1
|
Insulin-like growth factor 1 modulates bioengineered tooth morphogenesis. Sci Rep 2019; 9:368. [PMID: 30675004 PMCID: PMC6344556 DOI: 10.1038/s41598-018-36863-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/21/2018] [Indexed: 11/08/2022] Open
Abstract
Regenerative therapy to replace missing teeth is a critical area of research. Functional bioengineered teeth have been produced by the organ germ method using mouse tooth germ cells. However, these bioengineered teeth are significantly smaller in size and exhibit an abnormal crown shape when compared with natural teeth. The proper sizes and shapes of teeth contribute to their normal function. Therefore, a method is needed to control the morphology of bioengineered teeth. Here, we investigated whether insulin-like growth factor 1 (IGF1) can regulate the sizes and shapes of bioengineered teeth, and assessed underlying mechanisms of such regulation. IGF1 treatment significantly increased the size of bioengineered tooth germs, while preserving normal tooth histology. IGF1-treated bioengineered teeth, which were developed from bioengineered tooth germs in subrenal capsules and jawbones, showed increased sizes and cusp numbers. IGF1 increased the number of fibroblast growth factor (Fgf4)-expressing enamel knots in bioengineered tooth germs and enhanced the proliferation and differentiation of dental epithelial and mesenchymal cells. This study is the first to reveal that IGF1 increases the sizes and cusp numbers of bioengineered teeth via the induction of enamel knot formation, as well as the proliferation and differentiation of dental epithelial and mesenchymal cells.
Collapse
|
2
|
Huang H, Wang J, Zhang Y, Zhu G, Li YP, Ping J, Chen W. Bone resorption deficiency affects tooth root development in RANKL mutant mice due to attenuated IGF-1 signaling in radicular odontoblasts. Bone 2018; 114:161-171. [PMID: 29292230 DOI: 10.1016/j.bone.2017.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/27/2017] [Accepted: 12/28/2017] [Indexed: 01/05/2023]
Abstract
The tooth root is essential for normal tooth physiological function. Studies on mice with mutations or targeted gene deletions revealed that osteoclasts (OCs) play an important role in tooth root development. However, knowledge on the cellular and molecular mechanism underlying how OCs mediate root formation is limited. During bone formation, growth factors (e.g. Insulin-like growth factor-1, IGF-1) liberated from bone matrix by osteoclastic bone resorption stimulate osteoblast differentiation. Thus, we hypothesize that OC-osteoblast coupling may also apply to OC-odontoblast coupling; therefore OCs may have a direct impact on odontoblast differentiation through the release of growth factor(s) from bone matrix, and consequently regulate tooth root formation. To test this hypothesis, we used a receptor activator of NF-κB ligand (RANKL) knockout mouse model in which OC differentiation and function was entirely blocked. We found that molar root formation and tooth eruption were defective in RANKL-/- mice. Disrupted elongation and disorganization of Hertwig's epithelial root sheath (HERS) was observed in RANKL-/- mice. Reduced expression of nuclear factor I C (NFIC), osterix, and dentin sialoprotein, markers essential for radicular (root) odontogenic cell differentiation indicated that odontoblast differentiation was disrupted in RANKL deficient mice likely contributing to the defect in root formation. Moreover, down-regulation of IGF/AKT/mTOR activity in odontoblast indicated that IGF signaling transduction in odontoblasts of the mutant mice was impaired. Treating odontoblast cells in vitro with conditioned medium from RANKL-/- OCs cultured on bone slices resulted in inhibition of odontoblast differentiation. Moreover, depletion of IGF-1 in bone resorption-conditioned medium (BRCM) from wild-type (WT) OC significantly compromised the ability of WT osteoclastic BRCM to induce odontoblast differentiation while addition of IGF-1 into RANKL-/- osteoclastic BRCM rescued impaired odontoblast differentiation, confirming that root and eruption defect in RANKL deficiency mice may result from failure of releasing of IGF-1 from bone matrix through OC bone resorption. These results suggest that OCs are important for odontoblast differentiation and tooth root formation, possibly through IGF/AKT/mTOR signaling mediated by cell-bone matrix interaction. These findings provide significant insights into regulatory mechanism of tooth root development, and also lay the foundation for root regeneration studies.
Collapse
Affiliation(s)
- Hong Huang
- The Affiliated Hospital of Stomatology, Chongqing Medical University, 5 Shangqingsi Rd, Yuzhong Qu, Chongqing Shi 400065, China; Department of Pathology, School of Medicine, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Jue Wang
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Yan Zhang
- The Affiliated Hospital of Stomatology, Chongqing Medical University, 5 Shangqingsi Rd, Yuzhong Qu, Chongqing Shi 400065, China; Department of Pathology, School of Medicine, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Guochun Zhu
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Yi-Ping Li
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Ji Ping
- The Affiliated Hospital of Stomatology, Chongqing Medical University, 5 Shangqingsi Rd, Yuzhong Qu, Chongqing Shi 400065, China.
| | - Wei Chen
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA.
| |
Collapse
|
3
|
Litsas G. Growth Hormone and Craniofacial Tissues. An update. Open Dent J 2015; 9:1-8. [PMID: 25674165 PMCID: PMC4319194 DOI: 10.2174/1874210601509010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 12/28/2022] Open
Abstract
Growth hormone is an important regulator of bone homeostasis. In childhood, it determines the longitudinal bone growth, skeletal maturation, and acquisition of bone mass. In adulthood, it is necessary to maintain bone mass throughout life. Although an association between craniofacial and somatic development has been clearly established, craniofacial growth involves complex interactions of genes, hormones and environment. Moreover, as an anabolic hormone seems to have an important role in the regulation of bone remodeling, muscle enhancement and tooth development. In this paper the influence of growth hormone on oral tissues is reviewed.
