin V. This may represent an association between annexin V and an annexin V-binding protein with a molecular mass of approximately 50 kDa.
Collapse
Affiliation(s)
- P J Trotter
- Department of Biochemistry and Molecular Biology, University of Leeds, U.K
| | | | | |
Collapse
|
5
|
Fondacci C, Alsat E, Gabriel R, Blot P, Nessmann C, Evain-Brion D. Alterations of human placental epidermal growth factor receptor in intrauterine growth retardation. J Clin Invest 1994; 93:1149-55. [PMID: 8132754 PMCID: PMC294064 DOI: 10.1172/jci117067] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We studied human placental microvillous EGF receptor (EGFR) and its relationship with maternal and placental features in 14 cases of intrauterine growth retardation. Placental EGFR phosphorylation was significantly decreased or absent in 12 cases of small for gestational age neonates, as shown by SDS-PAGE, autoradiography, and scanning analysis. Specific [125I]EGF binding and Scatchard plots of the binding data showed a decreased number of EGFR in 6 of the 12 cases, with a mean maximal binding capacity of 1.09 +/- 0.32 pmol/mg for high affinity sites (mean control value = 2.30 +/- 0.23 pmol/mg). Most of the hypertensive women and smokers belonged to this subgroup. In three of the remaining six cases of small gestational age placentas with low EGFR phosphorylation, there was no maternal pathology or significant parenchymatous placental lesions. Five showed a 175-kD EGFR species when probed by [125I]EGF cross-linking and Western blotting with RK2 and C-Term, two polyclonal anti-EGFR antibodies, suggesting abnormal transduction of the EGF-induced signal. The sixth placenta yielded a single 145-kD EGFR band consistent with an abnormal EGFR structure; Western blot analysis showed no immunoreactive band. In conclusion, maternal and placental pathologies in intrauterine growth retardation are associated with various alterations of placental EGFR, pointing out the importance of EGFR ligands in the regulatory pathway of placental and fetal growth.
Collapse
Affiliation(s)
- C Fondacci
- Laboratoire de Physiopathologie du Dévelopment, Ecole Normale Supérieure, Paris, France
| | | | | | | | | | | |
Collapse
|
6
|
Alsat E, Haziza J, Evain-Brion D. Increase in epidermal growth factor receptor and its messenger ribonucleic acid levels with differentiation of human trophoblast cells in culture. J Cell Physiol 1993; 154:122-8. [PMID: 8419399 DOI: 10.1002/jcp.1041540115] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Epidermal growth factor receptor (EGFR) expression was studied during the differentiation of human trophoblast cells in culture. In vitro, intravillous mononuclear cytotrophoblasts aggregate and fuse within 24 h to form a syncytium. This morphological differentiation was associated with a significant twofold increase in specific 125I-EGF binding capacity (P < 0.01). Scatchard analyses showed an apparent rise in the number of high-affinity binding sites (0.33 +/- 0.04 and 0.63 +/- 0.07 pmol/mg protein at 24 and 48 h, respectively), with no change in their affinity (1.34 and 1.42 x 10(-10) mol/L). Affinity labeling of 125I-EGF in cultured trophoblast cells followed by SDS-PAGE and autoradiography revealed a band of 175 KDa corresponding to EGFR, the intensity of which increased with the time in culture. EGF-dependent phosphorylation of membrane proteins from cultured trophoblast cells revealed major phosphorylated proteins of 170 KDa (EGFR) and 35 KDa, which were both increased at 48 h, indicating a rise in EGFR-kinase activity during syncytium formation. Northern blot analysis of EGFR-mRNA, followed by hybridization with a 32P-cDNA probe for EGFR, revealed an increase in EGFR gene expression in syncytiotrophoblasts, as compared to cytotrophoblasts. Thus, the increase in bioactive EGFR observed during the differentiation of trophoblast cells was due to an increase in their synthesis. Cultured trophoblast cells are therefore a good model of spontaneous up-regulation of EGFR expression with cell differentiation.
