1
|
Pepanian A, Sommerfeld P, Kasprzyk R, Kühl T, Binbay FA, Hauser C, Löser R, Wodtke R, Bednarczyk M, Chrominski M, Kowalska J, Jemielity J, Imhof D, Pietsch M. Fluorescence Anisotropy Assay with Guanine Nucleotides Provides Access to Functional Analysis of Gαi1 Proteins. Anal Chem 2022; 94:14410-14418. [PMID: 36206384 DOI: 10.1021/acs.analchem.2c03176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gα proteins as part of heterotrimeric G proteins are molecular switches essential for G protein-coupled receptor- mediated intracellular signaling. The role of the Gα subunits has been examined for decades with various guanine nucleotides to elucidate the activation mechanism and Gα protein-dependent signal transduction. Several approaches describe fluorescent ligands mimicking the GTP function, yet lack the efficient estimation of the proteins' GTP binding activity and the fraction of active protein. Herein, we report the development of a reliable fluorescence anisotropy-based method to determine the affinity of ligands at the GTP-binding site and to quantify the fraction of active Gαi1 protein. An advanced bacterial expression protocol was applied to produce active human Gαi1 protein, whose GTP binding capability was determined with novel fluorescently labeled guanine nucleotides acting as high-affinity Gαi1 binders compared to the commonly used BODIPY FL GTPγS. This study thus contributes a new method for future investigations of the characterization of Gαi and other Gα protein subunits, exploring their corresponding signal transduction systems and potential for biomedical applications.
Collapse
Affiliation(s)
- Anna Pepanian
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Paul Sommerfeld
- Institutes I & II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Renata Kasprzyk
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - F Ayberk Binbay
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Christoph Hauser
- Institutes I & II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Reik Löser
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Marcelina Bednarczyk
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland.,Division of Biophysics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | | | - Joanna Kowalska
- Division of Biophysics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Markus Pietsch
- Institutes I & II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
2
|
Chatrath A, Kumar M, Prasad R. Comparative proteomics and variations in extracellular matrix of Candida tropicalis biofilm in response to citral. PROTOPLASMA 2022; 259:263-275. [PMID: 33959808 DOI: 10.1007/s00709-021-01658-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Candida tropicalis is an opportunistic human pathogen with an ability to cause superficial as well as systemic infections in immunocompromised patients. The formation of biofilm by C. tropicalis can cause dreadful and persistent infections which are difficult to treat due to acquired resistance. Presently, available anti-Candida drugs exhibit a high frequency of resistance, low specificity and toxicity at a higher dosage. In addition, the discovery of natural or synthetic anti-Candida drugs is slow paced and often does not pass clinical trials. Citral, a monoterpene aldehyde, has shown effective antimicrobial activities against various microorganisms. However, only few studies have elaborated the action of citral against the biofilm of C. tropicalis. In the present work, the aim was to study the fungicidal effect, differential expression of proteome and changes in extracellular matrix in response to the sub-lethal concentration (16 µg/mL) of citral. The administration of citral on C. tropicalis biofilm leads to a fungicidal effect. Furthermore, the differential expression of proteome has revealed twenty-five proteins in C. tropicalis biofilm, which were differentially expressed in the presence of citral. Among these, amino acid biosynthesis (Met6p, Gln1p, Pha2p); nucleotide biosynthesis (Xpt1p); carbohydrate metabolism (Eno1p, Fba1p, Gpm1p); sterol biosynthesis (Mvd1p/Erg19p, Hem13p); energy metabolism (Dnm1p, Coa1p, Ndk1p, Atp2p, Atp4p, Hts1p); oxidative stress (Hda2p, Gre22p, Tsa1p, Pst2p, Sod2p) and biofilm-specific (Adh1p, Ape1p, Gsp1p) proteins were identified. The overexpression of oxidative stress-related proteins indicates the response of biofilm cell to combating oxidative stress during citral treatment. Moreover, the upregulation of Adh1p is of particular interest because it subsidizes the biofilm inhibition through ethanol production as a cellular response. The augmented expression of Mvd1p/Erg19p signifies the effect of citral on ergosterol biosynthesis. The presence of citral has also shown an increment in hexosamine and ergosterol component in extracellular matrix of C. tropicalis biofilm. Hence, it is indicated that the cellular response towards citral acts through multifactorial processes. This study will further help in the interpretation of the effect of citral on C. tropicalis biofilm and development of novel antifungal agents against these potential protein targets.
