1
|
Elevated serum levels of cysteine and tyrosine: early biomarkers in asymptomatic adults at increased risk of developing metabolic syndrome. BIOMED RESEARCH INTERNATIONAL 2015; 2015:418681. [PMID: 25821801 PMCID: PMC4364114 DOI: 10.1155/2015/418681] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/15/2015] [Indexed: 12/13/2022]
Abstract
As there is effective intervention for delaying or preventing metabolic diseases, which are often present for years before becoming clinically apparent, novel biomarkers that would mark metabolic complications before the onset of metabolic disease should be identified. We investigated the role of fasting serum amino acids and their associations with inflammatory markers, adipokines, and metabolic syndrome (MetS) components in subjects prior to the onset of insulin resistance (IR). Anthropometric measurements, food records, adipokines, biochemical markers, and serum levels of amino acids were determined in 96 asymptomatic subjects aged 25–49 years divided into three groups according to the number of MetS components present. Cysteine and tyrosine were significantly higher already in group with one component of MetS present compared to subjects without MetS components. Serum amino acid levels correlated with markers of inflammation and adipokines. Alanine and glycine explained 10% of insulin resistance variability. The role of tyrosine and cysteine, that were higher already with 1 component of MetS present, should be further investigated as they might point to future insulin disturbances.
Collapse
|
2
|
Guan HP, Chen G. Factors affecting insulin-regulated hepatic gene expression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:165-215. [PMID: 24373238 DOI: 10.1016/b978-0-12-800101-1.00006-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity has become a major concern of public health. A common feature of obesity and related metabolic disorders such as noninsulin-dependent diabetes mellitus is insulin resistance, wherein a given amount of insulin produces less than normal physiological responses. Insulin controls hepatic glucose and fatty acid metabolism, at least in part, via the regulation of gene expression. When the liver is insulin-sensitive, insulin can stimulate the expression of genes for fatty acid synthesis and suppress those for gluconeogenesis. When the liver becomes insulin-resistant, the insulin-mediated suppression of gluconeogenic gene expression is lost, whereas the induction of fatty acid synthetic gene expression remains intact. In the past two decades, the mechanisms of insulin-regulated hepatic gene expression have been studied extensively and many components of insulin signal transduction pathways have been identified. Factors that alter these pathways, and the insulin-regulated hepatic gene expression, have been revealed and the underlying mechanisms have been proposed. This chapter summarizes the recent progresses in our understanding of the effects of dietary factors, drugs, bioactive compounds, hormones, and cytokines on insulin-regulated hepatic gene expression. Given the large amount of information and progresses regarding the roles of insulin, this chapter focuses on findings in the liver and hepatocytes and not those described for other tissues and cells. Typical insulin-regulated hepatic genes, such as insulin-induced glucokinase and sterol regulatory element-binding protein-1c and insulin-suppressed cytosolic phosphoenolpyruvate carboxyl kinase and insulin-like growth factor-binding protein 1, are used as examples to discuss the mechanisms such as insulin regulatory element-mediated transcriptional regulation. We also propose the potential mechanisms by which these factors affect insulin-regulated hepatic gene expression and discuss potential future directions of the area of research.