Collapse
Affiliation(s)
- E Alsat
- Laboratoire de physiopathologie du Développement, CNRS-URA 1337, Ecole Normale Supérieure, Paris, France
| | | | | |
Collapse
|
7
|
Spreca A, Rambotti MG, Giambanco I, Pula G, Bianchi R, Ceccarelli P, Donato R. Immunocytochemical localization of annexin V (CaBP33), a Ca(2+)-dependent phospholipid- and membrane-binding protein, in the rat nervous system and skeletal muscles and in the porcine heart. J Cell Physiol 1992; 152:587-98. [PMID: 1387136 DOI: 10.1002/jcp.1041520319] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We investigated the ultrastructural localization of annexin V a Ca(2+)-dependent phospholipid- and membrane-binding protein in the nervous system, heart, and skeletal muscles. The results indicate that in the cerebellum the protein is restricted to glial cells, where it is found diffusely in the cytoplasm as well as associated with plasma membranes. Bergmann glial cell bodies and processes and astrocytes in the cerebellar cortex and oligodendrocytes in the cerebellar white matter displayed an intense immune reaction product. In sciatic nerves, the protein was exclusively found in Schwann cells with a subcellular localization similar to that seen in glial cells in the cerebellum. Pituicytes in the neurohypophysis were intensely immunostained, whereas axons were not. In the heart, annexin V was restricted to the sarcolemma, transverse tubules, and intercalated discs. In skeletal muscles the protein was localized to the sarcolemma and transverse tubules. No evidence for the presence of the protein in the sarcoplasm or in association with mitochondria, the sarcoplasmic reticulum, or contractile elements was obtained. The observation that plasma membranes in cells expressing annexin V have the protein associated with them is in agreement with previous data on Ca(2+)-dependent binding of the protein to brain and heart membranes, and on existence of both EGTA- and Triton X-100-extractable and resistant fractions of annexin V in these membranes. The present data support the hypothesis that annexin V might be involved in membrane trafficking and suggest a role for this protein in the regulation of cytoplasmic activities in glial cells.
Collapse
Affiliation(s)
- A Spreca
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
8
|
Mokashi S, Severson DL, Hollenberg MD. Synergistic actions of epidermal growth factor-urogastrone and vasopressin in cultured aortic A-10 smooth muscle cells. J Cell Physiol 1992; 152:372-81. [PMID: 1386368 DOI: 10.1002/jcp.1041520219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In cultured rat aorta-derived A-10 cells, epidermal growth factor-urogastrone (EGF-URO) acts synergistically with arginine vasopressin (AVP) to augment the AVP-mediated release of 3H-arachidonate (3H-AA) from 3H-AA prelabeled cells. On its own, EGF-URO had no effect on AA release and had no effect on calcium influx or efflux either in the absence or presence of AVP. The synergistic action of EGF-URO was not affected by actinomycin D, cycloheximide, indomethacin, by the diacylglycerol lipase inhibitor U-57,908, or by the tyrosine kinase inhibitors genistein (GS) and tyrphostin (TP). TP did, nonetheless, completely abrogate 3H-thymidine incorporation triggered in the presence of EGF-URO. Although EGF-URO stimulated an increase in calpactin-II (lipocortin-I) phosphorylation in permeabilized cells, no such increase was detected in intact cells exposed to EGF-URO either alone or in combination with AVP, under conditions where EGF-URO augmented the action of AVP. The phospholipase A2 inhibitor, mepacrine, had no effect on AVP-mediated AA release, but abolished the synergistic action of EGF-URO. We conclude that in contrast with our previous results with gastric smooth muscle strips, wherein EGF-URO acts via the diacylglycerol lipase-mediated metabolism of diacylglycerol, and in keeping with observations with cultured mesangial cells, EGF-URO acts synergistically with AVP in A-10 cells via the activation of phospholipase A2. This synergistic action of EGF-URO does not appear to be due to increased levels of cyclooxygenase and would appear not to require increased tyrosine kinase activity.