Collapse
Affiliation(s)
- Apurva Chatrath
- Molecular Biology & Proteomics Laboratory, Department of Biotechnology, Indian Institute of Technology, Roorkee, 247667, Uttarakhand, India
| | - Manish Kumar
- Protein Structural & Molecular Dynamics Laboratory, Department of Biotechnology, Indian Institute of Technology, Roorkee, 247667, Uttarakhand, India
| | - Ramasare Prasad
- Molecular Biology & Proteomics Laboratory, Department of Biotechnology, Indian Institute of Technology, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
3
|
Feng Y, Yao M, Wang Y, Ding M, Zha J, Xiao W, Yuan Y. Advances in engineering UDP-sugar supply for recombinant biosynthesis of glycosides in microbes. Biotechnol Adv 2020; 41:107538. [PMID: 32222423 DOI: 10.1016/j.biotechadv.2020.107538] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 12/21/2022]
Abstract
Plant glycosides are of great interest for industries. Glycosylation of plant secondary metabolites can greatly improve their solubility, biological activity, or stability. This allows some plant glycosides to be used as food additives, cosmetic products, health products, antisepsis and anti-cancer drugs. With the continuous expansion of market demand, a variety of biological fermentation technologies has emerged. This review focuses on recombinant microbial biosynthesis of plant glycosides, which uses UDP-sugars as precursors, and summarizes various strategies to increase the yield of glycosides with a key concentration on UDP-sugar supply based on four aspects, i.e., gene overexpression, UDP-sugar recycling, mixed fermentation, and carbon co-utilization. Meanwhile, the application potential and advantages of various techniques are introduced, which provide guidance to the development of high-yield strains for recombinant microbial production of plant glycosides. Finally, the technical challenges of glycoside biosynthesis are pointed out with discussions on future directions of improving the yield of recombinantly synthesized glycosides.
Collapse
Affiliation(s)
- Yueyang Feng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
4
|
Hermansen RA, Mannakee BK, Knecht W, Liberles DA, Gutenkunst RN. Characterizing selective pressures on the pathway for de novo biosynthesis of pyrimidines in yeast. BMC Evol Biol 2015; 15:232. [PMID: 26511837 PMCID: PMC4625875 DOI: 10.1186/s12862-015-0515-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/20/2015] [Indexed: 12/05/2022] Open
Abstract
Background Selection on proteins is typically measured with the assumption that each protein acts independently. However, selection more likely acts at higher levels of biological organization, requiring an integrative view of protein function. Here, we built a kinetic model for de novo pyrimidine biosynthesis in the yeast Saccharomyces cerevisiae to relate pathway function to selective pressures on individual protein-encoding genes. Results Gene families across yeast were constructed for each member of the pathway and the ratio of nonsynonymous to synonymous nucleotide substitution rates (dN/dS) was estimated for each enzyme from S. cerevisiae and closely related species. We found a positive relationship between the influence that each enzyme has on pathway function and its selective constraint. Conclusions We expect this trend to be locally present for enzymes that have pathway control, but over longer evolutionary timescales we expect that mutation-selection balance may change the enzymes that have pathway control. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0515-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Russell A Hermansen
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA. .,Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA.
| | - Brian K Mannakee
- Division of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, 85721, USA.
| | - Wolfgang Knecht
- Department of Biology and Lund Protein Production Platform, Lund University, 22362, Lund, Sweden.
| | - David A Liberles
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA. .,Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA.
