1
|
Jing F, Chen K, Yandeau-Nelson MD, Nikolau BJ. Machine learning model of the catalytic efficiency and substrate specificity of acyl-ACP thioesterase variants generated from natural and in vitro directed evolution. Front Bioeng Biotechnol 2024; 12:1379121. [PMID: 38665811 PMCID: PMC11043601 DOI: 10.3389/fbioe.2024.1379121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Modulating the catalytic activity of acyl-ACP thioesterase (TE) is an important biotechnological target for effectively increasing flux and diversifying products of the fatty acid biosynthesis pathway. In this study, a directed evolution approach was developed to improve the fatty acid titer and fatty acid diversity produced by E. coli strains expressing variant acyl-ACP TEs. A single round of in vitro directed evolution, coupled with a high-throughput colorimetric screen, identified 26 novel acyl-ACP TE variants that convey up to a 10-fold increase in fatty acid titer, and generate altered fatty acid profiles when expressed in a bacterial host strain. These in vitro-generated variant acyl-ACP TEs, in combination with 31 previously characterized natural variants isolated from diverse phylogenetic origins, were analyzed with a random forest classifier machine learning tool. The resulting quantitative model identified 22 amino acid residues, which define important structural features that determine the catalytic efficiency and substrate specificity of acyl-ACP TE.
Collapse
Affiliation(s)
- Fuyuan Jing
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
- Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, United States
| | - Keting Chen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Marna D. Yandeau-Nelson
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
- Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, United States
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Basil J. Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
- Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, United States
| |
Collapse
|
2
|
Li J, Xin W, Liang J, Shang P, Song Y, Wang Q, Gamal El-Din M, Arslan M, Guo S, Chen C. Alkaline fermentation of refinery waste activated sludge mediated by refinery spent caustic for volatile fatty acids production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116317. [PMID: 36182845 DOI: 10.1016/j.jenvman.2022.116317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Volatile fatty acids (VFA), produced from waste activated sludge (WAS), provide unique opportunities for resource recovery in wastewater treatment plants. This study investigates the potential of refinery spent caustic (RSC) on VFA production during refinery WAS (RWAS) alkaline fermentation. The highest VFA yield was 196.3 mg/g-VS at a sludge retention time of 6 days. Amplicon sequencing revealed the enrichment of Soehngenia (20.21%), Bacilli (11.86%), and Brassicibacter (4.17%), which was associated with improved activities of protease (626%) and α-glucosidase (715%). Function prediction analysis confirmed that acetyl-CoA production and fatty acid biosynthesis were enhanced, while fatty acid degradation was inhibited. Accordingly, hydrolysis, acidogenesis, and acetogenesis were improved by 6.87%, 10.67%, and 28.50%, respectively; whereas methanogenesis was inhibited by 28.87%. The sulfate and free ammonia in RSC likely contributed to increased acetic acid production. This study showcases that RWAS alkaline fermentation mediated by RSC for VFA production is the practicable approach.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Wenzhuo Xin
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jiahao Liang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Pengyin Shang
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yanke Song
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qinghong Wang
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Shaohui Guo
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chunmao Chen
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| |
Collapse
|
3
|
Wang XD, Xu CY, Zheng YJ, Wu YF, Zhang YT, Zhang T, Xiong ZY, Yang HK, Li J, Fu C, Qiu FY, Dai XY, Liu XL, He XS, Zhou SS, Li SX, Fu T, Xie H, Chen YL, Zhang QQ, Wang HQ, Wang YD, Zhou C, Jiang XM. Chromosome-level genome assembly and resequencing of camphor tree ( Cinnamomum camphora) provides insight into phylogeny and diversification of terpenoid and triglyceride biosynthesis of Cinnamomum. HORTICULTURE RESEARCH 2022; 9:uhac216. [PMID: 36479586 PMCID: PMC9720445 DOI: 10.1093/hr/uhac216] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
Cinnamomum species attract attentions owing to their scents, medicinal properties, and ambiguous relationship in the phylogenetic tree. Here, we report a high-quality genome assembly of Cinnamomum camphora, based on which two whole-genome duplication (WGD) events were detected in the C. camphora genome: one was shared with Magnoliales, and the other was unique to Lauraceae. Phylogenetic analyses illustrated that Lauraceae species formed a compact sister clade to the eudicots. We then performed whole-genome resequencing on 24 Cinnamomum species native to China, and the results showed that the topology of Cinnamomum species was not entirely consistent with morphological classification. The rise and molecular basis of chemodiversity in Cinnamomum were also fascinating issues. In this study, six chemotypes were classified and six main terpenoids were identified as major contributors of chemodiversity in C. camphora by the principal component analysis. Through in vitro assays and subcellular localization analyses, we identified two key terpene synthase (TPS) genes (CcTPS16 and CcTPS54), the products of which were characterized to catalyze the biosynthesis of two uppermost volatiles (i.e. 1,8-cineole and (iso)nerolidol), respectively, and meditate the generation of two chemotypes by transcriptional regulation and compartmentalization. Additionally, the pathway of medium-chain triglyceride (MCT) biosynthesis in Lauraceae was investigated for the first time. Synteny analysis suggested that the divergent synthesis of MCT and long-chain triglyceride (LCT) in Lauraceae kernels was probably controlled by specific medium-chain fatty acyl-ACP thioesterase (FatB), type-B lysophosphatidic acid acyltransferase (type-B LPAAT), and diacylglycerol acyltransferase 2b (DGAT 2b) isoforms during co-evolution with retentions or deletions in the genome.
Collapse
Affiliation(s)
| | | | | | | | - Yue-Ting Zhang
- Camphor Engineering and Technology Research Center of National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang 330032, China
- Jiangxi Provincial Key Lab for Plant Biotechnology, Jiangxi Academy of Forestry, Nanchang 330032, Jiangxi, China
| | - Ting Zhang
- Camphor Engineering and Technology Research Center of National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Zhen-Yu Xiong
- Jiangxi Provincial Key Lab for Plant Biotechnology, Jiangxi Academy of Forestry, Nanchang 330032, Jiangxi, China
| | - Hai-Kuan Yang
- Camphor Engineering and Technology Research Center of National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Jiang Li
- Camphor Engineering and Technology Research Center of National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Chao Fu
- Camphor Engineering and Technology Research Center of National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Feng-Ying Qiu
- Camphor Engineering and Technology Research Center of National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Xiao-Ying Dai
- Camphor Engineering and Technology Research Center of National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Xin-Liang Liu
- Camphor Engineering and Technology Research Center of National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Xiao-San He
- Camphor Engineering and Technology Research Center of National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Song-Song Zhou
- Camphor Engineering and Technology Research Center of National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Sheng-Xing Li
- Camphor Engineering and Technology Research Center of National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Tao Fu
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Han Xie
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Hong-Qi Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | | | | | | |
Collapse
|
4
|
Fazili ABA, Shah AM, Zan X, Naz T, Nosheen S, Nazir Y, Ullah S, Zhang H, Song Y. Mucor circinelloides: a model organism for oleaginous fungi and its potential applications in bioactive lipid production. Microb Cell Fact 2022; 21:29. [PMID: 35227264 PMCID: PMC8883733 DOI: 10.1186/s12934-022-01758-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
Microbial oils have gained massive attention because of their significant role in industrial applications. Currently plants and animals are the chief sources of medically and nutritionally important fatty acids. However, the ever-increasing global demand for polyunsaturated fatty acids (PUFAs) cannot be met by the existing sources. Therefore microbes, especially fungi, represent an important alternative source of microbial oils being investigated. Mucor circinelloides—an oleaginous filamentous fungus, came to the forefront because of its high efficiency in synthesizing and accumulating lipids, like γ-linolenic acid (GLA) in high quantity. Recently, mycelium of M. circinelloides has acquired substantial attraction towards it as it has been suggested as a convenient raw material source for the generation of biodiesel via lipid transformation. Although M. circinelloides accumulates lipids naturally, metabolic engineering is found to be important for substantial increase in their yields. Both modifications of existing pathways and re-formation of biosynthetic pathways in M. circinelloides have shown the potential to improve lipid levels. In this review, recent advances in various important metabolic aspects of M. circinelloides have been discussed. Furthermore, the potential applications of M. circinelloides in the fields of antioxidants, nutraceuticals, bioremediation, ethanol production, and carotenoids like beta carotene and astaxanthin having significant nutritional value are also deliberated.
Collapse
|
5
|
Wang ZQ, Song H, Koleski EJ, Hara N, Park DS, Kumar G, Min Y, Dauenhauer PJ, Chang MCY. A dual cellular-heterogeneous catalyst strategy for the production of olefins from glucose. Nat Chem 2021; 13:1178-1185. [PMID: 34811478 DOI: 10.1038/s41557-021-00820-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/23/2021] [Indexed: 11/09/2022]
Abstract
Living systems provide a promising approach to chemical synthesis, having been optimized by evolution to convert renewable carbon sources, such as glucose, into an enormous range of small molecules. However, a large number of synthetic structures can still be difficult to obtain solely from cells, such as unsubstituted hydrocarbons. In this work, we demonstrate the use of a dual cellular-heterogeneous catalytic strategy to produce olefins from glucose using a selective hydrolase to generate an activated intermediate that is readily deoxygenated. Using a new family of iterative thiolase enzymes, we genetically engineered a microbial strain that produces 4.3 ± 0.4 g l-1 of fatty acid from glucose with 86% captured as 3-hydroxyoctanoic and 3-hydroxydecanoic acids. This 3-hydroxy substituent serves as a leaving group that enables heterogeneous tandem decarboxylation-dehydration routes to olefinic products on Lewis acidic catalysts without the additional redox input required for enzymatic or chemical deoxygenation of simple fatty acids.
