1
|
Zhang W, Liu B, Wang Y, Zhang H, He L, Wang P, Dong M. Mitochondrial dysfunction in pulmonary arterial hypertension. Front Physiol 2022; 13:1079989. [PMID: 36589421 PMCID: PMC9795033 DOI: 10.3389/fphys.2022.1079989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/29/2022] [Indexed: 01/03/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by the increased pulmonary vascular resistance due to pulmonary vasoconstriction and vascular remodeling. PAH has high disability, high mortality and poor prognosis, which is becoming a more common global health issue. There is currently no drug that can permanently cure PAH patients. The pathogenesis of PAH is still not fully elucidated. However, the role of metabolic theory in the pathogenesis of PAH is becoming clearer, especially mitochondrial metabolism. With the deepening of mitochondrial researches in recent years, more and more studies have shown that the occurrence and development of PAH are closely related to mitochondrial dysfunction, including the tricarboxylic acid cycle, redox homeostasis, enhanced glycolysis, and increased reactive oxygen species production, calcium dysregulation, mitophagy, etc. This review will further elucidate the relationship between mitochondrial metabolism and pulmonary vasoconstriction and pulmonary vascular remodeling. It might be possible to explore more comprehensive and specific treatment strategies for PAH by understanding these mitochondrial metabolic mechanisms.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Oncology, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital (The Second Clinical Medical College Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Bo Liu
- Department of Cardiovascular, Geratric Diseases Institute of Chengdu, Chengdu Fifth People’s Hospital (The Second Clinical Medical College Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Yazhou Wang
- Department of Cardiothoracic, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital (The Second Clinical Medical College Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Hengli Zhang
- Department of Oncology, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital (The Second Clinical Medical College Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Lang He
- Department of Oncology, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital (The Second Clinical Medical College Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China,Correspondence: Mingqing Dong, ; Lang He, ; Pan Wang,
| | - Pan Wang
- Department of Critical Care Medicine, The Traditional Chinese Medicine Hospital of Wenjiang District, Chengdu, China,Correspondence: Mingqing Dong, ; Lang He, ; Pan Wang,
| | - Mingqing Dong
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China,Correspondence: Mingqing Dong, ; Lang He, ; Pan Wang,
| |
Collapse
|
2
|
Pelletier-Galarneau M, Petibon Y, Ma C, Han P, Kim SJW, Detmer FJ, Yokell D, Guehl N, Normandin M, El Fakhri G, Alpert NM. In vivo quantitative mapping of human mitochondrial cardiac membrane potential: a feasibility study. Eur J Nucl Med Mol Imaging 2020; 48:414-420. [PMID: 32719915 DOI: 10.1007/s00259-020-04878-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Alteration in mitochondrial membrane potential (ΔΨm) is an important feature of many pathologic processes, including heart failure, cardiotoxicity, ventricular arrhythmia, and myocardial hypertrophy. We present the first in vivo, non-invasive, assessment of regional ΔΨm in the myocardium of normal human subjects. METHODS Thirteen healthy subjects were imaged using [18F]-triphenylphosphonium ([18F]TPP+) on a PET/MR scanner. The imaging protocol consisted of a bolus injection of 300 MBq followed by a 120-min infusion of 0.6 MBq/min. A 60 min, dynamic PET acquisition was started 1 h after bolus injection. The extracellular space fraction (fECS) was simultaneously measured using MR T1-mapping images acquired at baseline and 15 min after gadolinium injection with correction for the subject's hematocrit level. Serial venous blood samples were obtained to calculate the plasma tracer concentration. The tissue membrane potential (ΔΨT), a proxy of ΔΨm, was calculated from the myocardial tracer concentration at secular equilibrium, blood concentration, and fECS measurements using a model based on the Nernst equation. RESULTS In 13 healthy subjects, average tissue membrane potential (ΔΨT), representing the sum of cellular membrane potential (ΔΨc) and ΔΨm, was - 160.7 ± 3.7 mV, in excellent agreement with previous in vitro assessment. CONCLUSION In vivo quantification of the mitochondrial function has the potential to provide new diagnostic and prognostic information for several cardiac diseases as well as allowing therapy monitoring. This feasibility study lays the foundation for further investigations to assess these potential roles. Clinical trial identifier: NCT03265431.