Collapse
Affiliation(s)
- S Mokashi
- Department of Pharmacology and Therapeutics, University of Calgary, Faculty of Medicine, Alberta, Canada
| | | | | |
Collapse
|
9
|
Moore KG, Goulet F, Sartorelli AC. Purification of annexin I and annexin II from human placental membranes by high-performance liquid chromatography. Protein Expr Purif 1992; 3:1-7. [PMID: 1422205 DOI: 10.1016/1046-5928(92)90049-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Annexin I and annexin II were extracted from human placental membranes with ethylene glycol bis(beta-amino-ethyl ether)-N,N'-tetraacetic acid (EGTA) and purified by high-performance liquid chromatography by measuring their ability to inhibit phospholipase A2 activity in vitro. Neither protein was capable of binding to a DEAE-5PW HPLC column at neutral pH; however, they were resolved through binding to a Mono S column and passage through size-exclusion HPLC columns. Annexin I and its covalently linked dimer (36 and 66 kDa, respectively, by sodium dodecyl sulfate (SDS)-gel electrophoresis) reacted in one-dimensional immunoblots with monoclonal antibodies to annexin I and calpactin II, and with monoclonal and polyclonal antibodies to lipocortin I, confirming that annexin I, calpactin II, and lipocortin I are the same or closely related proteins. Milligram amounts of monomeric annexin I containing negligible amounts of the cross-linked dimeric annexin I were selectively isolated from placental membranes by using buffers containing the sulfhydryl reagent iodoacetic acid. Milligram amounts of cross-linked annexin I were selectively isolated when placental membranes were initially treated with buffers that did not contain iodoacetic acid and then extracted with Triton X-100, suggesting that sulfhydryl-dependent transglutaminase activity contributes to the selective isolation of this protein. A third phospholipase A2-inhibitory protein (35 kDa by SDS-gel electrophoresis) that reacted in immunoblots with monoclonal antibodies to calpactin I and annexin II, indicating their similar identity, was isolated. The procedure employed allows the rapid purification of annexins I and II in milligram amounts from placental membranes within 2 days.
Collapse
Affiliation(s)
- K G Moore
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | |
Collapse
|
10
|
Bianchi R, Giambanco I, Ceccarelli P, Pula G, Donato R. Membrane-bound annexin V isoforms (CaBP33 and CaBP37) and annexin VI in bovine tissues behave like integral membrane proteins. FEBS Lett 1992; 296:158-62. [PMID: 1531131 DOI: 10.1016/0014-5793(92)80369-r] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The distribution of annexin V isoforms (CaBP33 and CaBP37) and of annexin VI in bovine lung, heart, and brain subfractions was investigated with special reference to the fractions of these proteins which are membrane-bound. In addition to EGTA-extractable pools of the above proteins, membranes from lung, heart, and brain contain EGTA-resistant annexins V and VI which can be solubilized with detergents (Triton X-100 or Triton X-114). A strong base like Na2CO3, which is usually effective in extracting membrane proteins, only partially solubilizes the membrane-bound, EGTA-resistant annexins analyzed here. Also, only 50-60% of the Triton X-114-soluble annexins partition in the aqueous phase, the remaining fractions being recovered in the detergent-rich phase. Altogether, these findings suggest that, by an as yet unknown mechanism, following Ca(2+)-dependent association of annexin V isoforms and annexin VI with membranes, substantial fractions of these proteins remain bound to membranes in a Ca(2+)-independent way and behave like integral membrane proteins. These results further support the possibility that the above annexins might play a role in membrane trafficking and/or in the regulation of the structural organization of membranes.