Collapse
Affiliation(s)
- Zhen Q Wang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA. .,Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Heng Song
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.,College of Chemistry & Molecular Science, Wuhan University, Wuhan, P. R. China
| | - Edward J Koleski
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Noritaka Hara
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Dae Sung Park
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA.,Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Gaurav Kumar
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Yejin Min
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Paul J Dauenhauer
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Michelle C Y Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA. .,Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA. .,Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
6
|
Green Chemistry Production of Codlemone, the Sex Pheromone of the Codling Moth (Cydia pomonella), by Metabolic Engineering of the Oilseed Crop Camelina (Camelina sativa). J Chem Ecol 2021; 47:950-967. [PMID: 34762210 PMCID: PMC8642345 DOI: 10.1007/s10886-021-01316-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022]
Abstract
Synthetic pheromones have been used for pest control over several decades. The conventional synthesis of di-unsaturated pheromone compounds is usually complex and costly. Camelina (Camelina sativa) has emerged as an ideal, non-food biotech oilseed platform for production of oils with modified fatty acid compositions. We used Camelina as a plant factory to produce mono- and di-unsaturated C12 chain length moth sex pheromone precursors, (E)-9-dodecenoic acid and (E,E)-8,10-dodecadienoic acid, by introducing a fatty acyl-ACP thioesterase FatB gene UcTE from California bay laurel (Umbellularia californica) and a bifunctional ∆9 desaturase gene Cpo_CPRQ from the codling moth, Cydia pomonella. Different transgene combinations were investigated for increasing pheromone precursor yield. The most productive Camelina line was engineered with a vector that contained one copy of UcTE and the viral suppressor protein encoding P19 transgenes and three copies of Cpo_CPRQ transgene. The T2 generation of this line produced 9.4% of (E)-9-dodecenoic acid and 5.5% of (E,E)-8,10-dodecadienoic acid of the total fatty acids, and seeds were selected to advance top-performing lines to homozygosity. In the T4 generation, production levels of (E)-9-dodecenoic acid and (E,E)-8,10-dodecadienoic acid remained stable. The diene acid together with other seed fatty acids were converted into corresponding alcohols, and the bioactivity of the plant-derived codlemone was confirmed by GC-EAD and a flight tunnel assay. Trapping in orchards and home gardens confirmed significant and specific attraction of C. pomonella males to the plant-derived codlemone.
Collapse
|
7
|
Cerone M, Smith TK. A Brief Journey into the History of and Future Sources and Uses of Fatty Acids. Front Nutr 2021; 8:570401. [PMID: 34355007 PMCID: PMC8329090 DOI: 10.3389/fnut.2021.570401] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/21/2021] [Indexed: 01/04/2023] Open
Abstract
Fats and lipids have always had a primary role in the history of humankind, from ancient civilisations to the modern and contemporary time, going from domestic and cosmetic uses, to the first medical applications and later to the large-scale industrial uses for food, pharmaceutical, cosmetics, and biofuel production. Sources and uses of those have changed during time following the development of chemical sciences and industrial technological advances. Plants, fish, and animal fats have represented the primary source of lipids and fats for century. Nowadays, the use of fatty acid sources has taken a turn: industries are mainly interested in polyunsaturated fatty acids (PUFAs), which have beneficial properties in human health; and also, for high-value fatty acids product for innovative and green production of biofuel and feedstocks. Thus, the constant increase in demand of fatty acids, the fact that marine and vegetable sources are not adequate to meet the high level of fatty acids required worldwide and climate change, have determined the necessity of the search for renewable and sustainable sources for fatty acids. Biotechnological advances and bioengineering have started looking at the genetic modification of algae, bacteria, yeasts, seeds, and plants to develop cell factory able to produce high value fatty acid products in a renewable and sustainable manner. This innovative approach applied to FA industry is a peculiar example of how biotechnology can serve as a powerful mean to drive the production of high value fatty acid derivatives on the concept of circular bioeconomy, based on the reutilisation of organic resources for alternative and sustainable productive patterns that are environmentally friendly.
Collapse
Affiliation(s)
- Michela Cerone
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Terry K Smith
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
8
|
Abdul Hakim Shaah M, Hossain MS, Salem Allafi FA, Alsaedi A, Ismail N, Ab Kadir MO, Ahmad MI. A review on non-edible oil as a potential feedstock for biodiesel: physicochemical properties and production technologies. RSC Adv 2021; 11:25018-25037. [PMID: 35481051 PMCID: PMC9037048 DOI: 10.1039/d1ra04311k] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/13/2021] [Indexed: 01/05/2023] Open
Abstract
There is increasing concern regarding alleviating world energy demand by determining an alternative to petroleum-derived fuels due to the rapid depletion of fossil fuels, rapid population growth, and urbanization. Biodiesel can be utilized as an alternative fuel to petroleum-derived diesel for the combustion engine. At present, edible crops are the primary source of biodiesel production. However, the excessive utilization of these edible crops for large-scale biodiesel production might cause food supply depletion and economic imbalance. Moreover, the utilization of edible oil as a biodiesel feedstock increases biodiesel production costs due to the high price of edible oils. A possible solution to overcome the existing limitations of biodiesel production is to utilize non-edible crops oil as a feedstock. The present study was conducted to determine the possibility and challenges of utilizing non-edible oil as a potential feedstock for biodiesel production. Several aspects related to non-edible oil as a biodiesel feedstock such as overview of biodiesel feedstocks, non-edible oil resources, non-edible oil extraction technology, its physicochemical and fatty acid properties, biodiesel production technologies, advantages and limitation of using non-edible oil as a feedstock for biodiesel production have been reviewed in various recent publications. The finding of the present study reveals that there is a huge opportunity to utilize non-edible oil as a feedstock for biodiesel production.
Collapse
Affiliation(s)
- Marwan Abdul Hakim Shaah
- School of Industrial Technology, Universiti Sains Malaysia 11800 USM Penang Malaysia +6046533678 +6046532216 +6046532214
| | - Md Sohrab Hossain
- School of Industrial Technology, Universiti Sains Malaysia 11800 USM Penang Malaysia +6046533678 +6046532216 +6046532214
| | - Faisal Aboelksim Salem Allafi
- School of Industrial Technology, Universiti Sains Malaysia 11800 USM Penang Malaysia +6046533678 +6046532216 +6046532214
| | - Alyaa Alsaedi
- School of Industrial Technology, Universiti Sains Malaysia 11800 USM Penang Malaysia +6046533678 +6046532216 +6046532214
| | - Norli Ismail
- School of Industrial Technology, Universiti Sains Malaysia 11800 USM Penang Malaysia +6046533678 +6046532216 +6046532214
| | - Mohd Omar Ab Kadir
- Pultex Sdn Bhd Jalan Kampung Jawa, Bayan Baru 11950 Bayan Lepas Penang Malaysia
| | - Mardiana Idayu Ahmad
- School of Industrial Technology, Universiti Sains Malaysia 11800 USM Penang Malaysia +6046533678 +6046532216 +6046532214
| |
Collapse
|
9
|
Miray R, Kazaz S, To A, Baud S. Molecular Control of Oil Metabolism in the Endosperm of Seeds. Int J Mol Sci 2021; 22:1621. [PMID: 33562710 PMCID: PMC7915183 DOI: 10.3390/ijms22041621] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
In angiosperm seeds, the endosperm develops to varying degrees and accumulates different types of storage compounds remobilized by the seedling during early post-germinative growth. Whereas the molecular mechanisms controlling the metabolism of starch and seed-storage proteins in the endosperm of cereal grains are relatively well characterized, the regulation of oil metabolism in the endosperm of developing and germinating oilseeds has received particular attention only more recently, thanks to the emergence and continuous improvement of analytical techniques allowing the evaluation, within a spatial context, of gene activity on one side, and lipid metabolism on the other side. These studies represent a fundamental step toward the elucidation of the molecular mechanisms governing oil metabolism in this particular tissue. In particular, they highlight the importance of endosperm-specific transcriptional controls for determining original oil compositions usually observed in this tissue. In the light of this research, the biological functions of oils stored in the endosperm of seeds then appear to be more diverse than simply constituting a source of carbon made available for the germinating seedling.
Collapse
Affiliation(s)
| | | | | | - Sébastien Baud
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (R.M.); (S.K.); (A.T.)
| |
Collapse
|
10
|
Lijewski AM, Knutson CM, Lenneman EM, Barney BM. Evaluation of two thioesterases from Marinobacter aquaeolei VT8: Relationship to wax ester production. FEMS Microbiol Lett 2020; 368:fnaa206. [PMID: 33301558 DOI: 10.1093/femsle/fnaa206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The biosynthesis of lipid-based biofuels is an important aspect of developing sustainable alternatives to conventional oils derived from fossil fuel reserves. Many biosynthetic approaches to biodiesel fuels and oils involve fatty acid derivatives as a precursor, and thioesterases have been employed in various strategies to increase fatty acid pools. Thioesterases liberate fatty acids from fatty acyl-coenzyme A or fatty acyl-acyl carrier protein substrates. The role played by thioesterases has not been extensively studied in model bacteria that accumulate elevated levels of biological oils based on fatty acid precursors. In this report, two primary thioesterases from the wax ester accumulating bacterium Marinobacter aquaeolei VT8 were heterologously expressed, isolated and characterized. These genes were further analyzed at the transcriptional level in the native bacterium during wax ester accumulation, and their genes were disrupted to determine the effect these changes had on wax ester levels. Combined, these results indicate that these two thioesterases do not play an integral role in wax ester accumulation in this natural lipid-accumulating model bacterium.