Collapse
|
4
|
Effect of vitronectin bound to insulin-like growth factor-I and insulin-like growth factor binding protein-3 on porcine enamel organ-derived epithelial cells. Int J Dent 2012; 2012:386282. [PMID: 22567008 PMCID: PMC3332072 DOI: 10.1155/2012/386282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 01/17/2012] [Indexed: 11/17/2022] Open
Abstract
The aim of this paper was to determine whether the interaction between IGF, IGFBP, and VN modulates the functions of porcine EOE cells. Enamel organs from 6-month-old porcine third molars were dissociated into single epithelial cells and subcultured on culture dishes pretreated with VN, IGF-I, and IGFBP-3 (IGF-IGFBP-VN complex). The subcultured EOE cells retained their capacity for ameloblast-related gene expression, as shown by semiquantitative reverse transcription-polymerase chain reaction. Amelogenin expression was detected in the subcultured EOE cells by immunostaining. The subcultured EOE cells were then seeded onto collagen sponge scaffolds in combination with fresh dental mesenchymal cells and transplanted into athymic rats. After 4 weeks, enamel-dentin-like complex structures were present in the implanted constructs. These results show that EOE cells cultured on IGF-IGFBP-VN complex differentiated into ameloblasts-like cells that were able to secrete amelogenin proteins and form enamel-like tissues in vivo. Functional assays demonstrated that the IGF/IGFBP/VN complex significantly enhanced porcine EOE cell proliferation and tissue forming capacity for enamel. This is the first study to demonstrate a functional role of the IGF-IGFBP-VN complex in EOE cells. This application of the subculturing technique provides a foundation for further tooth-tissue engineering and for improving our understanding of ameloblast biology.
Collapse
|
5
|
Abstract
Pituitary somatotrophs secrete growth hormone (GH) into the bloodstream, to act as a hormone at receptor sites in most, if not all, tissues. These endocrine actions of circulating GH are abolished after pituitary ablation or hypophysectomy, indicating its pituitary source. GH gene expression is, however, not confined to the pituitary gland, as it occurs in neural, immune, reproductive, alimentary, and respiratory tissues and in the integumentary, muscular, skeletal, and cardiovascular systems, in which GH may act locally rather than as an endocrine. These actions are likely to be involved in the proliferation and differentiation of cells and tissues prior to the ontogeny of the pituitary gland. They are also likely to complement the endocrine actions of GH and are likely to maintain them after pituitary senescence and the somatopause. Autocrine or paracrine actions of GH are, however, sometimes mediated through different signaling mechanisms to those mediating its endocrine actions and these may promote oncogenesis. Extrapituitary GH may thus be of physiological and pathophysiological significance.
Collapse
Affiliation(s)
- S Harvey
- Department of Physiology, University of Alberta, 7-41 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada,
| |
Collapse
|
6
|
Fukunaga T, Murakami T, Tanaka H, Miyawaki S, Yamashiro T, Takano-Yamamoto T. Dental and craniofacial characteristics in a patient with leprechaunism treated with insulin-like growth factor-I. Angle Orthod 2008; 78:745-51. [PMID: 18302477 DOI: 10.2319/0003-3219(2008)078[0745:daccia]2.0.co;2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Accepted: 08/01/2007] [Indexed: 11/23/2022] Open
Abstract
Leprechaunism is an autosomal recessive disease characterized by elfin-like faces, loss of glucose homeostasis, and severe insulin resistance. This disease is caused by inherited defects of the insulin receptor and is lethal early in life. Perhaps for this reason, the teeth and craniofacial features of patients with leprechaunism have never been reported. In the present case, the patient had been diagnosed with leprechaunism with mutation in the insulin receptor gene and had treatment with recombinant human insulin-like growth factor I (IGF-I) starting at the age of 1 year 7 months. It is of interest that all of his teeth were extremely large and subsequently showed severe crowding in the dental arches. He also showed a large tongue with an anterior open bite. He had a convex facial profile with a remarkably steep mandibular plane angle and large gonial angle. This is the first report of the characteristic phenotypes of the teeth and craniofacial morphology of a patient with leprechaunism treated with IGF-I. In addition, the possible association between these features and long-term IGF-I treatment is discussed.