| | - Ryan N Gutenkunst
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
5
|
Taverniti V, Séraphin B. Elimination of cap structures generated by mRNA decay involves the new scavenger mRNA decapping enzyme Aph1/FHIT together with DcpS. Nucleic Acids Res 2014; 43:482-92. [PMID: 25432955 PMCID: PMC4288156 DOI: 10.1093/nar/gku1251] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic 5' mRNA cap structures participate to the post-transcriptional control of gene expression before being released by the two main mRNA decay pathways. In the 3'-5' pathway, the exosome generates free cap dinucleotides (m7GpppN) or capped oligoribonucleotides that are hydrolyzed by the Scavenger Decapping Enzyme (DcpS) forming m7GMP. In the 5'-3' pathway, the decapping enzyme Dcp2 generates m7GDP. We investigated the fate of m7GDP and m7GpppN produced by RNA decay in extracts and cells. This defined a pathway involving DcpS, NTPs and the nucleoside diphosphate kinase for m7GDP elimination. Interestingly, we identified and characterized in vitro and in vivo a new scavenger decapping enzyme involved in m7GpppN degradation. We show that activities mediating cap elimination identified in yeast are essentially conserved in human. Their alteration may contribute to pathologies, possibly through the interference of cap (di)nucleotide with cellular function.
Collapse
Affiliation(s)
- Valerio Taverniti
- Equipe Labellisée La Ligue, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de Recherche Scientifique (CNRS) UMR 7104/Institut National de Santé et de Recherche Médicale (INSERM) U964/Université de Strasbourg, 67404 Illkirch, France
| | - Bertrand Séraphin
- Equipe Labellisée La Ligue, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de Recherche Scientifique (CNRS) UMR 7104/Institut National de Santé et de Recherche Médicale (INSERM) U964/Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
6
|
Chen Y, Liu Q, Chen X, Wu J, Xie J, Guo T, Zhu C, Ying H. Control of glycolytic flux in directed biosynthesis of uridine-phosphoryl compounds through the manipulation of ATP availability. Appl Microbiol Biotechnol 2014; 98:6621-32. [PMID: 24769901 DOI: 10.1007/s00253-014-5701-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 02/14/2014] [Accepted: 03/17/2014] [Indexed: 11/24/2022]
Abstract
Adenosine triphosphate (ATP), the most important energy source for metabolic reactions and pathways, plays a vital role in control of metabolic flux. Considering the importance of ATP in regulation of the glycolytic pathway, the use of ATP-oriented manipulation is a rational and efficient route to regulate metabolic flux. In this paper, a series of efficient ATP-oriented regulation methods, such as changing ambient temperature and altering reduced nicotinamide adenine dinucleotide (NADH), was developed. To satisfy the different demand for ATP at different phases in directed biosynthesis of uridine-phosphoryl compounds, a multiphase ATP supply regulation strategy was also used to enhance to yield of target metabolites.
Collapse
Affiliation(s)
- Yong Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Xin mofan Road 5, Nanjing, 210009, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Srivastava SK, Rajasree K, Gopal B. Conformational basis for substrate recognition and regulation of catalytic activity in Staphylococcus aureus nucleoside di-phosphate kinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1349-57. [PMID: 21745603 DOI: 10.1016/j.bbapap.2011.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 06/05/2011] [Accepted: 06/14/2011] [Indexed: 11/29/2022]
Abstract
Nucleoside diphosphate kinases (NDK) are characterized by high catalytic turnover rates and diverse substrate specificity. These features make this enzyme an effective activator of a pro-drug-an application that has been actively pursued for a variety of therapeutic strategies. The catalytic mechanism of this enzyme is governed by a conserved histidine that coordinates a magnesium ion at the active site. Despite substantial structural and biochemical information on NDK, the mechanistic feature of the phospho-transfer that leads to auto-phosphorylation remains unclear. While the role of the histidine residue is well documented, the other active site residues, in particular the conserved serine remains poorly characterized. Studies on some homologues suggest no role for the serine residue at the active site, while others suggest a crucial role for this serine in the regulation and quaternary association of this enzyme in some species. Here we report the biochemical features of the Staphylococcus aureus NDK and the mutant enzymes. We also describe the crystal structures of the apo-NDK, as a transition state mimic with vanadate and in complex with different nucleotide substrates. These structures formed the basis for molecular dynamics simulations to understand the broad substrate specificity of this enzyme and the role of active site residues in the phospho-transfer mechanism and oligomerization. Put together, these data suggest that concerted changes in the conformation of specific residues facilitate the stabilization of nucleotide complexes thereby enabling the steps involved in the ping-pong reaction mechanism without large changes to the overall structure of this enzyme.