Collapse
Affiliation(s)
- Amelia M Lijewski
- Department of Bioproducts and Biosystems Engineering and Biotechnology Institute, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108
| | - Carolann M Knutson
- Department of Bioproducts and Biosystems Engineering and Biotechnology Institute, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108
| | - Eric M Lenneman
- Department of Bioproducts and Biosystems Engineering and Biotechnology Institute, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108
| | - Brett M Barney
- Department of Bioproducts and Biosystems Engineering and Biotechnology Institute, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108
| |
Collapse
|
11
|
Swarbrick CMD, Nanson JD, Patterson EI, Forwood JK. Structure, function, and regulation of thioesterases. Prog Lipid Res 2020; 79:101036. [PMID: 32416211 DOI: 10.1016/j.plipres.2020.101036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 01/15/2023]
Abstract
Thioesterases are present in all living cells and perform a wide range of important biological functions by catalysing the cleavage of thioester bonds present in a diverse array of cellular substrates. Thioesterases are organised into 25 families based on their sequence conservation, tertiary and quaternary structure, active site configuration, and substrate specificity. Recent structural and functional characterisation of thioesterases has led to significant changes in our understanding of the regulatory mechanisms that govern enzyme activity and their respective cellular roles. The resulting dogma changes in thioesterase regulation include mechanistic insights into ATP and GDP-mediated regulation by oligomerisation, the role of new key regulatory regions, and new insights into a conserved quaternary structure within TE4 family members. Here we provide a current and comparative snapshot of our understanding of thioesterase structure, function, and regulation across the different thioesterase families.
Collapse
Affiliation(s)
| | - Jeffrey D Nanson
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Edward I Patterson
- Centre for Neglected Tropical Diseases, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, New South Wales, Australia.
| |
Collapse
|
12
|
Heil CS, Wehrheim SS, Paithankar KS, Grininger M. Fatty Acid Biosynthesis: Chain‐Length Regulation and Control. Chembiochem 2019; 20:2298-2321. [DOI: 10.1002/cbic.201800809] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/20/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Christina S. Heil
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - S. Sophia Wehrheim
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - Karthik S. Paithankar
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| |
Collapse
|
13
|
Opgenorth P, Costello Z, Okada T, Goyal G, Chen Y, Gin J, Benites V, de Raad M, Northen TR, Deng K, Deutsch S, Baidoo EEK, Petzold CJ, Hillson NJ, Garcia Martin H, Beller HR. Lessons from Two Design-Build-Test-Learn Cycles of Dodecanol Production in Escherichia coli Aided by Machine Learning. ACS Synth Biol 2019; 8:1337-1351. [PMID: 31072100 DOI: 10.1021/acssynbio.9b00020] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Design-Build-Test-Learn (DBTL) cycle, facilitated by exponentially improving capabilities in synthetic biology, is an increasingly adopted metabolic engineering framework that represents a more systematic and efficient approach to strain development than historical efforts in biofuels and biobased products. Here, we report on implementation of two DBTL cycles to optimize 1-dodecanol production from glucose using 60 engineered Escherichia coli MG1655 strains. The first DBTL cycle employed a simple strategy to learn efficiently from a relatively small number of strains (36), wherein only the choice of ribosome-binding sites and an acyl-ACP/acyl-CoA reductase were modulated in a single pathway operon including genes encoding a thioesterase (UcFatB1), an acyl-ACP/acyl-CoA reductase (Maqu_2507, Maqu_2220, or Acr1), and an acyl-CoA synthetase (FadD). Measured variables included concentrations of dodecanol and all proteins in the engineered pathway. We used the data produced in the first DBTL cycle to train several machine-learning algorithms and to suggest protein profiles for the second DBTL cycle that would increase production. These strategies resulted in a 21% increase in dodecanol titer in Cycle 2 (up to 0.83 g/L, which is more than 6-fold greater than previously reported batch values for minimal medium). Beyond specific lessons learned about optimizing dodecanol titer in E. coli, this study had findings of broader relevance across synthetic biology applications, such as the importance of sequencing checks on plasmids in production strains as well as in cloning strains, and the critical need for more accurate protein expression predictive tools.
Collapse
Affiliation(s)
- Paul Opgenorth
- Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zak Costello
- Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE Agile BioFoundry, Emeryville, California 94608, United States
| | - Takuya Okada
- Research Institute for Bioscience Product & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki 210-8680, Japan
| | - Garima Goyal
- Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE Agile BioFoundry, Emeryville, California 94608, United States
| | - Yan Chen
- Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE Agile BioFoundry, Emeryville, California 94608, United States
| | - Jennifer Gin
- Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE Agile BioFoundry, Emeryville, California 94608, United States
| | - Veronica Benites
- Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE Agile BioFoundry, Emeryville, California 94608, United States
| | - Markus de Raad
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE Joint Genome Institute, Walnut Creek, California 94598, United States
| | - Trent R. Northen
- Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE Joint Genome Institute, Walnut Creek, California 94598, United States
| | - Kai Deng
- Sandia National Laboratories, Livermore, California 94550, United States
| | - Samuel Deutsch
- DOE Joint Genome Institute, Walnut Creek, California 94598, United States
| | - Edward E. K. Baidoo
- Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE Agile BioFoundry, Emeryville, California 94608, United States
| | - Christopher J. Petzold
- Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE Agile BioFoundry, Emeryville, California 94608, United States
| | - Nathan J. Hillson
- Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE Agile BioFoundry, Emeryville, California 94608, United States
- DOE Joint Genome Institute, Walnut Creek, California 94598, United States
| | - Hector Garcia Martin
- Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE Agile BioFoundry, Emeryville, California 94608, United States
- BCAM, Basque Center for Applied Mathematics, 48009 Bilbao, Spain
| | - Harry R. Beller
- Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Engineering of Fatty Acid Synthases (FASs) to Boost the Production of Medium-Chain Fatty Acids (MCFAs) in Mucor circinelloides. Int J Mol Sci 2019; 20:ijms20030786. [PMID: 30759801 PMCID: PMC6387429 DOI: 10.3390/ijms20030786] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/06/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023] Open
Abstract
Increasing energy demands and health-related concerns worldwide have motivated researchers to adopt diverse strategies to improve medium-chain fatty acid (MCFA) biosynthesis for use in the functional food and aviation industries. The abundance of naturally produced MCFAs from botanical sources (i.e., coconut fruit/seeds and palm tree) has been observed to be insufficient compared with the various microorganisms used to cope with industrial demands. Mucor circinelloides is one of many promising microorganisms; it exhibits diverse biotechnological importance ranging from the production of functional lipids to applications in the manufacture of bio-fuel. Thus, research was conducted to acquire the desired elevated amounts of MCFAs (i.e., C8–C12) from metabolically engineered strains of M. circinelloides M65. To achieve this goal, four different acyl-acyl carrier protein (ACP) thioesterase (TE)-encoding genes exhibiting a substrate preference for medium-chain acyl-ACP molecules were expressed in M. circinelloides M65, resulting in the generation of C8–C12 fatty acids. Among all the engineered strains, M65-TE-03 and M65-TE-04 demonstrated the highest production of non-native C8–C10 and C12 fatty acids, respectively, in comparison to the control. These recombinant strains biosynthesized MCFAs de novo within the range from 28 to 46% (i.e., 1.14 to 2.77 g/L) of total cell lipids. Moreover, the reduction in chain length eventually resulted in a 1.5–1.75-fold increase in total lipid productivity in the engineered strains. The MCFAs were also found to be integrated into all lipid classes. This work illustrates how the integration of heterologous enzymes in M. circinelloides can offer a novel opportunity to edit the fatty acid synthases (FAS) complex, resulting in increased production of microbial MFCAs.
Collapse
|
15
|
Identification of active site residues implies a two-step catalytic mechanism for acyl-ACP thioesterase. Biochem J 2018; 475:3861-3873. [DOI: 10.1042/bcj20180470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 02/02/2023]
Abstract
In plants and bacteria that use a Type II fatty acid synthase, isozymes of acyl-acyl carrier protein (ACP) thioesterase (TE) hydrolyze the thioester bond of acyl-ACPs, terminating the process of fatty acid biosynthesis. These TEs are therefore critical in determining the fatty acid profiles produced by these organisms. Past characterizations of a limited number of plant-sourced acyl-ACP TEs have suggested a thiol-based, papain-like catalytic mechanism, involving a triad of Cys, His, and Asn residues. In the present study, the sequence alignment of 1019 plant and bacterial acyl-ACP TEs revealed that the previously proposed Cys catalytic residue is not universally conserved and therefore may not be a catalytic residue. Systematic mutagenesis of this residue to either Ser or Ala in three plant acyl-ACP TEs, CvFatB1 and CvFatB2 from Cuphea viscosissima and CnFatB2 from Cocos nucifera, resulted in enzymatically active variants, demonstrating that this Cys residue (Cys348 in CvFatB2) is not catalytic. In contrast, the multiple sequence alignment, together with the structure modeling of CvFatB2, suggests that the highly conserved Asp309 and Glu347, in addition to previously proposed Asn311 and His313, may be involved in catalysis. The substantial loss of catalytic competence associated with site-directed mutants at these positions confirmed the involvement of these residues in catalysis. By comparing the structures of acyl-ACP TE and the Pseudomonas 4-hydroxybenzoyl-CoA TE, both of which fold in the same hotdog tertiary structure and catalyze the hydrolysis reaction of thioester bond, we have proposed a two-step catalytic mechanism for acyl-ACP TE that involves an enzyme-bound anhydride intermediate.