Collapse
Affiliation(s)
- R Bianchi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | | | | | | | | |
Collapse
|
11
|
|
12
|
Ando Y, Imamura S, Owada MK, Kannagi R. Calcium-induced intracellular cross-linking of lipocortin I by tissue transglutaminase in A431 cells. Augmentation by membrane phospholipids. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(17)35288-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
13
|
Pula G, Bianchi R, Ceccarelli P, Giambanco I, Donato R. Characterization of mammalian heart annexins with special reference to CaBP33 (annexin V). FEBS Lett 1990; 277:53-8. [PMID: 2148529 DOI: 10.1016/0014-5793(90)80808-v] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Porcine heart was observed to express annexins V (CaBP33) and VI in large amounts, and annexins III and IV in much smaller amounts. Annexin V (CaBP33) in porcine heart was examined in detail by immunochemistry. Homogenization and further processing of heart in the presence of EGTA resulted in the recovery of annexin V (CaBP33) in the cytosolic fraction and in an EGTA-resistant, Triton X-100-soluble fraction from cardiac membranes. Including Ca2+ in the homogenization medium resulted in a significant decrease in the annexin V (CaBP33) content of the cytosolic fraction with concomitant increase in the content of this protein in myofibrils, mitochrondria, the sarcoplasmic reticulum and the sarcolemma. The amount of annexin V (CaBP33) in each of these subfractions depended on the free Ca2+ concentration in the homogenizing medium. At the lowest free Ca2+ concentration tested, 0.8 microM, only the sarcolemma appeared to contain bound annexin V (CaBP33). Membrane-bound annexins V (CaBP33) and VI partitioned in two fractions, one EGTA-resistant and Triton X-100-extractable, and one Triton X-100-resistant and EGTA-extractable. Altogether, these data suggest that annexins V and VI are involved in the regulation of membrane-related processes.
Collapse
Affiliation(s)
- G Pula
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | | | | | | | | |
Collapse
|
14
|
Okamoto M, Karasik A, White MF, Kahn CR. Epidermal growth factor stimulated phosphorylation of a 120-kilodalton endogenous substrate protein in rat hepatocytes. Biochemistry 1990; 29:9489-94. [PMID: 2248961 DOI: 10.1021/bi00492a023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endogenous substrates of the EGF receptor have been described in transformed cells; however, little is known about substrates in normal tissue. To characterize epidermal growth factor (EGF) receptor phosphorylation and search for endogenous substrates in normal rat hepatocytes, cells were labeled with [32P]orthophosphate, and phosphotyrosine-containing proteins were sought by using a high-affinity, specific anti-phosphotyrosine antibody. Exposure of 32P-labeled freshly isolated hepatocytes to 1 microgram/mL EGF caused phosphorylation of several proteins of Mr 185K, 160K, and 120K. The 185- and 160-kDa proteins (pp185 and pp160) were identified as the intact and proteolyzed forms of the EGF receptor by virtue of their immunoprecipitation with anti-EGF receptor antibody. This antibody failed to recognize the 120-kDa phosphoprotein (pp120). The phosphopeptide map derived from pp120 was by trypsinization and HPLC separation different from that of pp185, further indicating that pp120 is distinct from the EGF receptor. This pp120 was also immunologically distinct from the pp120 substrate of the insulin receptor kinase and from ATP-citrate lyase. Phosphoamino acid analysis revealed pp120 to be phosphorylated on both tyrosine and serine residues. Autophosphorylation of EGF receptor and phosphorylation of pp120 were almost maximal within 1 min of EGF stimulation. The dose-response curves for phosphorylation of the EGF receptor and pp120 were identical (ED50 = 30 ng/mL) and were superimposable with the fractional occupancy of the EGF receptor. In A431 cells, a transformed cell line whose growth is inhibited by EGF, EGF produced a decrease in pp120 phosphorylation. These data suggest that pp120 is an endogenous substrate for the EGF receptor in hepatocytes whose phosphorylation may be closely related to EGF stimulation of cell growth.