Collapse
Affiliation(s)
- Tomohiro Fukunaga
- Department of Orthodontics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Smid JR, Rowland JE, Young WG, Coschigano KT, Kopchick JJ, Waters MJ. Mouse molar dentin size/shape is dependent on growth hormone status. J Dent Res 2007; 86:463-8. [PMID: 17452569 DOI: 10.1177/154405910708600514] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Growth hormone (GH) status affects dental development, but how GH influences tooth size/shape is unclear. Since GH affects dental epithelial proliferation, we hypothesized that GH influences the tooth crown and root dimensions. Dentin matrix dimensions were measured in longitudinal sections of decalcified first mandibular molars from 3 genetically modified mice: giant (GH-Excess) mice and dwarf (GH-Antagonist and GH-Receptor-Knockout) mice. GH status was found to influence crown width, root length, and dentin thickness. Analysis of these data suggests that GH influences both tooth crown and root development prior to dentinogenesis as well as during appositional growth of dentin. This is concordant with the expression of paracrine GH and GH receptors during tooth bud morphogenesis, and of GH receptors in the enamel organ, dental papilla, and Hertwig's epithelial root sheath during dentinogenesis. Based on prior studies, these GH morphogenetic actions may be mediated by the induction of both bone morphogenetic protein and insulin-like growth factor-1 expression.
Collapse
Affiliation(s)
- J R Smid
- Oral Biology and Pathology, School of Dentistry, University of Queensland, St. Lucia, Queensland 4072, Australia.
| | | | | | | | | | | |
Collapse
|
8
|
Iejima D, Sumita Y, Kagami H, Ando Y, Ueda M. Odontoblast marker gene expression is enhanced by a CC-chemokine family protein MIP-3alpha in human mesenchymal stem cells. Arch Oral Biol 2007; 52:924-31. [PMID: 17532291 DOI: 10.1016/j.archoralbio.2007.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 04/05/2007] [Accepted: 04/06/2007] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Macrophage inflammatory protein-3 alpha (MIP-3alpha) is a major CC-chemokine family protein, which serves as a differentiation factor for mesenchymal cells, including osteoblasts and dental pulp cells. The purpose of this study was to investigate the influence of MIP-3alpha on human mesenchymal stem cell differentiation in vitro. DESIGN Human mesenchymal stem cells were maintained in Dulbecco's modified Eagle's medium in the presence or absence of MIP-3alpha and the presence or absence of osteogenic factors (dexamethasone, beta-glycerophoshate and ascorbic acid). Alkaline phosphatase (ALP) activity was measured, and expression of odontoblast and osteoblast markers were examined by RT-PCR and Western blotting. RESULTS MIP-3alpha alone did not increase ALP activity, as compared to controls. The combination of MIP-3alpha and osteogenic factors increased ALP activity beyond increases observed with osteogenic factors alone. mRNA expression of the odontoblast marker dspp was only detectable when MIP-3alpha was added together with osteogenic factors at day 7 in three out of four samples. DSP protein level was increased only in the samples treated with both MIP-3alpha and osteogenic factors until day 5. In contrast, MIP-3alpha did not influence levels of the osteoblast markers CBFA1 or BSP. CONCLUSIONS The present study demonstrated that MIP-3alpha enhanced gene expression and protein levels of odontoblast-related genes, without affecting levels of the osteogenic proteins CBFA1 or BSP.
Collapse
Affiliation(s)
- D Iejima
- Research and Development Center, Hitachi Medical Corporation, Kashiwa, Chiba 277-0804, Japan
| | | | | | | | | |
Collapse
|
9
|
Tonomura A, Sumita Y, Ando Y, Iejima D, Kagami H, Honda MJ, Ueda M. Differential inducibility of human and porcine dental pulp-derived cells into odontoblasts. Connect Tissue Res 2007; 48:229-38. [PMID: 17882698 DOI: 10.1080/03008200701507909] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A robust method for generating odontoblasts from cultured dental pulp cells has not been established. In this study, efficient methods for deriving odontoblasts from cultured human and porcine dental pulp-derived cells were investigated with special attention to species differences. Cultured human cells showed relatively low alkaline phosphatase (ALP) activity in the presence of dexamethasone (Dex) and beta-glycerophosphate (beta-Gly). In contrast, the addition of 1,25-dihydroxyvitaminD(3) (VitD3) significantly increased the ALP activity. In porcine cells, beta-Gly alone or a combination of Dex and beta-Gly significantly increased ALP activity; however, addition of VitD3 reduced this activity. RT-PCR and Western blotting analysis revealed that the combination of three induction reagents on human cells significantly upregulates the expression of osteocalcin mRNA, and dentin sialoprotein. We propose that the combination of Dex, beta-Gly, and VitD3 is critical for differentiation of human dental pulp-derived cells into odontoblasts. In addition, the inducibility of dental pulp-derived cells presented remarkable species differences.