Collapse
|
8
|
Wang H, Bao R, Jiang C, Yang Z, Zhou CZ, Chen Y. Structure of Ynk1 from the yeast Saccharomyces cerevisiae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:572-6. [PMID: 18607079 PMCID: PMC2443969 DOI: 10.1107/s1744309108015212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 05/20/2008] [Indexed: 11/10/2022]
Abstract
Nucleoside diphosphate kinase (NDPK) catalyzes the transfer of the gamma-phosphate from nucleoside triphosphates to nucleoside diphosphates. In addition to biochemical studies, a number of crystal structures of NDPK from various organisms, including both native proteins and complexes with nucleotides or nucleotide analogues, have been determined. Here, the crystal structure of Ynk1, an NDPK from the yeast Saccharomyces cerevisiae, has been solved at 3.1 A resolution. Structural analysis strongly supports the oligomerization state of this protein being hexameric rather than tetrameric.
Collapse
Affiliation(s)
- Huabing Wang
- Protein Research Institute, Tongji University, Shanghai 200092, People’s Republic of China
| | - Rui Bao
- Protein Research Institute, Tongji University, Shanghai 200092, People’s Republic of China
| | - Chunhui Jiang
- Protein Research Institute, Tongji University, Shanghai 200092, People’s Republic of China
| | - Zhu Yang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| | - Yuxing Chen
- Protein Research Institute, Tongji University, Shanghai 200092, People’s Republic of China
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| |
Collapse
|
9
|
Li Y, Kim HJ, Zheng C, Chow WHA, Lim J, Keenan B, Pan X, Lemieux B, Kong H. Primase-based whole genome amplification. Nucleic Acids Res 2008; 36:e79. [PMID: 18559358 PMCID: PMC2490742 DOI: 10.1093/nar/gkn377] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In vitro DNA amplification methods, such as polymerase chain reaction (PCR), rely on synthetic oligonucleotide primers for initiation of the reaction. In vivo, primers are synthesized on-template by DNA primase. The bacteriophage T7 gene 4 protein (gp4) has both primase and helicase activities. In this study, we report the development of a primase-based Whole Genome Amplification (pWGA) method, which utilizes gp4 primase to synthesize primers, eliminating the requirement of adding synthetic primers. Typical yield of pWGA from 1 ng to 10 ng of human genomic DNA input is in the microgram range, reaching over a thousand-fold amplification after 1 h of incubation at 37°C. The amplification bias on human genomic DNA is 6.3-fold among 20 loci on different chromosomes. In addition to amplifying total genomic DNA, pWGA can also be used for detection and quantification of contaminant DNA in a sample when combined with a fluorescent reporter dye. When circular DNA is used as template in pWGA, 108-fold of amplification is observed from as low as 100 copies of input. The high efficiency of pWGA in amplifying circular DNA makes it a potential tool in diagnosis and genotyping of circular human DNA viruses such as human papillomavirus (HPV).
Collapse
Affiliation(s)
- Ying Li
- BioHelix Corporation, Beverly, MA 01915, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mailloux RJ, Darwich R, Lemire J, Appanna V. The monitoring of nucleotide diphosphate kinase activity by blue native polyacrylamide gel electrophoresis. Electrophoresis 2008; 29:1484-9. [DOI: 10.1002/elps.200700697] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Horská K, Votruba I, Holý A. Interaction of Phosphates of the Acyclic Nucleoside Phosphonates with Nucleoside Diphosphate Kinase from Yeast and Bovine Liver. ACTA ACUST UNITED AC 2006. [DOI: 10.1135/cccc20060035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The ability of monophosphates of selected acyclic nucleoside phosphonates to serve as substrates for the title NDP kinases was studied. Comparison of the kinetic constants (KM, Vmax, kcat and kcat/KM) estimates indicates that the yeast enzyme catalyzes the phosphorylation of purine and pyrimidine acyclic nucleoside phosphate phosphonates of the 9-[2-(phosphonomethoxy)ethyl] and/or 9-[2-(phosphonomethoxy)propyl] series more efficiently than bovine liver NDP kinase. Yeast enzyme preferentially phosphorylates phosphates of the (phosphono- methoxyalkyl)guanines rather than their adenine counterparts; both enzymes phosphorylate R-enantiomers of the 9-[2-(phosphonomethoxy)propyl] series more efficiently than the corresponding S-enantiomers. Substitution of the aliphatic chain at the position 3 with hydroxymethyl group considerably increases the substrate activity of phosphate of acyclic nucleoside phosphonate. The resulting substrate activity (kcat/KM ratio) of all acyclic nucleoside phosphonate phosphates studied is three to five orders of magnitude lower than that for natural NDPs.