Collapse
|
16
|
Gan Y, Song Y, Chen Y, Liu H, Yang D, Xu Q, Zheng Z. Transcriptome analysis reveals a composite molecular map linked to unique seed oil profile of Neocinnamomum caudatum (Nees) Merr. BMC PLANT BIOLOGY 2018; 18:303. [PMID: 30477425 PMCID: PMC6258453 DOI: 10.1186/s12870-018-1525-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 11/14/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Neocinnamomum caudatum (Nees) Merr., a biodiesel tree species in the subtropical areas of South China, India and Burma, is distinctive from other species in Lauraceae family and its seed oil is rich in linoleic acid (18:2) and stearic acid (18:0). However, there is little genetic information about this species so far. In this study, a transcriptomic analysis on developing seeds of N. caudatum was conducted in an attempt to discern the molecular mechanisms involving the control of the fatty acid (FA) and triacylglycerol (TAG) biosynthesis. RESULTS Transcriptome analysis revealed 239,703 unigenes with an average length of 436 bp and 137 putative biomarkers that are related to FA formation and TAG biosynthesis. The expression patterns of genes encoding β-ketoacyl-acyl carrier protein synthase I (KASI), β- ketoacyl-acyl carrier protein synthase II (KASII), stearoyl-ACP desaturase (SAD), fatty acid desaturase 2 (FAD2), fatty acid desaturase 8 (FAD8) and acyl-ACP thioesterase A/B (FATA/B) were further validated by qRT-PCR. These genes displayed a very similar expression pattern in two distinct assays. Moreover, sequence analysis of different FATBs from diverse plant species revealed that NcFATB is structurally different from its counterpart in other species in producing medium-chain saturated FAs. Concertedly, heterologous expression of NcFATB in E. coli BL21 (DE3) strain showed that this corresponding expressed protein, NcFATB, prefers long-chain saturated fatty acyl-ACP over medium-chain fatty acyl-ACP as substrate. CONCLUSIONS Transcriptome analysis of developing N. caudatum seeds revealed a composite molecular map linked to the FA formation and oil biosynthesis in this biodiesel tree species. The substrate preference of NcFATB for long-chain saturated FAs is likely to contribute to its unique seed oil profile rich in stearic acid. Our findings demonstrate that in the tree species of Lauraceae family, the FATB enzymes producing long-chain FAs are structurally distinct from those producing medium-chain FAs, thereby suggesting that the FATB genes may serve as a biomarker for the classification of tree species of Lauraceae family.
Collapse
Affiliation(s)
- Yi Gan
- School of Agriculture and Food Sciences, Zhejiang A & F University, Zhejiang, 311300 Hangzhou China
| | - Yu Song
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303 Yunnan China
| | - Yadong Chen
- School of Agriculture and Food Sciences, Zhejiang A & F University, Zhejiang, 311300 Hangzhou China
| | - Hongbo Liu
- School of Agriculture and Food Sciences, Zhejiang A & F University, Zhejiang, 311300 Hangzhou China
| | - Dongdong Yang
- School of Agriculture and Food Sciences, Zhejiang A & F University, Zhejiang, 311300 Hangzhou China
| | - Qianyu Xu
- School of Agriculture and Food Sciences, Zhejiang A & F University, Zhejiang, 311300 Hangzhou China
| | - Zhifu Zheng
- School of Agriculture and Food Sciences, Zhejiang A & F University, Zhejiang, 311300 Hangzhou China
| |
Collapse
|
17
|
Bansal S, Kim HJ, Na G, Hamilton ME, Cahoon EB, Lu C, Durrett TP. Towards the synthetic design of camelina oil enriched in tailored acetyl-triacylglycerols with medium-chain fatty acids. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4395-4402. [PMID: 29982623 PMCID: PMC6093318 DOI: 10.1093/jxb/ery225] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/15/2018] [Indexed: 05/23/2023]
Abstract
The ability to manipulate expression of key biosynthetic enzymes has allowed the development of genetically modified plants that synthesise unusual lipids that are useful for biofuel and industrial applications. By taking advantage of the unique activities of enzymes from different species, tailored lipids with a targeted structure can be conceived. In this study we demonstrate the successful implementation of such an approach by metabolically engineering the oilseed crop Camelina sativa to produce 3-acetyl-1,2-diacyl-sn-glycerols (acetyl-TAGs) with medium-chain fatty acids (MCFAs). Different transgenic camelina lines that had been genetically modified to produce MCFAs through the expression of MCFA-specific thioesterases and acyltransferases were retransformed with the Euonymus alatus gene for diacylglycerol acetyltransferase (EaDAcT) that synthesises acetyl-TAGs. Concomitant RNAi suppression of acyl-CoA:diacylglycerol acyltransferase increased the levels of acetyl-TAG, with up to 77 mole percent in the best lines. However, the total oil content was reduced. Analysis of the composition of the acetyl-TAG molecular species using electrospray ionisation mass spectrometry demonstrated the successful synthesis of acetyl-TAG containing MCFAs. Field growth of high-yielding plants generated enough oil for quantification of viscosity. As part of an ongoing design-test-learn cycle, these results, which include not only the synthesis of 'designer' lipids but also their functional analysis, will lead to the future production of such molecules tailored for specific applications.
Collapse
Affiliation(s)
- Sunil Bansal
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Hae Jin Kim
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - GunNam Na
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Megan E Hamilton
- Department of Chemistry and Biology, Bethany College, Lindsborg, KS, USA
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Chaofu Lu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
- Correspondence:
| |
Collapse
|
18
|
Campe R, Hollenbach E, Kämmerer L, Hendriks J, Höffken HW, Kraus H, Lerchl J, Mietzner T, Tresch S, Witschel M, Hutzler J. A new herbicidal site of action: Cinmethylin binds to acyl-ACP thioesterase and inhibits plant fatty acid biosynthesis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 148:116-125. [PMID: 29891362 DOI: 10.1016/j.pestbp.2018.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 05/16/2023]
Abstract
The prevalent occurrence of herbicide resistant weeds increases the necessity for new site of action herbicides for effective control as well as to relax selection pressure on the known sites of action. As a consequence, interest increased in the unexploited molecule cinmethylin as a new solution for the control of weedy grasses in cereals. Therefore, the mechanism of action of cinmethylin was reevaluated. We applied the chemoproteomic approach cellular Target Profiling™ from Evotec to identify the cinmethylin target in Lemna paucicostata protein extracts. We found three potential targets belonging to the same protein family of fatty acid thioesterases (FAT) to bind to cinmethylin with high affinity. Binding of cinmethylin to FAT proteins from Lemna and Arabidopsis was confirmed by fluorescence-based thermal shift assay. The plastid localized enzyme FAT plays a crucial role in plant lipid biosynthesis, by mediating the release of fatty acids (FA) from its acyl carrier protein (ACP) which is necessary for FA export to the endoplasmic reticulum. GC-MS analysis of free FA composition in Lemna extracts revealed strong reduction of unsaturated C18 as well as saturated C14, and C16 FAs upon treatment with cinmethylin, indicating that FA release for subsequent lipid biosynthesis is the primary target of cinmethylin. Lipid biosynthesis is a prominent target of different herbicide classes. To assess whether FAT inhibition constitutes a new mechanism of action within this complex pathway, we compared physiological effects of cinmethylin to different ACCase and VLCFA synthesis inhibitors and identified characteristic differences in plant symptomology and free FA composition upon treatment with the three herbicide classes. Also, principal component analysis of total metabolic profiling of treated Lemna plants showed strong differences in overall metabolic changes after cinmethylin, ACCase or VLCFA inhibitor treatments. Our results identified and confirmed FAT as the cinmethylin target and validate FAT inhibition as a new site of action different from other lipid biosynthesis inhibitor classes.
Collapse
Affiliation(s)
- Ruth Campe
- BASF SE, Speyerer Straße 2, D-67117 Limburgerhof, Germany.
| | - Eva Hollenbach
- BASF SE, Speyerer Straße 2, D-67117 Limburgerhof, Germany
| | - Lara Kämmerer
- BASF SE, Speyerer Straße 2, D-67117 Limburgerhof, Germany
| | | | | | - Helmut Kraus
- BASF Corporation, 26 Davis Drive, Research Triangle Park, 27709-3528 NC, United States
| | - Jens Lerchl
- BASF SE, Speyerer Straße 2, D-67117 Limburgerhof, Germany
| | - Thomas Mietzner
- BASF SE, Carl Bosch Straße 38, D-67056 Ludwigshafen, Germany
| | - Stefan Tresch
- BASF SE, Carl Bosch Straße 38, D-67056 Ludwigshafen, Germany
| | | | | |
Collapse
|
19
|
Sarria S, Bartholow TG, Verga A, Burkart MD, Peralta-Yahya P. Matching Protein Interfaces for Improved Medium-Chain Fatty Acid Production. ACS Synth Biol 2018; 7:1179-1187. [PMID: 29722970 DOI: 10.1021/acssynbio.7b00334] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Medium-chain fatty acids (MCFAs) are key intermediates in the synthesis of medium-chain chemicals including α-olefins and dicarboxylic acids. In bacteria, microbial production of MCFAs is limited by the activity and product profile of fatty acyl-ACP thioesterases. Here, we engineer a heterologous bacterial medium-chain fatty acyl-ACP thioesterase for improved MCFA production in Escherichia coli. Electrostatically matching the interface between the heterologous medium-chain Acinetobacter baylyi fatty acyl-ACP thioesterase (AbTE) and the endogenous E. coli fatty acid ACP ( E. coli AcpP) by replacing small nonpolar amino acids on the AbTE surface for positively charged ones increased secreted MCFA titers more than 3-fold. Nuclear magnetic resonance titration of E. coli 15N-octanoyl-AcpP with a single AbTE point mutant and the best double mutant showed a progressive and significant increase in the number of interactions when compared to AbTE wildtype. The best AbTE mutant produced 131 mg/L of MCFAs, with MCFAs being 80% of all secreted fatty acid chain lengths after 72 h. To enable the future screening of larger numbers of AbTE variants to further improve MCFA titers, we show that a previously developed G-protein coupled receptor (GPCR)-based MCFA sensor differentially detects MCFAs secreted by E. coli expressing different AbTE variants. This work demonstrates that engineering the interface of heterologous enzymes to better couple with endogenous host proteins is a useful strategy to increase the titers of microbially produced chemicals. Further, this work shows that GPCR-based sensors are producer microbe agnostic and can detect chemicals directly in the producer microbe supernatant, setting the stage for the sensor-guided engineering of MCFA producing microbes.