Collapse
Affiliation(s)
- Akiko Tonomura
- Research & Development Center, Hitachi Medical Corporation, Kashiwa, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Götz W, Heinen M, Lossdörfer S, Jäger A. Immunohistochemical localization of components of the insulin-like growth factor system in human permanent teeth. Arch Oral Biol 2006; 51:387-95. [PMID: 16321360 DOI: 10.1016/j.archoralbio.2005.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 09/06/2005] [Accepted: 10/12/2005] [Indexed: 10/25/2022]
Abstract
There is growing evidence that the insulin-like growth factor (IGF) system plays an important role in the biology of oro-dento-facial tissues and organs, including the development, homeostasis and regeneration of the periodontium. To obtain basic data on the occurrence and distribution of IGF components in human permanent teeth we immunohistochemically investigated 25 extracted, decalcified and paraffin-embedded teeth using mono and polyclonal antibodies against the ligands IGF-I and -II, the IGF1 receptor (IGF1R) and all six IGF binding proteins (IGFBP-1 to -6). In the extracellular matrix (ECM) of the adhering periodontal ligament (PDL), immunoreactivity for IGF-I, -II and IGFBP-1 and -6 was observed. PDL fibroblasts showed immunostaining for the IGF1R. For the cementum, in the acellular cementum only IGF-II could be detected, while outer cementum layers with inserting Sharpey's fibers reacted with all antibodies applied except for IGFBP-4 and -6. In the pulp, mainly fibrotic areas and areas around denticles were immunoreactive for IGF-I, IGFBP-1, -3, -5 and -6. Predentin and odontoblastic processes were stained for IGF-I and IGFBP-3. The spatially oriented occurrence of components of the IGF system in human permanent teeth indicates that specific functions of the IGFs may be localized in particular tissue compartments. In the cementum, several IGF components were found indicating roles in tissue homeostasis or attachment. The PDL may function as a reservoir for IGFs probably bound to ECM components. PDL fibroblasts could then respond in a paracrine manner. In the pulp, the IGF system may be involved in odontoblast biology, fibrosis and denticle formation.
Collapse
Affiliation(s)
- Werner Götz
- Department of Orthodontics, University of Bonn, Dental Clinic, Oral Biology Laboratory, Welschnonnenstr. 17, D-53111 Bonn, Germany.
| | | | | | | |
Collapse
|
11
|
Abstract
Several studies have confirmed a decrease in the quality and quantity of milk of mothers with diabetes during lactation. However, it remains unclear how maternal diabetes affects the offspring specifically during lactation. The aim of this study was to evaluate body and mandibular growth and tooth eruption in pups suckling from diabetic dams. The study was performed on 13 Wistar rat pups that were born to dams that were subjected to experimental diabetes on the day of parturition. Body weight and body size were recorded regularly throughout the study. The experimental pups and a group of eight age-matched pups suckling from nondiabetic dams were killed at weaning. Both hemimandibles were excised and fixed. Right hemimandibles were radiographed to assess mandibular growth and tooth eruption. The left hemimandibles were processed to obtain buccolingually oriented sections at the level of the first mesial root of the first lower molar. Histologic and histomorphometric studies were performed. Results showed that body weight and body size were significantly lower in experimental animals at weaning compared with their age-matched controls. Smaller mandible size and reduced tooth eruption in experimental animals compared with controls were observed. The length, width, and bone volume of the developing alveolus were reduced in experimental animals compared with controls. The results obtained in this study allow the conclusion that suckling from diabetic dams results in reduced body, mandible size, and tooth eruption of the pups at weaning.
Collapse
Affiliation(s)
- Mariano E Villarino
- Department of Histology and Embryology, School of Dentistry, University of Buenos Aires, Argentina
| | | | | | | |
Collapse
|
12
|
Fujiwara N, Tabata MJ, Endoh M, Ishizeki K, Nawa T. Insulin-like growth factor-I stimulates cell proliferation in the outer layer of Hertwig's epithelial root sheath and elongation of the tooth root in mouse molars in vitro. Cell Tissue Res 2005; 320:69-75. [PMID: 15714277 DOI: 10.1007/s00441-004-1065-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 12/01/2004] [Indexed: 10/25/2022]
Abstract
To elucidate the mechanism of root formation in tooth development, we examined the role of insulin-like growth factor I (IGF-I) on early root formation in mandibular first molar teeth from 5-day-old mice. Immunohistochemistry revealed the specific localization of the IGF-I receptor in Hertwig's epithelial root sheath (HERS) in the tooth root. The effect of IGF-I on root development, especially on HERS, was subsequently examined in vitro. The control culture showed normal development of HERS and the periodontium, resembling that in vivo. However, the presence of 100 ng/ml IGF-I resulted in elongation of HERS and increased cell proliferation in its outer layer. These effects were negated by the addition of antibodies specific for IGF-I. Thus, we propose that IGF-I is involved in early root formation by regulating the mitotic activity in the outer layer of HERS.