Collapse
Affiliation(s)
- Hong-Ping Guan
- Department of Diabetes, Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
3
|
Ferguson AA, Roy S, Kormanik KN, Kim Y, Dumas KJ, Ritov VB, Matern D, Hu PJ, Fisher AL. TATN-1 mutations reveal a novel role for tyrosine as a metabolic signal that influences developmental decisions and longevity in Caenorhabditis elegans. PLoS Genet 2013; 9:e1004020. [PMID: 24385923 PMCID: PMC3868569 DOI: 10.1371/journal.pgen.1004020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 10/28/2013] [Indexed: 11/18/2022] Open
Abstract
Recent work has identified changes in the metabolism of the aromatic amino acid tyrosine as a risk factor for diabetes and a contributor to the development of liver cancer. While these findings could suggest a role for tyrosine as a direct regulator of the behavior of cells and tissues, evidence for this model is currently lacking. Through the use of RNAi and genetic mutants, we identify tatn-1, which is the worm ortholog of tyrosine aminotransferase and catalyzes the first step of the conserved tyrosine degradation pathway, as a novel regulator of the dauer decision and modulator of the daf-2 insulin/IGF-1-like (IGFR) signaling pathway in Caenorhabditis elegans. Mutations affecting tatn-1 elevate tyrosine levels in the animal, and enhance the effects of mutations in genes that lie within the daf-2/insulin signaling pathway or are otherwise upstream of daf-16/FOXO on both dauer formation and worm longevity. These effects are mediated by elevated tyrosine levels as supplemental dietary tyrosine mimics the phenotypes produced by a tatn-1 mutation, and the effects still occur when the enzymes needed to convert tyrosine into catecholamine neurotransmitters are missing. The effects on dauer formation and lifespan require the aak-2/AMPK gene, and tatn-1 mutations increase phospho-AAK-2 levels. In contrast, the daf-16/FOXO transcription factor is only partially required for the effects on dauer formation and not required for increased longevity. We also find that the controlled metabolism of tyrosine by tatn-1 may function normally in dauer formation because the expression of the TATN-1 protein is regulated both by daf-2/IGFR signaling and also by the same dietary and environmental cues which influence dauer formation. Our findings point to a novel role for tyrosine as a developmental regulator and modulator of longevity, and support a model where elevated tyrosine levels play a causal role in the development of diabetes and cancer in people.
Collapse
Affiliation(s)
- Annabel A. Ferguson
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sudipa Roy
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Center for Healthy Aging, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Kaitlyn N. Kormanik
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yongsoon Kim
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kathleen J. Dumas
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Vladimir B. Ritov
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Dietrich Matern
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Patrick J. Hu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Departments of Internal Medicine and Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Alfred L. Fisher
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Center for Healthy Aging, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- GRECC, South Texas VA Health Care System, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
4
|
Parameters of nitrogen metabolism during insulin hypoglycemia in rats with alloxan-induced diabetes. Bull Exp Biol Med 2009; 146:203-5. [PMID: 19145318 DOI: 10.1007/s10517-008-0251-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Hypoglycemic coma caused by insulin injection to rats with alloxan-induced diabetes was accompanied by an increase in the concentrations of urea and uric acid and decrease in the content of free amino acids in blood plasma. Activities of glutamate dehydrogenase, AMP deaminase, glutaminase, ALT, and AST in the liver of experimental animals increased.
Collapse
|
5
|
Fujimoto Sakata S, Fujino M, Matsuda K, Maeda M, Ohira H, Kawasaki K, Tamaki N. Mechanism of liver tyrosine aminotransferase increase in ethanol-treated mice and its effect on serum tyrosine level. J Nutr Sci Vitaminol (Tokyo) 2008; 53:489-95. [PMID: 18202536 DOI: 10.3177/jnsv.53.489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Liver tyrosine aminotransferase (TAT) activity is known to increase with ethanol treatment; however, the mechanism of this increase is unclear. Upon investigation we found that TAT activity and mRNA levels started to increase 2 h after ethanol administration and continued to increase until 6 h after ethanol administration. The increase in ethanol-induced TAT activity could not be explained by calorie loading after fasting, since ethanol loading increased TAT expression, while glucose loading decreased TAT expression. In addition, liver TAT activity was not related to serum tyrosine levels. TAT activity increased when an adenosine A2 agonist, 5'-N-ethylcarboxamide adenosine, was given. Since TAT activity is increased by cAMP, and ethanol increases cAMP production via an adenosine receptor-dependent mechanism, this increase in ethanol-induced TAT activity may occur via an adenosine receptor-dependent mechanism.