Collapse
Affiliation(s)
- M Okamoto
- Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | | |
Collapse
|
15
|
Yang SG, Winkler ME, Hollenberg MD. Contribution of the C-terminal dipeptide of transforming growth factor-alpha to its activity: biochemical and pharmacologic profiles. Eur J Pharmacol 1990; 188:289-300. [PMID: 2115447 DOI: 10.1016/0922-4106(90)90189-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have used a matrix of biological (two distinct guinea-pig stomach contractile smooth muscle preparations) and biochemical (human placental membrane receptor binding and phosphorylation) assays to evaluate the activity profiles of epidermal growth factor-urogastrone (EGF-URO, mouse and human), transforming growth factor-alpha (TGF-alpha, human) and the TGF-alpha derivative lacking the C-terminal dipeptide, Leu49-Ala50, TGF-alpha-(1-48). In the longitudinal muscle (LM) bioassay, the relative potencies of the peptides were: EGF-URO greater than TGF-alpha greater than TGF-alpha-(1-48), with relative activity ratios (EC50S) of approximately 1:3:16. In the LM assay system, TGF-alpha-(1-48) was a partial agonist. In the circular muscle (CM) bioassay, the relative order of potencies was: TGF-alpha- greater than EGF-URO greater than TGF-alpha-(1-48), with EC50S of about 1:2:7. In the CM assay, all three peptides were full agonists, even though EGF-URO caused an intense desensitization of the tissue whereas TGF-alpha and TGF-alpha-(1-48) did not. The relative affinities of the peptides in the placenta membrane binding assay, EGF-URO greater than TGF-alpha greater than TGF-alpha-(1-48), were in good qualitative and quantitative agreement with the LM (but not the CM) bioassay, with relative KDS in the proportions of about 1:3:17. In the phosphorylation assay, using either the phosphorylated EGF-URO receptor or calpactin-II as an index of receptor kinase activation, the relative potencies of the peptides, EGF-URO greater than TGF-alpha greater than TGF-alpha-(1-48), were also qualitatively in accord with the relative potencies measured in the LM and ligand binding assays (but not in the CM preparation); however, quantitatively, the relative potency ratios (EC50S) observed in the phosphorylation assay (1:2:3) were somewhat out of keeping with the relative values observed in the LM and ligand binding assays. All three peptides were full agonists in the phosphorylation assay. Our data point to the importance of the C-terminal dipeptide, Leu49-Ala50 of TGF-alpha in terms of the binding affinity and intrinsic activity of this polypeptide; and our work provides further evidence for the distinct nature of the EGF-URO/TGF-alpha receptor system present in the CM bioassay preparation. The biological/biochemical activity profiles documented for the three polypeptides can serve as a basis for the further evaluation of other synthetic and naturally occurring members of the EGF-URO/TGF-alpha family of polypeptides.
Collapse
Affiliation(s)
- S G Yang
- Department of Pharmacology and Therapeutics, University of Calgary Faculty of Medicine, Alberta, Canada
| | | | | |
Collapse
|
16
|
Violette SM, King I, Browning JL, Pepinsky RB, Wallner BP, Sartorelli AC. Role of lipocortin I in the glucocorticoid induction of the terminal differentiation of a human squamous carcinoma. J Cell Physiol 1990; 142:70-7. [PMID: 2137129 DOI: 10.1002/jcp.1041420110] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The human squamous cell carcinoma SqCC/Y1 undergoes spontaneous terminal differentiation in the confluent state. The degree of maturation was markedly increased by glucocorticoids and by both human recombinant and placental lipocortin I. Western analyses demonstrated cellular secretion of lipocortin into the medium. Glucocorticoid-induced maturation was antagonized by a lipocortin I-specific monoclonal antibody, by phospholipase A2 (PLA2), and by arachidonic acid. Induction of the differentiation of SqCC/Y1 cells by lipocortin I was prevented by arachidonic acid. The PLA2 inhibitor, dibromoacetophenone, caused an increase in envelope-competent cells indicating that inhibition of PLA2 results in induction of differentiation. Epidermal growth factor prevented the induction of differentiation by both lipocortin I and by glucocorticoids. The nonsteroidal lipoxygenase/cyclo-oxygenase inhibitor, phenidone, also increased SqCC/Y1 differentiation, suggesting that leukotrienes, thromboxanes, and/or prostaglandins may be involved in lipocortin-mediated regulation of SqCC/Y1 maturation. The findings support a role for lipocortin I in mediating the effects of glucocorticoids on epidermal cell differentiation.