Collapse
Affiliation(s)
- Naoki Fujiwara
- Department of Oral Anatomy II, School of Dentistry, Iwate Medical University, 1-3-27, Chuo-dori, Morioka, Iwate, 020-8505, Japan.
| | | | | | | | | |
Collapse
|
13
|
Catón J, Bringas P, Zeichner-David M. IGFs increase enamel formation by inducing expression of enamel mineralizing specific genes. Arch Oral Biol 2005; 50:123-9. [PMID: 15721138 DOI: 10.1016/j.archoralbio.2004.11.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 11/11/2004] [Indexed: 01/28/2023]
Abstract
Insulin-like growth factors (IGF-I and IGF-II) have been shown to play an important role in growth and differentiation in a number of tissues including mineralizing bone. Little is known about their role in tooth mineralization. Previous work in our laboratory has shown the presence of IGFs ligands, their receptors, and their binding proteins during mouse tooth morphogenesis. The expression of IGF I coincides with the expression of amelogenin, ameloblastin and enamelin at the late bell and secretory stage. The objective of this study is to determine the mechanisms by which IGFs modulate enamel and dentin formation. Mouse first mandibular molars were dissected from E16 and E17 mouse embryos and placed in organ culture in the presence of IGF-I or IGF-II. The molars were harvested after 12 days for histological examination or 1 day for mRNA expression analysis by real-time RT-PCR. Our results show an increase in enamel deposition, and an induction of enamelin, amelogenin and collagen type I mRNA expression, while expression of DSPP was down-regulated. These results suggest that IGFs increase enamel formation by the induction of gene expression of enamel related genes. Studies are underway to determine a possible mechanism for these factors.
Collapse
Affiliation(s)
- Javier Catón
- Center for Craniofacial Molecular Biology, University of Southern California School of Dentistry, 2250 Alcazar St., CSA 106, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
14
|
Tompkins K, Alvares K, George A, Veis A. Two related low molecular mass polypeptide isoforms of amelogenin have distinct activities in mouse tooth germ differentiation in vitro. J Bone Miner Res 2005; 20:341-9. [PMID: 15647828 DOI: 10.1359/jbmr.041107] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 07/19/2004] [Accepted: 08/31/2004] [Indexed: 11/18/2022]
Abstract
UNLABELLED Embryonic mouse tooth germs were cultured in vitro in the presence of two related amelogenin isoforms to determine their effects on tooth development. Our results show that these individual proteins have specific but quite different effects on epithelial-derived ameloblasts versus mesenchymal-derived odontoblasts. INTRODUCTION Amelogenins, the main protein components of enamel matrix, have been shown to have signaling activity. Amelogenin isoforms differing only by the presence or exclusion of exon 4, designated [A+4] (composed of exons 2, 3, 4, 5, 6d, and 7) and [A-4] (composed of exons 2, 3, 5, 6d, and 7), showed similar, but different, effects both in vitro and in vivo on postnatal teeth. MATERIALS AND METHODS Lower first molar tooth germs of E15/16 CD1 mice were microdissected and cultured in vitro in a semisolid media containing either 20% FBS, 2% FBS, or 2% FBS with either 1.5 nM [A+4], [A-4], or both for 6 days. Tooth germs were analyzed by H&E staining and immunohistochemistry for collagen I, dentin matrix protein 2, and DAPI nuclear staining. RESULTS Teeth cultured in media containing 20% FBS showed normal development with polarized ameloblasts, and odontoblasts producing dentin matrix, and DMP2 expression in odontoblasts and pre-ameloblasts. Culture in 2% FBS media resulted in no ameloblast polarization and modest odontoblast differentiation with scant dentin matrix. Tooth germs cultured with [A+4] in 2% FBS media had well-polarized odontoblasts with robust dentin production and concomitant ameloblast polarization. DMP2 expression was equal to or greater than seen in the 20% FBS culture condition. In cultures with [A-4] in 2% FBS media, odontoblast polarization and dentin production was reduced compared with [A+4]. However, the pre-ameloblast layer was disorganized, with no ameloblast polarization occurring along the dentin surface. DMP2 expression was reduced in the odontoblasts compared with the 20% FBS and [A+4] conditions and was almost completely abrogated in the pre-ameloblasts. CONCLUSION These data show different signaling activities of these closely related amelogenin isoforms on tooth development. Here we make the novel observation that [A-4] has an inhibitory effect on ameloblast development, whereas [A+4] strongly stimulates odontoblast development. We show for the first time that specific amelogenin isoforms have effects on embryonic tooth development in vitro and also hypothesize that DMP2 may play a role in the terminal differentiation of both ameloblasts and odontoblasts.