Collapse
Affiliation(s)
- Matthieu Pelletier-Galarneau
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, #6604, Boston, MA, 02114, USA
| | - Yoann Petibon
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, #6604, Boston, MA, 02114, USA
| | - Chao Ma
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, #6604, Boston, MA, 02114, USA
| | - Paul Han
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, #6604, Boston, MA, 02114, USA
| | - Sally Ji Who Kim
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, #6604, Boston, MA, 02114, USA
| | - Felicitas J Detmer
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, #6604, Boston, MA, 02114, USA
| | - Daniel Yokell
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, #6604, Boston, MA, 02114, USA
| | - Nicolas Guehl
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, #6604, Boston, MA, 02114, USA
| | - Marc Normandin
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, #6604, Boston, MA, 02114, USA
| | - Georges El Fakhri
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, #6604, Boston, MA, 02114, USA.
| | - Nathaniel M Alpert
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, #6604, Boston, MA, 02114, USA.
| |
Collapse
|
3
|
Alpert NM, Pelletier-Galarneau M, Petibon Y, Normandin MD, El Fakhri G. In vivo quantification of mitochondrial membrane potential. Nature 2020; 583:E17-E18. [PMID: 32641811 PMCID: PMC7357846 DOI: 10.1038/s41586-020-2366-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/20/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Nathaniel M Alpert
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Matthieu Pelletier-Galarneau
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medical Imaging, Montreal Heart Institute, Montreal, Quebec, Canada
| | - Yoann Petibon
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Alpert NM, Pelletier-Galarneau M, Kim SJW, Petibon Y, Sun T, Ramos-Torres KM, Normandin MD, El Fakhri G. In-vivo Imaging of Mitochondrial Depolarization of Myocardium With Positron Emission Tomography and a Proton Gradient Uncoupler. Front Physiol 2020; 11:491. [PMID: 32499721 PMCID: PMC7243673 DOI: 10.3389/fphys.2020.00491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/21/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND We recently reported a method using positron emission tomography (PET) and the tracer 18F-labeled tetraphenylphosphonium (18F-TPP+) for mapping the tissue (i.e., cellular plus mitochondrial) membrane potential (ΔΨT) in the myocardium. The purpose of this work is to provide additional experimental evidence that our methods can be used to observe transient changes in the volume of distribution for 18F-TPP+ and mitochondrial membrane potential (ΔΨm). METHODS We tested these hypotheses by measuring decreases of 18F-TPP+ concentration elicited when a proton gradient uncoupler, BAM15, is administered by intracoronary infusion during PET scanning. BAM15 is the first proton gradient uncoupler shown to affect the mitochondrial membrane without affecting the cellular membrane potential. Preliminary dose response experiments were conducted in two pigs to determine the concentration of BAM15 infusate necessary to perturb the 18F-TPP+ concentration. More definitive experiments were performed in two additional pigs, in which we administered an intravenous bolus plus infusion of 18F-TPP+ to reach secular equilibrium followed by an intracoronary infusion of BAM15. RESULTS Intracoronary BAM15 infusion led to a clear decrease in 18F-TPP+ concentration, falling to a lower level, and then recovering. A second BAM15 infusion reduced the 18F-TPP+ level in a similar fashion. We observed a maximum depolarization of 10 mV as a result of the BAM15 infusion. SUMMARY This work provides evidence that the total membrane potential measured with 18F-TPP+ PET is sensitive to temporal changes in mitochondrial membrane potential.