Collapse
|
6
|
Abstract
A cDNA library from the liver of a growth hormone (GH)-treated hypophysectomized rat was constructed and screened for GH-inducible genes (GIGs). Three cDNAs specific for putative GIG mRNAs (GIG-3, -7 and -12) were isolated and, when sequenced, were found to be homologous to portions of rat hemopexin, a Class 2 acute-phase gene. Hemopexin is an essential heme scavenger produced primarily in the liver, which upon binding to free heme, transports it to the liver where the heme iron is re-utilized. Hemopexin has not been previously described as being GH-responsive. GIG-3 and GIG-12 encode overlapping portions of the entire coding sequence starting within a few hundred base pairs from the 5' end of the hemopexin mRNA, and GIG-7 encodes the 3'-most end of the hemopexin mRNA. Northern analysis and ribonuclease protection assays of RNA from livers of control rats using the cDNA probes demonstrated a major transcript of approximately 2.0 kb. The hemopexin mRNA was low or undetectable in livers of hypophysectomized rats. Daily treatment with bovine growth hormone (bGH) for 10 days restored hemopexin mRNA to levels comparable or greater than that of intact rats. GH-dependence in cultured rat H4IIE hepatoma cells was then examined. Using hemopexin cDNA probes (GIG-3, -7, and -12) we identified a mRNA on Northern blots, which increased in concentration following bGH, compared with untreated cells. When measured by ribonuclease protection assay, a maximal increase in hemopexin mRNA concentration was obtained following 4-6 h of bGH administration. We conclude that hemopexin is a GH-inducible gene in rat liver in vivo and in cultured rat hepatoma cells.
Collapse
Affiliation(s)
- Susan E Stred
- Cell and Molecular Biology Program and Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | |
Collapse
|
7
|
Sidhu JS, Omiecinski CJ. Insulin-mediated modulation of cytochrome P450 gene induction profiles in primary rat hepatocyte cultures. J Biochem Mol Toxicol 2000; 13:1-9. [PMID: 9890442 DOI: 10.1002/(sici)1099-0461(1999)13:1<1::aid-jbt1>3.0.co;2-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this investigation, we examined the effects of insulin on gene induction responsiveness in primary rat hepatocytes. Cells were cultured for 72 hours either in the absence or presence of 1 microM insulin and then exposed to increasing concentrations of phenobarbital (PB; 0.01-3.5 mM). Culturing in the absence of insulin produced 1.5-2-fold increases in the induction magnitude of CYP2B1 and CYP2B2 mRNA expression resulting from PB exposures, without altering the bell-shaped dose-response curve characteristic of this agent. However, for the CYP3A1 gene, insulin removal led to a pronounced shift in both the PB-induction magnitude and dose-response relationships of the induction response, with higher levels of CYP3A1 expression resulting from exposures to lower concentrations of inducer. Insulin removal also reduced the time required to attain maximal induction of CYP2B1/2 and CYP3A1 gene expression. The insulin effects were not specific for PB induction, as insulin deprivation similarly enhanced both dexamethasone- and beta-naphthoflavone-inducible CYP3A1 and CYP1A1 expression profiles, respectively. In contrast, the level of albumin mRNA expression was reduced considerably in cells deprived of insulin. We conclude that insulin is an important regulator of inducible and liver-specific gene expression in primary rat hepatocytes.
Collapse
Affiliation(s)
- J S Sidhu
- Department of Environmental Health, University of Washington, Seattle 98105-6099, USA
| | | |
Collapse
|
8
|
|
9
|
Lemaigre FP, Lause P, Rousseau GG. Insulin inhibits glucocorticoid-induced stimulation of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene transcription. FEBS Lett 1994; 340:221-5. [PMID: 8131849 DOI: 10.1016/0014-5793(94)80142-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
6-Phosphofructo-2-kinase (PFK-2)/fructose-2,6-bisphosphatase (FBPase-2) catalyzes the synthesis and degradation of fructose 2,6-bisphosphate, a potent stimulator of glycolysis. Transcription of the mRNA encoding rat liver PFK-2/FBPase-2 is stimulated by insulin and by glucocorticoids in rat hepatoma cells. We show here that insulin can also prevent and reverse this glucocorticoid effect. The inhibitory effect of insulin is independent of extracellular glucose and does not require ongoing protein synthesis. We conclude that insulin exerts opposite effects on PFK-2/FBPase-2 gene transcription depending on the hormonal context.
Collapse
Affiliation(s)
- F P Lemaigre
- Hormone and Metabolic Research Unit, International Institute of Cellular and Molecular Pathology, Brussels, Belgium
| | | | | |
Collapse
|