Collapse
Affiliation(s)
- Kevin Tompkins
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
15
|
Fujiwara N, Tabata MJ, Nawa T. Cell Dynamics in Tooth Root Formation: Hertwig's Epithelial Root Sheath and Cellular Cementogenesis. J HARD TISSUE BIOL 2005. [DOI: 10.2485/jhtb.14.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Aren G, Ozdemir D, Firatli S, Uygur C, Sepet E, Firatli E. Evaluation of oral and systemic manifestations in an amelogenesis imperfecta population. J Dent 2004; 31:585-91. [PMID: 14554076 DOI: 10.1016/s0300-5712(03)00116-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES The aim of this investigation was to describe the dental and craniofacial characteristics of patients with amelogenesis imperfecta (AI). METHODS The study group included 43 patients(33 female and 10 male) with a mean age of 11.4+/-2.6 years. A panoramic and a cephalometric radiograph were obtained from each of these patients. Clinically AI cases were divided into four main groups according to Witkop. All patients were evaluated for chronological, bone and dental age. The patients who had severe retarded bone age were evaluated for plasma growth hormone(GH) concentrations. RESULTS Dental and bone ages were retarded with respect to chronological age in five patients. Dental maturity and tooth eruption were not age- appropriate in some of our patients. In type III AI patients a delay in skeletal age was observed. Severe late eruption was seen in 3 patients, severe delay in dental maturity was noted in patients with type IV AI. Dental age was clinically lower in GH-deficient subjects, and skeletal age was consistently more retarded than dental age when compared to chronological age. Anterior open bite was present in both primary and permanent dentitions of 50% of the patients with type I AI, 30.8% of the patients with type II AI, and 60% of type III AI. CONCLUSION It is concluded that the primary structure for the classification of AI be based on the mode of inheritance, with the clinical and radiographic appearances (and any other features such as systemic findings) being the secondary discriminators.
Collapse
Affiliation(s)
- Gamze Aren
- Department of Pedodontics, Faculty of Dentistry, University of Istanbul, Istanbul 34 390, Turkey.
| | | | | | | | | | | |
Collapse
|
17
|
Götz W, Krüger U, Ragotzki S, Lossdörfer S, Jäger A. Immunohistochemical localization of components of the insulin-like growth factor-system in human deciduous teeth. Connect Tissue Res 2002; 42:291-302. [PMID: 11913773 DOI: 10.3109/03008200109016843] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To investigate the occurrence of components of the insulin-like growth factor (IGF) system during the resorption process of shedding human deciduous teeth, we investigated sections of 13 decalcified and paraffin-embedded deciduous teeth immunohistochemically with antibodies against IGF-I and -II, six IGF binding proteins (IGFBPs 1-6) and the IGF receptors IGF1R and IGF2R. The teeth were in different stages of resorption and all showed reparative cementum formation. It was found that acellular extrinsic fiber cementum, reversal lines and reparative cellular intrinsic fiber cementum were immunoreactive for both IGFs and various IGFBPs. Therefore, in human deciduous teeth, all subgroups of cementum, but not dentine, may represent sources of components of the IGF system. Odontoclasts did not carry IGFs or the IGF1R, but IGFBPs and the IGF2R. Therefore, these cells, in contrast to osteoclasts, may not respond to IGFs, but may be involved in the release and sequestration of IGFs from cementum during the resorption process. In contrast to odontoclasts, cementoblasts and periodontal ligament (PDL) fibroblasts carried IGF1R. The influence of the IGF system on the function of these cells with respect to periodontal matrix turnover and cementogenesis is discussed. On the behalf of the IGFBP immunoreactivities found, the PDL extracellular matrix can be considered to be a reservoir for IGF system components, where binding proteins may regulate IGF distribution and activity.
Collapse
Affiliation(s)
- W Götz
- Center of Anatomy, Georg-August-University of Goettingen, Dept of Histology, Germany.
| | | | | | | | | |
Collapse
|
18
|
Smith AJ, Lesot H. Induction and regulation of crown dentinogenesis: embryonic events as a template for dental tissue repair? CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 12:425-37. [PMID: 12002824 DOI: 10.1177/10454411010120050501] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Close regulation of odontoblast differentiation and subsequent secretory activity is critical for dentinogenesis during both embryogenesis and tissue repair. Some dental papilla cells achieve commitment and specific competence, allowing them to respond to epithelially derived inductive signals during the process of odontoblast differentiation. Temporo-spatial regulation of odontoblast differentiation is dependent on matrix-mediated interactions involving the basement membrane (BM). Experimental studies have highlighted the possible roles of growth factors in these processes. Regulation of functional activity of odontoblasts allows for both ordered secretion of the primary dentin matrix and maintenance of vitality and down-regulation of secretory activity throughout secondary dentinogenesis. After injury to the mature tooth, the fate of the odontoblast can vary according to the intensity of the injury. Milder injury can result in up-regulation of functional activity leading to focal secretion of a reactionary dentin matrix, while greater injury can lead to odontoblast cell death. Induction of differentiation of a new generation of odontoblast-like cells can then lead to reparative dentinogenesis. Many similarities exist between development and repair, including matrix-mediation of the cellular processes and the apparent involvement of growth factors as signaling molecules despite the absence of epithelium during repair. While some of the molecular mediators appear to be common to these processes, the close regulation of primary dentinogenesis may be less ordered during tertiary dentinogenic responses.