Collapse
Affiliation(s)
- S M Violette
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | | | | | |
Collapse
|
17
|
Campos-Gonzalez R, Kanemitsu M, Boynton AL. Tumor promoter-dependent phosphorylation of a Triton X-100 extractable form of lipocortin I in T51B rat liver cells. Exp Cell Res 1989; 184:287-96. [PMID: 2530098 DOI: 10.1016/0014-4827(89)90328-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The phosphorylation of lipocortin (a substrate of EGF-receptor kinase, and a putative phospholipase A2 inhibitor) was examined in T51B cells. By using Western blot procedures and antisera specific to lipocortin I, we found that most immunoreactive lipocortin I was located in the cytosol (lipocortin(cvt] of cells extracted in Ca2+-free buffers These cells however had another pool of immunoreactive lipocortin I located in the particulate fraction that was Triton X-100 extractable (lipocortin(mem]. Increasing Ca2+ concentrations in the extraction buffer resulted in more lipocortin(mem) recovered. In vitro phosphorylation of endogenous proteins demonstrated that lipocortin I became phosphorylated in a Ca2+ and phosphatidylserine-dependent manner, suggesting an involvement of protein kinase C. Treatment of cells with 100 ng/ml 12-0-tetradecanoylphorbol-13-acetate (TPA) but not with 4 alpha-phorbol 12,13-didecanoate (4 alpha-PDD) resulted in the in vitro phosphorylation of lipocortin(mem) by protein kinase C. TPA also increased the phosphorylation of lipocortin(mem) in [32P]phosphate-labeled cells.
Collapse
|
18
|
Blay J, Hollenberg MD. Epidermal growth factor stimulation of prostacyclin production by cultured aortic smooth muscle cells: requirement for increased cellular calcium levels. J Cell Physiol 1989; 139:524-30. [PMID: 2544610 DOI: 10.1002/jcp.1041390311] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have examined the ability of epidermal growth factor (EGF) to regulate prostacyclin production by cultured A10 smooth muscle cells. EGF by itself had no effect on prostacyclin production, but it augmented the response to arg8-vasopressin. An AGF stimulation of prostacyclin production was also observed in the presence of the calcium ionophore A23187; it therefore seemed likely that the key event required for EGF to stimulate prostacyclin production might be an increase in the available cellular Ca2+. Studies with 45Ca2+ showed that vasopressin both mobilised Ca2+ from intracellular stores and increased the influx of extracellular Ca2+ into A10 cells. The increase in prostacyclin production caused by vasopressin and the augmentation by EGF were both abolished by TMB-8, an antagonist of Ca2+ mobilisation, by EGTA, a chelator of Ca2+ ions, or by incubating cultures in the absence of added Ca2+. These results were consistent with a central role for Ca2+ in the responses and showed that both intracellular and extracellular sources of Ca2+ were important for the triggering of prostacyclin production. The increases in prostacyclin production were only marginally affected by nifedipine, and no responses were seen (either in the absence or presence of EGF) when KCl was used to depolarise the cell membrane. These data indicated that uptake of Ca2+ ions via voltage-dependent channels was unlikely to be a major factor in the stimulation of prostanoid production. We conclude that the ability of EGF to stimulate prostacyclin production in A10 smooth muscle cells depends upon a concurrent stimulus that will increase available intracellular Ca2+ levels.