Collapse
|
12
|
Amutha B, Pain D. Nucleoside diphosphate kinase of Saccharomyces cerevisiae, Ynk1p: localization to the mitochondrial intermembrane space. Biochem J 2003; 370:805-15. [PMID: 12472466 PMCID: PMC1223228 DOI: 10.1042/bj20021415] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2002] [Revised: 11/15/2002] [Accepted: 12/10/2002] [Indexed: 11/17/2022]
Abstract
Nucleoside diphosphate kinase (NDPK) is a highly conserved multifunctional enzyme. It catalyses the transfer of gamma phosphates from nucleoside triphosphates to nucleoside diphosphates by a mechanism that involves formation of an autophosphorylated enzyme intermediate. The phosphate is usually supplied by ATP. NDPK activity in different subcellular compartments may regulate the crucial balance between ATP and GTP or other nucleoside triphosphates. NDPKs are homo-oligomeric proteins and are predominantly localized in the cytosol. In this paper, we demonstrate that in Saccharomyces cerevisiae a small fraction of total NDPK activity encoded by YNK1 is present in the intermembrane space (IMS) of mitochondria, and the corresponding protein Ynk1p in the IMS represents approx. 0.005% of total mitochondrial proteins. Ynk1p, synthesized as a single gene product, must therefore be partitioned between cytoplasm and mitochondrial IMS fractions. A mechanism for this partitioning is suggested by our observations that interaction with a 40 kDa protein of the translocase of outer mitochondrial membrane (Tom40p), occurs preferentially with unfolded, unphosphorylated forms of Ynk1p. A population of newly translated, but not yet folded or autophosphorylated, Ynk1p intermediates may be imported into the IMS of mitochondria and trapped there by subsequent folding and oligomerization. Within the small volume of the IMS, Ynk1p may be more concentrated and may be required to supply GTP to several important proteins in this compartment.
Collapse
Affiliation(s)
- Boominathan Amutha
- Department of Pharmacology and Physiology, UMDNJ - New Jersey Medical School, 185 South Orange Avenue, MSB I-669, Newark, NJ 07101-1709, USA
| | | |
Collapse
|
13
|
Lascu L, Giartosio A, Ransac S, Erent M. Quaternary structure of nucleoside diphosphate kinases. J Bioenerg Biomembr 2000; 32:227-36. [PMID: 11768306 DOI: 10.1023/a:1005580828141] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nucleoside (NDP) diphosphate kinases are oligomeric enzymes. Most are hexameric, but some bacterial enzymes are tetrameric. Hexamers and tetramers are constructed by assembling identical dimers. The hexameric structure is important for protein stability, as demonstrated by studies with natural mutants (the Killer-of-prune mutant of Drosophila NDP kinase and the S120G mutant of the human NDP kinase A in neuroblastomas) and with mutants obtained by site-directed mutagenesis. It is also essential for enzymic activity. The function of the tetrameric structure is unclear.
Collapse
Affiliation(s)
- L Lascu
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 University of Bordeaux-2 and CNRS, France.