Collapse
Affiliation(s)
- A J Smith
- Oral Biology, School of Dentistry, University of Birmingham, UK.
| | | |
Collapse
|
19
|
Young WG, Li H, Xiao Y, Waters MJ, Bartold PM. Growth-hormone-stimulated dentinogenesis in Lewis dwarf rat molars. J Dent Res 2001; 80:1742-7. [PMID: 11669486 DOI: 10.1177/00220345010800081201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In dentinogenesis, certain growth factors, matrix proteoglycans, and proteins are directly or indirectly dependent on growth hormone. The hypothesis that growth hormone up-regulates the expression of enzymes, sialoproteins, and other extracellular matrix proteins implicated in the formation and mineralization of tooth and bone matrices was tested by the treatment of Lewis dwarf rats with growth hormone over 5 days. The molar teeth were processed for immunohistochemical demonstration of bone-alkaline phosphatase, bone morphogenetic proteins-2 and -4, osteocalcin, osteopontin, bone sialoprotein, and E11 protein. Odontoblasts responded to growth hormone by more cells expressing bone morphogenetic protein, alkaline phosphatase, osteocalcin, and osteopontin. No changes were found in bone sialoprotein or E11 protein expression. Thus, growth hormone may stimulate odontoblasts to express several growth factors and matrix proteins associated with dentin matrix biosynthesis in mature rat molars.
Collapse
Affiliation(s)
- W G Young
- Department of Oral Biology, School of Dentistry, The University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
20
|
Shigemura N, Kiyoshima T, Kobayashi I, Matsuo K, Yamaza H, Akamine A, Sakai H. The distribution of BrdU- and TUNEL-positive cells during odontogenesis in mouse lower first molars. THE HISTOCHEMICAL JOURNAL 1999; 31:367-77. [PMID: 10462223 DOI: 10.1023/a:1003796023992] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This study investigated the minute distribution of both proliferating and non-proliferating cells, and cell death in the developing mouse lower first molars using 5-bromo-2'-deoxyuridine (BrdU) incorporation and the terminal deoxynucleotidyl transferase-mediated deoxyuridine-5'-triphosphate (dUTP)-biotin nick end labeling (TUNEL) double-staining technique. The distribution pattern of the TUNEL-positive cells was more notable than that of the BrdU-positive cells. TUNEL-positive cells were localized in the following six sites: (1) in the most superficial layer of the dental epithelium during the initiation stage, (2) in the dental lamina throughout the period during which tooth germs grow after bud formation, (3) in the dental epithelium in the most anterior part of the antero-posterior axis of the tooth germ after bud formation, (4) in the primary enamel knot from the late bud stage to the late cap stage, (5) in the secondary enamel knots from the late cap stage to the late bell stage, and (6) in the stellate reticulum around the tips of the prospective cusps after the early bell stage. These peculiar distributions of TUNEL-positive cells seemed to have some effect on either the determination of the exact position of the tooth germ in the mandible or on the complicated morphogenesis of the cusps. The distribution of BrdU-negative cells was closely associated with TUNEL-positive cells, which thus suggested cell arrest and the cell death to be essential for the tooth morphogenesis.
Collapse
Affiliation(s)
- N Shigemura
- Second Department of Conservative Dentistry, Faculty of Dentistry, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Yokose S, Zhungfeng C, Tajima Y, Fujieda K, Katayama I, Katayama T. The effects of estrogen deficiency on glycosylation of odontoblasts in rats. J Endod 1998; 24:645-7. [PMID: 10023244 DOI: 10.1016/s0099-2399(98)80146-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To investigate the effects of estrogen deficiency on odontoblast metabolism, we induced osteoporosis in rats by ovariectomy and examined the glycosylation of the matrix component in odontoblasts. Peanut agglutinin (PNA) lectin histochemistry, which detects D-galactose and N-acetylgalactosamine sugars, was conducted in incisor odontoblasts of ovariectomized (OVX) and sham-operated (sham) rats. At 5 wk after the operation, bone mineral density and serum level of estrogen in OVX rats were lower than those in sham rats. PNA binding sites were found in the odontoblasts in incisors, and the binding sites in OVX rats were much stronger than those in sham rats. Furthermore, PNA binding sites were localized at the predentin matrix in OVX rats, but the reaction in sham rats was not detected. Because D-galactose and N-acetylgalactosamine sugars bound to PNA are important constituents of proteoglycans in dentin matrix and the PNA binding sites reflect the proteoglycan production of odontoblasts, these results indicated that galactosyl glycosylation of proteoglycans in odontoblasts is influenced by estrogen deficiency in rat incisors.