Collapse
Affiliation(s)
- Nathaniel M. Alpert
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Matthieu Pelletier-Galarneau
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Medical Imaging, Montreal Heart Institute, Montreal, QC, Canada
| | - Sally Ji Who Kim
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yoann Petibon
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Tao Sun
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Karla M. Ramos-Torres
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Marc D. Normandin
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Alpert NM, Guehl N, Ptaszek L, Pelletier-Galarneau M, Ruskin J, Mansour MC, Wooten D, Ma C, Takahashi K, Zhou Y, Shoup TM, Normandin MD, El Fakhri G. Quantitative in vivo mapping of myocardial mitochondrial membrane potential. PLoS One 2018; 13:e0190968. [PMID: 29338024 PMCID: PMC5770041 DOI: 10.1371/journal.pone.0190968] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/22/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Mitochondrial membrane potential (ΔΨm) arises from normal function of the electron transport chain. Maintenance of ΔΨm within a narrow range is essential for mitochondrial function. Methods for in vivo measurement of ΔΨm do not exist. We use 18F-labeled tetraphenylphosphonium (18F-TPP+) to measure and map the total membrane potential, ΔΨT, as the sum of ΔΨm and cellular (ΔΨc) electrical potentials. METHODS Eight pigs, five controls and three with a scar-like injury, were studied. Pigs were studied with a dynamic PET scanning protocol to measure 18F-TPP+ volume of distribution, VT. Fractional extracellular space (fECS) was measured in 3 pigs. We derived equations expressing ΔΨT as a function of VT and the volume-fractions of mitochondria and fECS. Seventeen segment polar maps and parametric images of ΔΨT were calculated in millivolts (mV). RESULTS In controls, mean segmental ΔΨT = -129.4±1.4 mV (SEM). In pigs with segmental tissue injury, ΔΨT was clearly separated from control segments but variable, in the range -100 to 0 mV. The quality of ΔΨT maps was excellent, with low noise and good resolution. Measurements of ΔΨT in the left ventricle of pigs agree with previous in in-vitro measurements. CONCLUSIONS We have analyzed the factors affecting the uptake of voltage sensing tracers and developed a minimally invasive method for mapping ΔΨT in left ventricular myocardium of pigs. ΔΨT is computed in absolute units, allowing for visual and statistical comparison of individual values with normative data. These studies demonstrate the first in vivo application of quantitative mapping of total tissue membrane potential, ΔΨT.
Collapse
Affiliation(s)
- Nathaniel M. Alpert
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nicolas Guehl
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Leon Ptaszek
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthieu Pelletier-Galarneau
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jeremy Ruskin
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Moussa C. Mansour
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dustin Wooten
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chao Ma
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kazue Takahashi
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yun Zhou
- The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Timothy M. Shoup
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marc D. Normandin
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Korzeniewski B. Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation. J Appl Physiol (1985) 2016; 121:424-37. [PMID: 27283913 DOI: 10.1152/japplphysiol.00358.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/08/2016] [Indexed: 01/04/2023] Open
Abstract
A model of the cell bioenergetic system was used to compare the effect of oxidative phosphorylation (OXPHOS) deficiencies in a broad range of moderate ATP demand in skeletal muscle and heart. Computer simulations revealed that kinetic properties of the system are similar in both cases despite the much higher mitochondria content and "basic" OXPHOS activity in heart than in skeletal muscle, because of a much higher each-step activation (ESA) of OXPHOS in skeletal muscle than in heart. Large OXPHOS deficiencies lead in both tissues to a significant decrease in oxygen consumption (V̇o2) and phosphocreatine (PCr) and increase in cytosolic ADP, Pi, and H(+) The main difference between skeletal muscle and heart is a much higher cytosolic Pi concentration in healthy tissue and much higher cytosolic Pi accumulation (level) at low OXPHOS activities in the former, caused by a higher PCr level in healthy tissue (and higher total phosphate pool) and smaller Pi redistribution between cytosol and mitochondria at OXPHOS deficiency. This difference does not depend on ATP demand in a broad range. A much greater Pi increase and PCr decrease during rest-to-moderate work transition in skeletal muscle at OXPHOS deficiencies than at normal OXPHOS activity significantly slows down the V̇o2 on-kinetics. Because high cytosolic Pi concentrations cause fatigue in skeletal muscle and can compromise force generation in skeletal muscle and heart, this system property can contribute to the faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart. Shortly, skeletal muscle with large OXPHOS deficiencies becomes fatigued already during low/moderate exercise.