| | | | | | | |
Collapse
|
14
|
Zhu J, Tseng YH, Kantor JD, Rhodes CJ, Zetter BR, Moyers JS, Kahn CR. Interaction of the Ras-related protein associated with diabetes rad and the putative tumor metastasis suppressor NM23 provides a novel mechanism of GTPase regulation. Proc Natl Acad Sci U S A 1999; 96:14911-8. [PMID: 10611312 PMCID: PMC24747 DOI: 10.1073/pnas.96.26.14911] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rad is the prototypic member of a new class of Ras-related GTPases. Purification of the GTPase-activating protein (GAP) for Rad revealed nm23, a putative tumor metastasis suppressor and a development gene in Drosophila. Antibodies against nm23 depleted Rad-GAP activity from human skeletal muscle cytosol, and bacterially expressed nm23 reconstituted the activity. The GAP activity of nm23 was specific for Rad, was absent with the S105N putative dominant negative mutant of Rad, and was reduced with mutations of nm23. In the presence of ATP, GDP.Rad was also reconverted to GTP.Rad by the nucleoside diphosphate (NDP) kinase activity of nm23. Simultaneously, Rad regulated nm23 by enhancing its NDP kinase activity and decreasing its autophosphorylation. Melanoma cells transfected with wild-type Rad, but not the S105N-Rad, showed enhanced DNA synthesis in response to serum; this effect was lost with coexpression of nm23. Thus, the interaction of nm23 and Rad provides a potential novel mechanism for bidirectional, bimolecular regulation in which nm23 stimulates both GTP hydrolysis and GTP loading of Rad whereas Rad regulates activity of nm23. This interaction may play important roles in the effects of Rad on glucose metabolism and the effects of nm23 on tumor metastasis and developmental regulation.
Collapse
Affiliation(s)
- J Zhu
- Research Division, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Ananvoranich S, Grandmaison J, Gulick PJ. Molecular and biochemical characterization of two nucleoside diphosphate kinase cDNA clones from Flaveria bidentis. Genome 1996; 39:404-9. [PMID: 8984006 DOI: 10.1139/g96-051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two nucleoside diphosphate kinase cDNA clones have been isolated from Flaveria bidentis by immunoscreening of an expression library with a polyclonal antibody raised against Flaveria chloraefolia flavonol 3-sulfotransferase (F3-ST). The clones represent members of a small multigene family in this species. The nucleotide sequences of the two cDNA clones show a high degree of sequence similarity to other reported nucleoside diphosphate kinases (NDPKs), including the putative human tumor suppressor gene NM23 and the Drosophila regulatory gene. When these cDNA clones were expressed in Escherichia coli, their gene products exhibited NDPK enzymatic activity. The immunocross reaction of the clones with the antibody raised against the F3-ST suggests a common immuno-epitope and a similarity of a nucleotide binding site for the two proteins.
Collapse
Affiliation(s)
- S Ananvoranich
- Biology Department, Concordia University, Montréal, QC, Canada
| | | | | |
Collapse
|
16
|
Evans E, Klemperer N, Ghosh R, Traktman P. The vaccinia virus D5 protein, which is required for DNA replication, is a nucleic acid-independent nucleoside triphosphatase. J Virol 1995; 69:5353-61. [PMID: 7636979 PMCID: PMC189376 DOI: 10.1128/jvi.69.9.5353-5361.1995] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The vaccinia virus D5 gene encodes a 90-kDa protein that is transiently expressed at early times after infection. Temperature-sensitive mutants with lesions in the D5 gene exhibit a fast-stop DNA- phenotype and are also impaired in homologous recombination. Here we report the overexpression of the D5 protein within the context of a vaccinia virus infection and its purification to apparent homogeneity. The purified protein has an intrinsic nucleoside triphosphatase activity which is independent of, and not stimulated by, any common nucleic acid cofactors. All eight common ribo- and deoxyribonucleoside triphosphates are hydrolyzed to the diphosphate form in the presence of a divalent cation. Implications for the role of D5 in viral DNA replication are addressed.
Collapse
Affiliation(s)
- E Evans
- Department of Cell Biology, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | |
Collapse
|
17
|
Nyholm T, Andäng M, Hotchkiss G, Härd T, Baumann H, Larsson S, Ahrlund-Richter L. A method for production of 13C/15N double labelled RNA in E. coli, and subsequent in vitro synthesis of ribonucleotide 5' triphosphates. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 1995; 30:59-68. [PMID: 7541814 DOI: 10.1016/0165-022x(94)00067-n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this paper we describe an enhanced method for the large scale production of high quality 13C/15N labelled NTPs. High amounts of labelled RNA was obtained from E. coli cells grown in 13C/15N enriched medium and treated with chloramphenicol. Total RNA was extracted from spheroplasted cells in the presence of SDS and proteinase K and subsequently degraded to NMPs by nuclease P1 and high concentrations of nuclease S1 in a low salt buffer. To avoid non-specific degradation of the RNA, nuclease digestion was performed in a short term reaction on native, not heat-denatured RNA. CMP, AMP, GMP and UMP were chromatographically separated and converted to the corresponding NTPs by a mixture of kinases in the presence of a coupled redox system based on thioredoxin and dithiothreitol. The quality of the 13C/15N labelled NTPs was tested by in vitro transcription.