Collapse
Affiliation(s)
- J Blay
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | |
Collapse
|
19
|
Blay J, Valentine-Braun KA, Northup JK, Hollenberg MD. Epidermal-growth-factor-stimulated phosphorylation of calpactin II in membrane vesicles shed from cultured A-431 cells. Biochem J 1989; 259:577-83. [PMID: 2524190 PMCID: PMC1138547 DOI: 10.1042/bj2590577] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Membrane vesicles shed from intact A-431 epidermoid carcinoma cells and harvested in the presence of Ca2+ contained epidermal-growth-factor (EGF) receptor/kinase substrates of apparent molecular masses 185, 85, 70, 55, 38 and 27 kDa. The 38 kDa substrate (p38) was recognized by an antibody that had been raised against the human placental EGF receptor/kinase substrate calpactin II (lipocortin I). The A-431 and placental substrates, isolated by immunoprecipitation after phosphorylation in situ, yielded identical phosphopeptide maps upon limited proteolytic digestion with each of five different enzymes. The A-431-cell vesicular p38 is therefore calpactin II. EGF treatment of the intact A-431 cells before inducing vesiculation was not necessary for the substrate to be present within the vesicles. Our data thus indicate that receptor internalization is not a prerequisite for receptor-mediated phosphorylation of calpactin II. The ability of the protein to function as a substrate for the receptor/kinase depended upon the continued presence of Ca2+ during the vesicle-isolation procedure. EGF-stimulated phosphorylation of calpactin II was much less pronounced in vesicles prepared from A-431 cells in the absence of Ca2+, although comparable amounts of the protein were detectable by immunoblotting. Calpactin II therefore appears to be sequestered in a Ca2+-modulated manner within shed vesicles, along with at least four other major targets for the EGF receptor/kinase. The vesicle preparation may be a useful model system in which to study the phosphorylation and function of potentially important membrane-associated substrates for the receptor.
Collapse
Affiliation(s)
- J Blay
- Department of Pharmacology, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
20
|
Northup JK, Valentine-Braun KA, Johnson LK, Severson DL, Hollenberg MD. Evaluation of the antiinflammatory and phospholipase-inhibitory activity of calpactin II/lipocortin I. J Clin Invest 1988; 82:1347-52. [PMID: 2971676 PMCID: PMC442690 DOI: 10.1172/jci113737] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have examined the ability of a highly purified 38-kD phospholipase-inhibitory protein (p38) isolated from human placental membranes that is also a preferred substrate for the epidermal growth factor-urogastrone (EGF-URO) receptor/kinase, to block the release of arachidonate from zymosan-stimulated murine peritoneal macrophages in vitro and to exhibit antiinflammatory activity in a carrageenin rat paw edema test in vivo. The ability of glucocorticoids to increase the amounts of this protein in macrophage cultures was also examined. p38 represents the naturally occurring, intact, NH2-terminally blocked human placental form of the protein termed calpactin II (or lipocortin I), for which partial amino acid sequence data and a complete amino acid sequence deduced from cDNA analysis have been reported. Our data demonstrated that, whereas p38 was an effective inhibitor of pancreatic phospholipase A2 in vitro, it was unable to inhibit either the release of arachidonate from cultured zymosan-stimulated mouse peritoneal macrophages or inflammation in a rat paw edema test. At comparatively high protein concentrations, p38 enhanced either arachidonate release from intact macrophages in vitro (0.5-10 micrograms/ml) or carrageenin-induced paw swelling in vivo (2.5 or 25 micrograms per injection). Furthermore, we were unable to detect induced amounts of p38 in cultures of glucocorticoid-treated peritoneal macrophages obtained from either mice or rats. Our data indicate that the antiphospholipase activity of p38 in vitro and the ability of p38 to serve as a receptor/kinase substrate may in no way relate to the putative ability of the protein to modify eicosanoid release from macrophages in vivo, so as to modulate the inflammatory process. Our data also raise the possibility that p38 (calpactin II) may not be a true representative of the lipocortin family of glucocorticoid-inducible antiinflammatory proteins, despite its ability to inhibit phospholipase A2 in vitro.
Collapse
Affiliation(s)
- J K Northup
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
21
|
Pepinsky RB, Tizard R, Mattaliano RJ, Sinclair LK, Miller GT, Browning JL, Chow EP, Burne C, Huang KS, Pratt D. Five distinct calcium and phospholipid binding proteins share homology with lipocortin I. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)38041-4] [Citation(s) in RCA: 197] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Hollenberg MD, Valentine-Braun KA, Northup JK. Protein tyrosine kinase substrates: Rosetta stones or simply structural elements? Trends Pharmacol Sci 1988; 9:63-6. [PMID: 3072732 DOI: 10.1016/0165-6147(88)90119-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|