Collapse
Affiliation(s)
- Bernard Korzeniewski
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
7
|
Balaban RS. Perspectives on: SGP symposium on mitochondrial physiology and medicine: metabolic homeostasis of the heart. ACTA ACUST UNITED AC 2013; 139:407-14. [PMID: 22641635 PMCID: PMC3362523 DOI: 10.1085/jgp.201210783] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Robert S Balaban
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20817, USA.
| |
Collapse
|
8
|
Lidocaine depolarizes the mitochondrial membrane potential by intracellular alkalization in rat dorsal root ganglion neurons. J Anesth 2011; 25:229-39. [PMID: 21212988 DOI: 10.1007/s00540-010-1079-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE The mitochondrial membrane potential (ΔΨm) is an important factor for apoptosis, and it is produced by the proton electrochemical gradient (ΔµH(+)). Therefore, the intracellular proton concentration (pH(in)) is an important factor for modifying the ΔΨm. However, the effects of lidocaine on pH(in) are unclear. To investigate mitochondrial responses to lidocaine, therefore, we simultaneously measured pH(in) with ΔΨm, flavin adenine dinucleotide (FAD), and reduced form of nicotinamide adenine dinucleotide (NADH) fluorescence, and calculated the FAD/NADH ratio (redox ratio), the superoxide production in mitochondria. METHODS Morphological change and early apoptosis were observed by annexin-V FITC staining under fluorescent microscope. The ratiometric fluorescent probe JC-1 and HPTS were used for the simultaneous measurements of ΔΨm with pH(in) in rat dorsal root ganglion (DRG) neurons. FAD and NADH autofluorescence were simultaneously measured, and the FAD/NADH fluorescence ratio (redox ratio) was calculated. The superoxide was measured by mitosox-red fluorescent probe for mitochondrial superoxide. Lidocaine was evaluated at 1, 5, and 10 mM. RESULTS Morphological change and early apoptosis were observed after 10 mM lidocaine administration. Lidocaine depolarized ΔΨm with increased pH(in) in a dose-dependent manner. In low-pH saline (pH 6), in the presence of both the weak acids (acetate and propionate), lidocaine failed to depolarize ΔΨm and increase pH(in). On the other hand, lidocaine decreased the redox ratio in the cell and increased the levels of superoxide in a dose-dependent manner. CONCLUSION These results demonstrated that lidocaine depolarizes ΔΨm by intracellular alkalization. These results may indicate one of the mechanisms responsible for lidocaine-induced neurotoxicity.