Collapse
Affiliation(s)
- Stephen Sarria
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Thomas G. Bartholow
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Adam Verga
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Pamela Peralta-Yahya
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
20
|
Tuning of acyl-ACP thioesterase activity directed for tailored fatty acid synthesis. Appl Microbiol Biotechnol 2018; 102:3173-3182. [DOI: 10.1007/s00253-018-8770-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 12/16/2022]
|
21
|
Aznar-Moreno JA, Venegas-Calerón M, Martínez-Force E, Garcés R, Salas JJ. Acyl carrier proteins from sunflower (Helianthus annuus L.) seeds and their influence on FatA and FatB acyl-ACP thioesterase activities. PLANTA 2016; 244:479-90. [PMID: 27095109 DOI: 10.1007/s00425-016-2521-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/04/2016] [Indexed: 05/13/2023]
Abstract
The kinetics of acyl-ACP thioesterases from sunflower importantly changed when endogenous ACPs were used. Sunflower FatB was much more specific towards saturated acyl-ACPs when assayed with them. Acyl carrier proteins (ACPs) are small (~9 kDa), soluble, acidic proteins involved in fatty acid synthesis in plants and bacteria. ACPs bind to fatty acids through a thioester bond, generating the acyl-ACP lipoproteins that are substrates for fatty acid synthase (FAS) complexes, and that are required for fatty acid chain elongation, acting as important intermediates in de novo fatty acid synthesis in plants. Plants, usually express several ACP isoforms with distinct functionalities. We report here the cloning of three ACPs from developing sunflower seeds: HaACP1, HaACP2, and HaACP3. These proteins were plastidial ACPs expressed strongly in seeds, and as such they are probably involved in the synthesis of sunflower oil. The recombinant sunflower ACPs were expressed in bacteria but they were lethal to the prokaryote host. Thus, they were finally produced using the GST gene fusion system, which allowed the apo-enzyme to be produced and later activated to the holo form. Radiolabelled acyl-ACPs from the newly cloned holo-ACP forms were also synthesized and used to characterize the activity of recombinant sunflower FatA and FatB thioesterases, important enzymes in plant fatty acids synthesis. The activity of these enzymes changed significantly when the endogenous ACPs were used. Thus, FatA importantly increased its activity levels, whereas FatB displayed a different specificity profile, with much high activity levels towards saturated acyl-CoA derivatives. All these data pointed to an important influence of the ACP moieties on the activity of enzymes involved in lipid synthesis.
Collapse
Affiliation(s)
| | - Mónica Venegas-Calerón
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Enrique Martínez-Force
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Rafael Garcés
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Joaquín J Salas
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain.
| |
Collapse
|
22
|
Chen G, Woodfield HK, Pan X, Harwood JL, Weselake RJ. Acyl-Trafficking During Plant Oil Accumulation. Lipids 2015; 50:1057-68. [DOI: 10.1007/s11745-015-4069-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/28/2015] [Indexed: 11/25/2022]
|
23
|
Rutter CD, Zhang S, Rao CV. Engineering Yarrowia lipolytica for production of medium-chain fatty acids. Appl Microbiol Biotechnol 2015; 99:7359-68. [PMID: 26129951 DOI: 10.1007/s00253-015-6764-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 12/30/2022]
Abstract
Lipids are naturally derived products that offer an attractive, renewable alternative to petroleum-based hydrocarbons. While naturally produced long-chain fatty acids can replace some petroleum analogs, medium-chain fatty acid would more closely match the desired physical and chemical properties of currently employed petroleum products. In this study, we engineered Yarrowia lipolytica, an oleaginous yeast that naturally produces lipids at high titers, to produce medium-chain fatty acids. Five different acyl-acyl carrier protein (ACP) thioesterases with specificity for medium-chain acyl-ACP molecules were expressed in Y. lipolytica, resulting in formation of either decanoic or octanoic acid. These novel fatty acid products were found to comprise up to 40 % of the total cell lipids. Furthermore, the reduction in chain length resulted in a twofold increase in specific lipid productivity in these engineered strains. The medium-chain fatty acids were found to be incorporated into all lipid classes.
Collapse
Affiliation(s)
- Charles D Rutter
- Department of Chemical and Biomolecular Engineering, University of Illinois-Urbana Champaign, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | | | | |
Collapse
|
24
|
Kim HJ, Silva JE, Vu HS, Mockaitis K, Nam JW, Cahoon EB. Toward production of jet fuel functionality in oilseeds: identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4251-65. [PMID: 25969557 PMCID: PMC4493788 DOI: 10.1093/jxb/erv225] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0-14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs (CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seeds and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8-C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids.
Collapse
Affiliation(s)
- Hae Jin Kim
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jillian E Silva
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Hieu Sy Vu
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Keithanne Mockaitis
- Department of Biology, and Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Jeong-Won Nam
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
25
|
Hegde K, Chandra N, Sarma SJ, Brar SK, Veeranki VD. Genetic Engineering Strategies for Enhanced Biodiesel Production. Mol Biotechnol 2015; 57:606-24. [DOI: 10.1007/s12033-015-9869-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Parveez GKA, Rasid OA, Masani MYA, Sambanthamurthi R. Biotechnology of oil palm: strategies towards manipulation of lipid content and composition. PLANT CELL REPORTS 2015; 34:533-43. [PMID: 25480400 DOI: 10.1007/s00299-014-1722-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/22/2014] [Accepted: 11/25/2014] [Indexed: 05/13/2023]
Abstract
Oil palm is a major economic crop for Malaysia. The major challenges faced by the industry are labor shortage, availability of arable land and unstable commodity price. This has caused the industry to diversify its applications into higher value products besides increasing its yield. While conventional breeding has its limitations, biotechnology was identified as one of the tools for overcoming the above challenges. Research on biotechnology of oil palm began more than two decades ago leveraging a multidisciplinary approach involving biochemical studies, gene and promoter isolation, transformation vector construction and finally genetic transformation to produce the targeted products. The main target of oil palm biotechnology research is to increase oleic acid in the mesocarp. Other targets are stearic acid, palmitoleic acid, ricinoleic acid, lycopene (carotenoid) and biodegradable plastics. Significant achievements were reported for the biochemical studies, isolation of useful oil palm genes and characterization of important promoters. A large number of transformation constructs for various targeted products were successfully produced using the isolated oil palm genes and promoters. Finally transformation of these constructs into oil palm embryogenic calli was carried out while the regeneration of transgenic oil palm harboring the useful genes is in progress.
Collapse
Affiliation(s)
- Ghulam Kadir Ahmad Parveez
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, P.O. Box 10620, 50720, Kuala Lumpur, Malaysia,
| | | | | | | |
Collapse
|
27
|
Allen DK, Bates PD, Tjellström H. Tracking the metabolic pulse of plant lipid production with isotopic labeling and flux analyses: Past, present and future. Prog Lipid Res 2015; 58:97-120. [PMID: 25773881 DOI: 10.1016/j.plipres.2015.02.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/30/2015] [Accepted: 02/11/2015] [Indexed: 11/25/2022]
Abstract
Metabolism is comprised of networks of chemical transformations, organized into integrated biochemical pathways that are the basis of cellular operation, and function to sustain life. Metabolism, and thus life, is not static. The rate of metabolites transitioning through biochemical pathways (i.e., flux) determines cellular phenotypes, and is constantly changing in response to genetic or environmental perturbations. Each change evokes a response in metabolic pathway flow, and the quantification of fluxes under varied conditions helps to elucidate major and minor routes, and regulatory aspects of metabolism. To measure fluxes requires experimental methods that assess the movements and transformations of metabolites without creating artifacts. Isotopic labeling fills this role and is a long-standing experimental approach to identify pathways and quantify their metabolic relevance in different tissues or under different conditions. The application of labeling techniques to plant science is however far from reaching it potential. In light of advances in genetics and molecular biology that provide a means to alter metabolism, and given recent improvements in instrumentation, computational tools and available isotopes, the use of isotopic labeling to probe metabolism is becoming more and more powerful. We review the principal analytical methods for isotopic labeling with a focus on seminal studies of pathways and fluxes in lipid metabolism and carbon partitioning through central metabolism. Central carbon metabolic steps are directly linked to lipid production by serving to generate the precursors for fatty acid biosynthesis and lipid assembly. Additionally some of the ideas for labeling techniques that may be most applicable for lipid metabolism in the future were originally developed to investigate other aspects of central metabolism. We conclude by describing recent advances that will play an important future role in quantifying flux and metabolic operation in plant tissues.
Collapse
Affiliation(s)
- Doug K Allen
- United States Department of Agriculture, Agricultural Research Service, 975 North Warson Road, St. Louis, MO 63132, United States; Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, United States.
| | - Philip D Bates
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, United States
| | - Henrik Tjellström
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, United States; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
28
|
Finzel K, Lee DJ, Burkart MD. Using modern tools to probe the structure-function relationship of fatty acid synthases. Chembiochem 2015; 16:528-547. [PMID: 25676190 PMCID: PMC4545599 DOI: 10.1002/cbic.201402578] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 12/25/2022]
Abstract
Fatty acid biosynthesis is essential to life and represents one of the most conserved pathways in nature, preserving the same handful of chemical reactions across all species. Recent interest in the molecular details of the de novo fatty acid synthase (FAS) has been heightened by demand for renewable fuels and the emergence of multidrug-resistant bacterial strains. Central to FAS is the acyl carrier protein (ACP), a protein chaperone that shuttles the growing acyl chain between catalytic enzymes within the FAS. Human efforts to alter fatty acid biosynthesis for oil production, chemical feedstock, or antimicrobial purposes has been met with limited success, due in part to a lack of detailed molecular information behind the ACP-partner protein interactions inherent to the pathway. This review will focus on recently developed tools for the modification of ACP and analysis of protein-protein interactions, such as mechanism-based crosslinking, and the studies exploiting them. Discussion specific to each enzymatic domain will focus first on mechanism and known inhibitors, followed by available structures and known interactions with ACP. Although significant unknowns remain, new understandings of the intricacies of FAS point to future advances in manipulating this complex molecular factory.