Collapse
Affiliation(s)
- T Nyholm
- Unit for Molecular Genetics, Karolinska Institute, Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
18
|
Sommer D, Song PS. A plant nucleoside diphosphate kinase homologous to the human Nm23 gene product: purification and characterization. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1222:464-70. [PMID: 8038216 DOI: 10.1016/0167-4889(94)90055-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nucleoside diphosphate kinases (NDPKs) catalyze the transfer of high-energy phosphates from nucleoside triphosphates to nucleoside diphosphates and may be involved in the regulation of growth, development, and signal transduction processes. We report here the purification and characterization of NDPK from detergent-solubilized extracts of dark-grown oat (Avena) tissue. The purification was achieved primarily through adsorption to GTP-agarose, followed by elution with ATP. SDS-polyacrylamide gel electrophoresis and gel filtration chromatography indicated that the purified protein is composed of six 18 kDa subunits. Substrate specificity experiments indicated that the purified kinase is capable of using all tested nucleosides as substrates. N-terminal sequencing of the Avena protein revealed that 87% of the 23 amino acids sequenced were identical to the human Nm23 protein, a nucleoside diphosphate kinase identified as a possible tumor metastasis suppressor and transcriptional activator of the myc oncogene.
Collapse
Affiliation(s)
- D Sommer
- Department of Chemistry, University of Nebraska-Lincoln 68588-0304
| | | |
Collapse
|
19
|
Fukuchi T, Nikawa J, Kimura N, Watanabe K. Isolation, overexpression and disruption of a Saccharomyces cerevisiae YNK gene encoding nucleoside diphosphate kinase. Gene 1993; 129:141-6. [PMID: 8392963 DOI: 10.1016/0378-1119(93)90710-k] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nucleoside diphosphate kinase (NDPK) is the major enzyme responsible for the synthesis of all nucleoside triphosphates except ATP. A gene (YNK) encoding NDPK was isolated from the yeast Saccharomyces cerevisiae. The coding region consists of 459 bp encoding 153 amino acid (aa) residues. The M(r) of NDPK, calculated from the deduced aa sequence, is 17,166. Yeast NDPK was 59% and 58% identical to the rat NDPK alpha and beta, respectively. Overexpression of YNK in yeast showed high NDPK activity. The overproduced NDPK cross-reacted with anti-NDPK antibody raised against rat NDPK by Western blot analysis. Despite the fact that NDPK has features of a housekeeping enzyme, disruption of the YNK locus in a haploid strain was neither lethal nor significantly affected phenotypic behaviors such as growth rate, spore formation, mating ability and morphology. Yeast with a defective YNK still possessed NDPK activity to approximately 10% of the wild-type level. Possible sources of the remaining enzyme activity are discussed.
Collapse
Affiliation(s)
- T Fukuchi
- Department of Experimental Biology, Tokyo Metropolitan Institute of Gerontology, Japan
| | | | | | | |
Collapse
|
20
|
Abstract
Thymidine kinases were described for cellular life long before it was shown that they could also be encoded by viruses, but the viral thymidine kinase genes were the first to be sequenced. These enzymes have been extraordinarily useful to the researcher, serving first to help label DNA, then to get thymidine analogs incorporated into DNA for therapeutic and other purposes and more recently to move genes from one genome to another. Knowledge of the nucleotide and amino acid sequences of these enzymes has allowed some deductions about their possible three-dimensional structure, as well as the location on the polypeptide of various functions; it has also allowed their classification into two main groups: the herpesviral thymidine/eukaryotic deoxycytidine kinases and the poxviral and cellular thymidine kinases; the relationships of the mitochondrial enzyme are still not clear.
Collapse
Affiliation(s)
- G A Gentry
- Department of Microbiology, University of Mississippi Medical Center, Jackson 39216-4505
| |
Collapse
|