Collapse
Affiliation(s)
- S Yokose
- Department of Operative Dentistry, School of Dentistry, Meikai University, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Kitamura C, Terashita M. Expressions of c-jun and jun-B proto-oncogenes in odontoblasts during development of bovine tooth germs. J Dent Res 1997; 76:822-30. [PMID: 9126177 DOI: 10.1177/00220345970760040201] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
c-jun and jun-B genes are among the nuclear proto-oncogenes induced by growth factors such as the TGF-beta superfamily and play important roles in cell differentiation. These gene products enhance expressions of proteins including osteocalcin, alkaline phosphatase, and collagens. On the other hand, it is well-known that the TGF-beta superfamily affects odontoblast differentiation, and that differentiated odontoblasts express extracellular and membrane proteins as described above. However, there are few reports of factors that participate in the transcriptional regulation of odontoblasts. Especially, little is known about the expression of c-jun and jun-B genes. In this study, we focused on the examination of expressions of c-jun and jun-B genes in dental papillae of bovine tooth germs. Using in situ hybridization, we found that these genes were expressed only in the odontoblastic lineage, but not in other dental papilla cells. Levels of c-jun and jun-B mRNAs increased along the gradient of differentiation of odontoblasts. These levels of c-jun mRNAs were maintained in both young and mature odontoblasts. However, unlike the c-jun gene, expression of the jun-B gene became sparse in mature odontoblasts compared with young odontoblasts. For further analysis, Northern hybridization of total RNA extracted from differentiated odontoblasts was performed for the examination of levels of jun-B mRNAs, indicating that levels of jun-B mRNAs of mature odontoblasts were clearly less than those of young odontoblasts. These results suggest that c-jun and jun-B genes may participate in the transcriptional regulation of odontoblasts of bovine tooth germs, and may control the odontoblast phenotype. Furthermore, our results suggest that these genes can be markers of odontoblasts during dentinogenesis; especially, high expression of jun-B gene can be a marker of young odontoblasts that start to form the new dentin matrix.
Collapse
Affiliation(s)
- C Kitamura
- Department of Operative Dentistry, Kyushu Dental College, Kitakyushu, Japan
| | | |
Collapse
|
23
|
Zhang CZ, Li H, Young WG, Bartold PM, Chen C, Waters MJ. Evidence for a local action of growth hormone in embryonic tooth development in the rat. Growth Factors 1997; 14:131-43. [PMID: 9255605 DOI: 10.3109/08977199709021516] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Studies in non-dental embryonic tissues have suggested that an interaction between growth hormone and its receptor may play a role in growth and development before the foetal pituitary gland is competent. This study reports the distribution of growth hormone, its receptor and binding protein in developing rat tooth germs from embryonic day 17 to 21 and postnatal day 0 using antibodies specific for each of these proteins. Four foetal rats were processed at each time point (E17, E18, E20/21 and postnatal day 0). Following routine fixation and paraffin embedding, sections were treated with antisera to rat growth hormone, rat growth hormone binding protein and growth hormone receptor. Localization of antibody/antigen complexes was subsequently visualized by addition of biotinylated IgG and reaction with streptavidin peroxidase and diaminobenzidine. Assessment of the level of staining was qualitative and based on a subjective rankings ranging from equivocal to very strong staining. Overall, growth hormone and its binding protein were located both in the cellular elements and throughout the extracellular matrix, whereas the growth hormone receptor showed an exclusively intra-cellular location. All three proteins were detectable in cells of the dental epithelium and mesenchyme at the primordial bud stage (E17) which occurs prior to expression of pituitary growth hormone. At the cap stage of odontogenesis (E18-19), numerous cells in both the dental epithelium and mesenchyme were intensely immunoreactive for growth hormone, its binding protein and receptor. In the succeeding early bell stage (E20-21), most of the mesenchymal cells in the dental pulp were mildly positive for these proteins, while the dental epithelium and adjacent mesenchyme were more immunoreactive. At the late bell stage (postnatal day 0), all three proteins were localized in dental epithelium, differentiating mesenchymal cells the cuspal surface facing the epithelial-mesenchymal interface, preodontoblasts, and odontoblasts forming dentine. From these observations, immunoreactive growth hormone, its receptor and binding protein appear to be expressed in odontogenic cells undergoing histodifferentiation, morphodifferentiation and dentinogenesis in a cell-type and stage-specific pattern throughout embryonic tooth development. This suggests the possibility that growth hormone, or a growth hormone-like protein, plays a paracrine/autocrine role in tooth development in utero.
Collapse
Affiliation(s)
- C Z Zhang
- Faculty of Dentistry, University of Queensland, Australia
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Pulp tissue responds to dentin injury by laying down reactionary dentin secreted by existing odontoblasts or reparative dentin elaborated by odontoblast-like cells that differentiated from precursor cells in the absence of inner dental epithelium and basement membrane. Furthermore, growth factors or active dentin matrix components are fundamental signals involved in odontoblast differentiation. In vitro, dental pulp cells cultured under various conditions are able to express typical markers of differentiation, but no culture system can re-create pulp response to dentin drilling. This paper reports the behavior of thick slices from human teeth drilled immediately after extraction and cultured from 3 days to 1 month. Results show that the damaged pulp beneath the cavity is able to develop, in vitro, some typical aspects correlated to tissue healing, evidenced by cell proliferation (BrdU-positive cells), neovascularization (positive with antitype-IV collagen antibodies), and the presence of functional (3H proline-positive) cuboidal cells close to the injured area. After 30 days of culture, elongated spindle-shaped cells can be seen aligned along the edges of the relevant dentin walls, whereas sound functional odontoblasts are well-preserved beneath healthy areas. This tissue recovery leads us to believe that such a culture model will be a useful system for testing factors regulating pulp repair.
Collapse
Affiliation(s)
- H Magloire
- Laboratoire du Developpement des Tissus Dentaires, Faculté d'Odontologie, Lyon, France
| | | | | |
Collapse
|