Collapse
Affiliation(s)
- Kara Finzel
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358 (USA)
| | - D. John Lee
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358 (USA)
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358 (USA)
| |
Collapse
|
29
|
Beld J, Lee DJ, Burkart MD. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering. MOLECULAR BIOSYSTEMS 2015; 11:38-59. [PMID: 25360565 PMCID: PMC4276719 DOI: 10.1039/c4mb00443d] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | |
Collapse
|
30
|
Wu H, San KY. Efficient odd straight medium chain free fatty acid production by metabolically engineered Escherichia coli. Biotechnol Bioeng 2014; 111:2209-19. [PMID: 24889416 DOI: 10.1002/bit.25296] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/24/2014] [Accepted: 05/25/2014] [Indexed: 11/11/2022]
Abstract
Free fatty acids (FFAs) can be used as precursors for the production of biofuels or chemicals. Different composition of FFAs will be useful for further modification of the biofuel/biochemical quality. Microbial biosynthesis of even chain FFAs can be achieved by introducing an acyl-acyl carrier protein thioesterase gene into E. coli. In this study, odd straight medium chain FFAs production was investigated by using metabolic engineered E. coli carrying acyl-ACP thioesterase (TE, Ricinus communis), propionyl-CoA synthase (Salmonella enterica), and β-ketoacyl-acyl carrier protein synthase III (four different sources) with supplement of extracellular propionate. By using these metabolically engineered E. coli, significant quantity of C13 and C15 odd straight-chain FFAs could be produced from glucose and propionate. The highest concentration of total odd straight chain FFAs attained was 1205 mg/L by the strain HWK201 (pXZ18, pBHE2), and 85% of the odd straight chain FFAs was C15. However, the highest percentage of odd straight chain FFAs was achieved by the strain HWK201 (pXZ18, pBHE3) of 83.2% at 48 h. This strategy was also applied successfully in strains carrying different TE, such as the medium length acyl-ACP thioesterase gene from Umbellularia californica. C11 and C13 became the major odd straight-chain FFAs.
Collapse
Affiliation(s)
- Hui Wu
- Department of Bioengineering, Rice University, Houston, Texas
| | | |
Collapse
|
31
|
Cloning, characterization, and expression analysis of acyl–acyl carrier protein (ACP)-thioesterase B from seeds of Chinese Spicehush (Lindera communis). Gene 2014; 542:16-22. [DOI: 10.1016/j.gene.2014.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/09/2014] [Accepted: 03/12/2014] [Indexed: 01/19/2023]
|
32
|
Microbial production of short-chain alkanes. Nature 2013; 502:571-4. [DOI: 10.1038/nature12536] [Citation(s) in RCA: 356] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/08/2013] [Indexed: 12/19/2022]
|
33
|
Disruption of plastid acyl:acyl carrier protein synthetases increases medium chain fatty acid accumulation in seeds of transgenic Arabidopsis. FEBS Lett 2013; 587:936-42. [DOI: 10.1016/j.febslet.2013.02.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/17/2013] [Accepted: 02/08/2013] [Indexed: 11/19/2022]
|
34
|
Yuan Y, Chen Y, Yan S, Liang Y, Zheng Y, Dongdong L. Molecular cloning and characterisation of an acyl carrier protein thioesterase gene (CocoFatB1) expressed in the endosperm of coconut (Cocos nucifera) and its heterologous expression in Nicotiana tabacum to engineer the accumulation of different fatty acids. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 41:80-86. [PMID: 32480968 DOI: 10.1071/fp13050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/31/2013] [Indexed: 06/11/2023]
Abstract
Coconut (Cocos nucifera L.) contains large amounts of medium chain fatty acids, which mostly recognise acyl-acyl carrier protein (ACP) thioesterases that hydrolyse acyl-ACP into free fatty acids to terminate acyl chain elongation during fatty acid biosynthesis. A full-length cDNA of an acyl-ACP thioesterase, designated CocoFatB1, was isolated from cDNA libraries prepared from coconut endosperm during fruit development. The gene contained an open reading frame of 1254 bp, encoding a 417-amino acid protein. The amino acid sequence of the CocoFatB1 protein showed 100% and 95% sequence similarity to CnFatB1 and oil palm (Elaeis guineensis Jacq.) acyl-ACP thioesterases, respectively. Real-time fluorescent quantitative PCR analysis indicated that the CocoFatB1 transcript was most abundant in the endosperm from 8-month-old coconuts; the leaves and endosperm from 15-month-old coconuts had ~80% and ~10% of this level. The CocoFatB1 coding region was overexpressed in tobacco (Nicotiana tabacum L.) under the control of the seed-specific napin promoter following Agrobacterium tumefaciens-mediated transformation. CocoFatB1 transcript expression varied 20-fold between different transgenic plants, with 21 plants exhibiting detectable levels of CocoFatB1 expression. Analysis of the fatty acid composition of transgenic tobacco seeds showed that the levels of myristic acid (14 : 0), palmitic acid (16 : 0) and stearic acid (18 : 0) were increased by 25%, 34% and 17%, respectively, compared with untransformed plants. These results indicated that CocoFatB1 acts specifically on 14 : 0-ACP, 16 : 0-ACP and 18 : 0-ACP, and can increase medium chain saturated fatty acids. The gene may valuable for engineering fatty acid metabolism in crop improvement programmes.
Collapse
Affiliation(s)
- Yijun Yuan
- Department of Biotechnology, Hainan University, Haikou, Hainan 570228, China
| | - Yinhua Chen
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Hainan University, Haikou, Hainan 570228, China
| | - Shan Yan
- Department of Biotechnology, Hainan University, Haikou, Hainan 570228, China
| | - Yuanxue Liang
- Department of Biotechnology, Hainan University, Haikou, Hainan 570228, China
| | - Yusheng Zheng
- Department of Biotechnology, Hainan University, Haikou, Hainan 570228, China
| | - Li Dongdong
- Department of Biotechnology, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
35
|
Cloning of acyl-ACP thioesterase FatA from Arachis hypogaea L. and its expression in Escherichia coli. J Biomed Biotechnol 2012; 2012:652579. [PMID: 23093853 PMCID: PMC3470901 DOI: 10.1155/2012/652579] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/23/2012] [Accepted: 05/27/2012] [Indexed: 11/18/2022] Open
Abstract
In this study, a full-length cDNA of the acyl-ACP thioesterase, AhFatA, was cloned from developing seeds of Arachis hypogaea L. by 3'-RACE. Sequence analysis showed that the open reading frame encodes a peptide of 372 amino acids and has 50-70% identity with FatA from other plants. Real-time quantitative PCR analysis revealed that AhFatA was expressed in all tissues of A. hypogaea L., but most strongly in the immature seeds harvested at 60 days after pegging. Heterologous expression of AhFatA in Escherichia coli affected bacterial growth and changed the fatty acid profiles of the membrane lipid, resulting in directed accumulation towards palmitoleic acid and oleic acid. These results indicate that AhFatA is at least partially responsible for determining the high palmitoleic acid and oleic acid composition of E. coli.
Collapse
|
36
|
Han X, Yin L, Xue H. Co-expression analysis identifies CRC and AP1 the regulator of Arabidopsis fatty acid biosynthesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:486-99. [PMID: 22676405 DOI: 10.1111/j.1744-7909.2012.01132.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Fatty acids (FAs) play crucial rules in signal transduction and plant development, however, the regulation of FA metabolism is still poorly understood. To study the relevant regulatory network, fifty-eight FA biosynthesis genes including de novo synthases, desaturases and elongases were selected as "guide genes" to construct the co-expression network. Calculation of the correlation between all Arabidopsis thaliana (L.) genes with each guide gene by Arabidopsis co-expression dating mining tools (ACT) identifies 797 candidate FA-correlated genes. Gene ontology (GO) analysis of these co-expressed genes showed they are tightly correlated to photosynthesis and carbohydrate metabolism, and function in many processes. Interestingly, 63 transcription factors (TFs) were identified as candidate FA biosynthesis regulators and 8 TF families are enriched. Two TF genes, CRC and AP1, both correlating with 8 FA guide genes, were further characterized. Analyses of the ap1 and crc mutant showed the altered total FA composition of mature seeds. The contents of palmitoleic acid, stearic acid, arachidic acid and eicosadienoic acid are decreased, whereas that of oleic acid is increased in ap1 and crc seeds, which is consistent with the qRT-PCR analysis revealing the suppressed expression of the corresponding guide genes. In addition, yeast one-hybrid analysis and electrophoretic mobility shift assay (EMSA) revealed that CRC can bind to the promoter regions of KCS7 and KCS15, indicating that CRC may directly regulate FA biosynthesis.
Collapse
Affiliation(s)
- Xinxin Han
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
37
|
In silico identification and comparative genomics of candidate genes involved in biosynthesis and accumulation of seed oil in plants. Comp Funct Genomics 2012; 2012:914843. [PMID: 22312320 PMCID: PMC3270531 DOI: 10.1155/2012/914843] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/27/2011] [Accepted: 10/14/2011] [Indexed: 11/21/2022] Open
Abstract
Genes involved in fatty acids biosynthesis, modification and oil body formation are expected to be conserved in structure and function in different plant species. However, significant differences in the composition of fatty acids and total oil contents in seeds have been observed in different plant species. Comparative genomics was performed on 261 genes involved in fatty acids biosynthesis, TAG synthesis, and oil bodies formation in Arabidopsis, Brassica rapa, castor bean and soybean. In silico expression analysis revealed that stearoyl desaturase, FatB, FAD2, oleosin and DGAT are highly abundant in seeds, thereby considered as ideal candidates for mining of favorable alleles in natural population. Gene structure analysis for major genes, ACCase, FatA, FatB, FAD2, FAD3 and DGAT, which are known to play crucial role in oil synthesis revealed that there are uncommon variations (SNPs and INDELs) which lead to varying content and composition of fatty acids in seed oil. The predicted variations can provide good targets for seed oil QTL identification, understanding the molecular mechanism of seed oil accumulation, and genetic modification to enhance seed oil yield in plants.
Collapse
|
38
|
Cagliari A, Margis R, Dos Santos Maraschin F, Turchetto-Zolet AC, Loss G, Margis-Pinheiro M. Biosynthesis of Triacylglycerols (TAGs) in plants and algae. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2011. [DOI: 10.4081/pb.2011.e10] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Triacylglycerols (TAGs), which consist of three fatty acids bound to a glycerol backbone, are major storage lipids that accumulate in developing seeds, flower petals, pollen grains, and fruits of innumerous plant species. These storage lipids are of great nutritional and nutraceutical value and, thus, are a common source of edible oils for human consumption and industrial purposes. Two metabolic pathways for the production of TAGs have been clarified: an acyl¬ CoA-dependent pathway and an acyl-CoA-independent pathway. Lipid metabolism, specially the pathways to fatty acids and TAG biosynthesis, is relatively well understood in plants, but poorly known in algae. It is generally accepted that the basic pathways of fatty acid and TAG biosynthesis in algae are analogous to those of higher plants. However, unlike higher plants where individual classes of lipids may be synthesized and localized in a specific cell, tissue or organ, the complete pathway, from carbon dioxide fixation to TAG synthesis and sequestration, takes place within a single algal cell. Another distinguishing feature of some algae is the large amounts of very long-chain polyunsaturated fatty acids (VLC- PUFAs) as major fatty acid components. Nowadays, the focus of attention in biotechnology is the isolation of novel fatty acid metabolizing genes, especially elongases and desaturases that are responsible for PUFAs synthesis, from different species of algae, and its transfer to plants. The aim is to boost the seed oil content and to generate desirable fatty acids in oilseed crops through genetic engineering approaches. This paper presents the current knowledge of the neutral storage lipids in plants and algae from fatty acid biosynthesis to TAG accumulation.
Collapse
|
39
|
Yu WL, Ansari W, Schoepp NG, Hannon MJ, Mayfield SP, Burkart MD. Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae. Microb Cell Fact 2011; 10:91. [PMID: 22047615 PMCID: PMC3234195 DOI: 10.1186/1475-2859-10-91] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 11/02/2011] [Indexed: 01/03/2023] Open
Abstract
Microalgae have presented themselves as a strong candidate to replace diminishing oil reserves as a source of lipids for biofuels. Here we describe successful modifications of terrestrial plant lipid content which increase overall lipid production or shift the balance of lipid production towards lipid varieties more useful for biofuel production. Our discussion ranges from the biosynthetic pathways and rate limiting steps of triacylglycerol formation to enzymes required for the formation of triacylglycerol containing exotic lipids. Secondarily, we discuss techniques for genetic engineering and modification of various microalgae which can be combined with insights gained from research in higher plants to aid in the creation of production strains of microalgae.
Collapse
Affiliation(s)
- Wei-Luen Yu
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
40
|
Jing F, Cantu DC, Tvaruzkova J, Chipman JP, Nikolau BJ, Yandeau-Nelson MD, Reilly PJ. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity. BMC BIOCHEMISTRY 2011; 12:44. [PMID: 21831316 PMCID: PMC3176148 DOI: 10.1186/1471-2091-12-44] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 08/10/2011] [Indexed: 11/24/2022]
Abstract
Background Acyl-acyl carrier protein thioesterases (acyl-ACP TEs) catalyze the hydrolysis of the thioester bond that links the acyl chain to the sulfhydryl group of the phosphopantetheine prosthetic group of ACP. This reaction terminates acyl chain elongation of fatty acid biosynthesis, and in plant seeds it is the biochemical determinant of the fatty acid compositions of storage lipids. Results To explore acyl-ACP TE diversity and to identify novel acyl ACP-TEs, 31 acyl-ACP TEs from wide-ranging phylogenetic sources were characterized to ascertain their in vivo activities and substrate specificities. These acyl-ACP TEs were chosen by two different approaches: 1) 24 TEs were selected from public databases on the basis of phylogenetic analysis and fatty acid profile knowledge of their source organisms; and 2) seven TEs were molecularly cloned from oil palm (Elaeis guineensis), coconut (Cocos nucifera) and Cuphea viscosissima, organisms that produce medium-chain and short-chain fatty acids in their seeds. The in vivo substrate specificities of the acyl-ACP TEs were determined in E. coli. Based on their specificities, these enzymes were clustered into three classes: 1) Class I acyl-ACP TEs act primarily on 14- and 16-carbon acyl-ACP substrates; 2) Class II acyl-ACP TEs have broad substrate specificities, with major activities toward 8- and 14-carbon acyl-ACP substrates; and 3) Class III acyl-ACP TEs act predominantly on 8-carbon acyl-ACPs. Several novel acyl-ACP TEs act on short-chain and unsaturated acyl-ACP or 3-ketoacyl-ACP substrates, indicating the diversity of enzymatic specificity in this enzyme family. Conclusion These acyl-ACP TEs can potentially be used to diversify the fatty acid biosynthesis pathway to produce novel fatty acids.
Collapse
Affiliation(s)
- Fuyuan Jing
- Department of Biochemistry, Biophysics, and Molecular Biology, Biorenewables Research Laboratory Building, Iowa State University, Ames, Iowa 50011-3270, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
To avoid costly biomass recovery in photosynthetic microbial biofuel production, we genetically modified cyanobacteria to produce and secrete fatty acids. Starting with introducing an acyl-acyl carrier protein thioesterase gene, we made six successive generations of genetic modifications of cyanobacterium Synechocystis sp. PCC6803 wild type (SD100). The fatty acid secretion yield was increased to 197 ± 14 mg/L of culture in one improved strain at a cell density of 1.0 × 10(9) cells/mL by adding codon-optimized thioesterase genes and weakening polar cell wall layers. Although these strains exhibited damaged cell membranes at low cell densities, they grew more rapidly at high cell densities in late exponential and stationary phase and exhibited less cell damage than cells in wild-type cultures. Our results suggest that fatty acid secreting cyanobacteria are a promising technology for renewable biofuel production.
Collapse
|
42
|
Abstract
The mechanisms that regulate plant lipid metabolism determine the dietary and industrial value of storage oils found in economically important species and may control the ability of many plants to survive exposure to temperature extremes. Many of the problems researchers have in defining the pathways, enzymes, and genes involved in plant lipid metabolism appear to be amenable to analysis by genetic approaches. Mutants with alterations in membrane lipid composition have also been used to study the structural and adaptive roles of lipids. The application of genetic engineering methods affords opportunities for researchers to apply knowledge gained about plant lipid metabolism toward enhanced use of plant oils as abundant and renewable sources of reduced carbon.
Collapse
|
43
|
NARESH KUMAR S, BALAKRISHNA A. SEASONAL VARIATIONS IN FATTY ACID COMPOSITION OF OIL IN DEVELOPING COCONUT. J FOOD QUALITY 2009. [DOI: 10.1111/j.1745-4557.2009.00243.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
44
|
Nikolau BJ, Perera MADN, Brachova L, Shanks B. Platform biochemicals for a biorenewable chemical industry. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:536-45. [PMID: 18476861 DOI: 10.1111/j.1365-313x.2008.03484.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The chemical industry is currently reliant on a historically inexpensive, petroleum-based carbon feedstock that generates a small collection of platform chemicals from which highly efficient chemical conversions lead to the manufacture of a large variety of chemical products. Recently, a number of factors have coalesced to provide the impetus to explore alternative renewable sources of carbon. Here we discuss the potential impact on the chemical industry of shifting from non-renewable carbon sources to renewable carbon sources. This change to the manufacture of chemicals from biological carbon sources will provide an opportunity for the biological research community to contribute fundamental knowledge concerning carbon metabolism and its regulation. We discuss whether fundamental biological research into metabolic processes at a holistic level, made possible by completed genome sequences and integrated with detailed structural understanding of biocatalysts, can change the chemical industry from being dependent on fossil-carbon feedstocks to using biorenewable feedstocks. We illustrate this potential by discussing the prospect of building a platform technology based upon a concept of combinatorial biosynthesis, which would explore the enzymological flexibilities of polyketide biosynthesis.
Collapse
Affiliation(s)
- Basil J Nikolau
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| | | | | | | |
Collapse
|
45
|
Durrett TP, Benning C, Ohlrogge J. Plant triacylglycerols as feedstocks for the production of biofuels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:593-607. [PMID: 18476866 DOI: 10.1111/j.1365-313x.2008.03442.x] [Citation(s) in RCA: 313] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Triacylglycerols produced by plants are one of the most energy-rich and abundant forms of reduced carbon available from nature. Given their chemical similarities, plant oils represent a logical substitute for conventional diesel, a non-renewable energy source. However, as plant oils are too viscous for use in modern diesel engines, they are converted to fatty acid esters. The resulting fuel is commonly referred to as biodiesel, and offers many advantages over conventional diesel. Chief among these is that biodiesel is derived from renewable sources. In addition, the production and subsequent consumption of biodiesel results in less greenhouse gas emission compared to conventional diesel. However, the widespread adoption of biodiesel faces a number of challenges. The biggest of these is a limited supply of biodiesel feedstocks. Thus, plant oil production needs to be greatly increased for biodiesel to replace a major proportion of the current and future fuel needs of the world. An increased understanding of how plants synthesize fatty acids and triacylglycerols will ultimately allow the development of novel energy crops. For example, knowledge of the regulation of oil synthesis has suggested ways to produce triacylglycerols in abundant non-seed tissues. Additionally, biodiesel has poor cold-temperature performance and low oxidative stability. Improving the fuel characteristics of biodiesel can be achieved by altering the fatty acid composition. In this regard, the generation of transgenic soybean lines with high oleic acid content represents one way in which plant biotechnology has already contributed to the improvement of biodiesel.
Collapse
Affiliation(s)
- Timothy P Durrett
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
46
|
Ghosh SK, Bhattacharjee A, Jha JK, Mondal AK, Maiti MK, Basu A, Ghosh D, Ghosh S, Sen SK. Characterization and cloning of a stearoyl/oleoyl specific fatty acyl-acyl carrier protein thioesterase from the seeds of Madhuca longifolia (latifolia). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:887-897. [PMID: 17977002 DOI: 10.1016/j.plaphy.2007.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Indexed: 05/25/2023]
Abstract
Deposition of oleate, stearate and palmitate at the later stages of seed development in Mahua (Madhuca longifolia (latifolia)), a tropical non-conventional oil seed plant, has been found to be the characteristic feature of the regulatory mechanism that produces the saturated fatty acid rich Mahua seed fat (commonly known as Mowrah fat). Although, the content of palmitate has been observed to be higher than that of stearate at the initial stages of seed development, it goes down when the stearate and oleate contents consistently rise till maturity. The present study was undertaken in order to identify the kind of acyl-ACP thioesterase(s) that drives the characteristic composition of signature fatty acids (oleate 37%, palmitate 25%, stearate 23%, linoleate 12.5%) in its seed oil at maturity. The relative Fat activities in the crude protein extracts of the matured seeds towards three thioester substrates (oleoyl-, stearoyl- and palmitoyl-ACP) have been found to be present in the following respective ratio 100:31:8. Upon further purification of the crude extract, the search revealed the presence of two partially purified thioesterases: a long-chain oleoyl preferring house-keeping LC-Fat and a novel stearoyl-oleoyl preferring SO-Fat. The characteristic accumulation of oleate and linoleate in the M. latifolia seed fat is believed to be primarily due to the thioesterase activity of the LC-Fat or MlFatA. On the other hand, the SO-Fat showed almost equal substrate specificity towards stearoyl- and oleoyl-ACP, when its activity towards palmitoyl-ACP compared to stearoyl-ACP was only about 12%. An RT-PCR based technique for cloning of a DNA fragment from the mRNA pool of the developing seed followed by nucleotide sequencing resulted in the identification of a FatB type of thioesterase gene (MlFatB). This gene was found to exist as a single copy in the mother plant genome. Ectopic expression of this MlFatB gene product in E. coli strain fadD88 further proved that it induced a higher level of accumulation of both stearic and oleic acids when compared to the negative control line that did not contain this MlFatB gene. It also indicated that SO-Fat indeed is the product of the MlFatB gene present in the maturing seeds of M. latifolia in nature. Additionally, a predicted 3D-structure for MlFatB protein has been developed through use of bioinformatics tools.
Collapse
Affiliation(s)
- Santosh K Ghosh
- IIT-BREF BIOTEK, Indian Institute of Technology, Kharagpur, India
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mayer KM, Shanklin J. A Structural Model of the Plant Acyl-Acyl Carrier Protein Thioesterase FatB Comprises Two Helix/4-Stranded Sheet Domains, the N-terminal Domain Containing Residues That Affect Specificity and the C-terminal Domain Containing Catalytic Residues. J Biol Chem 2005; 280:3621-7. [PMID: 15531590 DOI: 10.1074/jbc.m411351200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant acyl-acyl carrier protein thioesterases (TEs) terminate the acyl-acyl carrier protein track of fatty acid biosynthesis and play an essential role in determining the amount and composition of fatty acids entering the storage lipid pool. A combination of bioinformatics tools was used to predict a three-dimensional model for Arabidopsis FatB (AtFatB), which comprises a fold similar to that of Escherichia coli TEII, an enzyme that is functionally similar to plant TEs but lacks significant sequence similarity and displays different inhibitor sensitivity. The catalytic residues in AtFatB, Cys-264 and His-229, localize to the same region of the model as catalytic residues found in other enzymes with helix/multi-stranded sheet motifs (hot dog folds). Based on the model, we identified Asn-227 as a possible third member of the proposed papain-like catalytic triad. The conversion of Asn-227 to Ala resulted in a loss of detectable activity (>200-fold reduction), similar to the result seen for the equivalent mutation in papain. Mapping of plant TE specificity-affecting mutations onto the structural model showed that these mutations all cluster around the catalytic triad. Also, superposition of the crystallographically determined structures of the complexes of 4-hydroxybenzoyl-CoA TE with substrate and beta-hydroxydecanoyl thiol ester dehydrase with inhibitor onto the AtFatB model showed that the substrate and inhibitor localize to the same region as the AtFatB catalytic triad in their respective structures. Together these data corroborate the structural model and show that the hot dog fold is common to enzymes from both prokaryotes and eukaryotes and that this fold supports at least three different catalytic mechanisms.
Collapse
Affiliation(s)
- Kimberly M Mayer
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | |
Collapse
|
48
|
Schweizer E, Hofmann J. Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol Mol Biol Rev 2004; 68:501-17, table of contents. [PMID: 15353567 PMCID: PMC515254 DOI: 10.1128/mmbr.68.3.501-517.2004] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The present review focuses on microbial type I fatty acid synthases (FASs), demonstrating their structural and functional diversity. Depending on their origin and biochemical function, multifunctional type I FAS proteins form dimers or hexamers with characteristic organization of their catalytic domains. A single polypeptide may contain one or more sets of the eight FAS component functions. Alternatively, these functions may split up into two different and mutually complementing subunits. Targeted inactivation of the individual yeast FAS acylation sites allowed us to define their roles during the overall catalytic process. In particular, their pronounced negative cooperativity is presumed to coordinate the FAS initiation and chain elongation reactions. Expression of the unlinked genes, FAS1 and FAS2, is in part constitutive and in part subject to repression by the phospholipid precursors inositol and choline. The interplay of the involved regulatory proteins, Rap1, Reb1, Abf1, Ino2/Ino4, Opi1, Sin3 and TFIIB, has been elucidated in considerable detail. Balanced levels of subunits alpha and beta are ensured by an autoregulatory effect of FAS1 on FAS2 expression and by posttranslational degradation of excess FAS subunits. The functional specificity of type I FAS multienzymes usually requires the presence of multiple FAS systems within the same cell. De novo synthesis of long-chain fatty acids, mitochondrial fatty acid synthesis, acylation of certain secondary metabolites and coenzymes, fatty acid elongation, and the vast diversity of mycobacterial lipids each result from specific FAS activities. The microcompartmentalization of FAS activities in type I multienzymes may thus allow for both the controlled and concerted action of multiple FAS systems within the same cell.
Collapse
Affiliation(s)
- Eckhart Schweizer
- Lehrstuhl für Biochemie der Universität Erlangen-Nürnberg, Staudtstrasse 5, Erlangen 91058, Germany
| | | |
Collapse
|
49
|
Bonaventure G, Salas JJ, Pollard MR, Ohlrogge JB. Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth. THE PLANT CELL 2003; 15:1020-33. [PMID: 12671095 PMCID: PMC152346 DOI: 10.1105/tpc.008946] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2002] [Accepted: 01/18/2003] [Indexed: 05/18/2023]
Abstract
Acyl-acyl carrier protein thioesterases determine the amount and type of fatty acids that are exported from the plastids. To better understand the role of the FATB class of acyl-acyl carrier protein thioesterases, we identified an Arabidopsis mutant with a T-DNA insertion in the FATB gene. Palmitate (16:0) content of glycerolipids of the mutant was reduced by 42% in leaves, by 56% in flowers, by 48% in roots, and by 56% in seeds. In addition, stearate (18:0) was reduced by 50% in leaves and by 30% in seeds. The growth rate was reduced in the mutant, resulting in 50% less fresh weight at 4 weeks compared with wild-type plants. Furthermore, mutant plants produced seeds with low viability and altered morphology. Analysis of individual glycerolipids revealed that the fatty acid composition of prokaryotic plastid lipids was largely unaltered, whereas the impact on eukaryotic lipids varied but was particularly severe for phosphatidylcholine, with a >4-fold reduction of 16:0 and a 10-fold reduction of 18:0 levels. The total wax load of fatb-ko plants was reduced by 20% in leaves and by 50% in stems, implicating FATB in the supply of saturated fatty acids for wax biosynthesis. Analysis of C(18) sphingoid bases derived from 16:0 indicated that, despite a 50% reduction in exported 16:0, the mutant cells maintained wild-type levels of sphingoid bases, presumably at the expense of other cell components. The growth retardation caused by the fatb mutation was enhanced in a fatb-ko act1 double mutant in which saturated fatty acid content was reduced further. Together, these results demonstrate the in vivo role of FATB as a major determinant of saturated fatty acid synthesis and the essential role of saturates for the biosynthesis and/or regulation of cellular components critical for plant growth and seed development.
Collapse
Affiliation(s)
- Gustavo Bonaventure
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
50
|
Salas JJ, Ohlrogge JB. Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch Biochem Biophys 2002; 403:25-34. [PMID: 12061798 DOI: 10.1016/s0003-9861(02)00017-6] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The specificity of plant acyl-acyl carrier protein (ACP) thioesterases is the major determinant of the chain length and level of saturated fatty acids found in most plant tissues. Although these enzymes have been previously characterized from a number of sources, information on kinetic parameters for a wide range of substrates with cloned enzymes is lacking. In the present study the substrate specificity of recombinant FatA thioesterase isoforms from Arabidopsis (AtFatA) and coriander (CsFatA) and FatB from Arabidopsis (AtFatB) have been re-examined with a comprehensive range of substrates including 14:1-ACP and 16:1-ACP. AtFatA displayed the highest catalytic efficiencies (kcat/Km) towards oleoyl-ACP with activities at least 20-fold lower for all other tested substrates and 75-fold lower with palmitoyl-ACP. Both chain length and double bond presence strongly influenced kcat of FatA with minor influence on Km. Arabidopsis FatB substrate specificity was found to differ from previous reports and this difference could be attributed to the influence of ACP structure. FatB activity with palmitoyl-ACP was 2.5-fold higher and the ratio of 16:0-ACP/14:0-ACP hydrolysis was 6.4-fold higher with spinach ACP compared to E. coli ACP. Additionally, the influence of amino acid domains from both AtFatA and AtFatB on their substrate specificity was studied by utilizing a domain-swapping approach. The characterization of the resulting chimeric enzymes pointed to the N-terminus as a determinant of the substrate specificity for both FatA and FatB acyl-ACP thioesterases.
Collapse
Affiliation(s)
- Joaquín J Salas
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824-1312, USA
| | | |
Collapse
|