Collapse
|
9
|
Onizuka S, Tamura R, Hosokawa N, Kawasaki Y, Tsuneyoshi I. Local anesthetics depolarize mitochondrial membrane potential by intracellular alkalization in rat dorsal root ganglion neurons. Anesth Analg 2010; 111:775-83. [PMID: 20686005 DOI: 10.1213/ane.0b013e3181e9f03b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Although it has been reported that local anesthetics, especially lidocaine, are cytotoxic, the mechanism is unclear. Depolarization of the mitochondrial membrane potential (DeltaPsim), one of the markers of mitochondrial failure, is regulated by the proton electrochemical gradient (Delta H(+)). Therefore, intracellular pH ([pH]in) and mitochondrial pH ([pH]m) are important factors for modifying DeltaPsim. However, the effects of local anesthetics on [pH]in and [pH]m are unclear. To investigate mitochondrial responses to local anesthetics, we simultaneously measured [pH]m and [pH]in, along with DeltaPsim. METHODS The ratiometric fluorescent probe JC-1 and HPTS were used for the simultaneous measurements of DeltaPsim with [pH]in in rat dorsal root ganglion neurons. A carboxy-SNARF-1 fluorescent probe was used to measure [pH]m. Lidocaine, mepivacaine, bupivacaine, procaine, QX-314, a charged form of lidocaine, and ammonium chloride (NH(4)Cl) were evaluated. RESULTS DeltaPsim was depolarized and [pH]in was increased by lidocaine, mepivacaine, bupivacaine, and procaine in a dose-dependent manner. Significantly, a relationship between DeltaPsim and [pH]in was observed for lidocaine, mepivacaine, bupivacaine, procaine, and NH(4)Cl perfusion. In contrast, QX-314 did not change DeltaPsim or [pH]in. In low-pH saline (pH6) and in the presence of a weak acid, lidocaine failed to increase [pH]in or depolarize DeltaPsim. The [pH]m was also increased by lidocaine, mepivacaine, bupivacaine, procaine, and NH(4)Cl. CONCLUSION These results demonstrate that uncharged (base) forms of local anesthetics induce DeltaPsim depolarization. One of the causes is intracellular and mitochondrial alkalization.
Collapse
Affiliation(s)
- Shin Onizuka
- Department of Anesthesiology and Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | | | | | | | | |
Collapse
|
10
|
Oka C, Cha CY, Noma A. Characterization of the cardiac Na+/K+ pump by development of a comprehensive and mechanistic model. J Theor Biol 2010; 265:68-77. [PMID: 20435048 DOI: 10.1016/j.jtbi.2010.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 03/06/2010] [Accepted: 04/26/2010] [Indexed: 12/01/2022]
Abstract
A large amount of experimental data on the characteristics of the cardiac Na(+)/K(+) pump have been accumulated, but it remains difficult to predict the quantitative contribution of the pump in an intact cell because most measurements have been made under non-physiological conditions. To extrapolate the experimental findings to intact cells, we have developed a comprehensive Na(+)/K(+) pump model based on the thermodynamic framework (Smith and Crampin, 2004) of the Post-Albers reaction cycle combined with access channel mechanisms. The new model explains a variety of experimental results for the Na(+)/K(+) pump current (I(NaK)), including the dependency on the concentrations of Na(+) and K(+), the membrane potential and the free energy of ATP hydrolysis. The model demonstrates that both the apparent affinity and the slope of the substrate-I(NaK) relationship measured experimentally are affected by the composition of ions in the extra- and intracellular solutions, indirectly through alteration in the probability distribution of individual enzyme intermediates. By considering the voltage dependence in the Na(+)- and K(+)-binding steps, the experimental voltage-I(NaK) relationship could be reconstructed with application of experimental ionic compositions in the model, and the view of voltage-dependent K(+) binding was supported. Re-evaluation of charge movements accompanying Na(+) and K(+) translocations gave a reasonable number for the site density of the Na(+)/K(+) pump on the membrane. The new model is relevant for simulation of cellular functions under various interventions, such as depression of energy metabolism.
Collapse
Affiliation(s)
- Chiaki Oka
- Cell/Biodynamics Simulation Project, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
11
|
Gu XQ, Siemen D, Parvez S, Cheng Y, Xue J, Zhou D, Sun X, Jonas EA, Haddad GG. Hypoxia increases BK channel activity in the inner mitochondrial membrane. Biochem Biophys Res Commun 2007; 358:311-6. [PMID: 17481584 DOI: 10.1016/j.bbrc.2007.04.110] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 04/19/2007] [Indexed: 10/23/2022]
Abstract
To explore the potential function of the BK channel in the inner mitochondrial membrane under physiological and hypoxic conditions, we used on-mitoplast and whole-mitoplast patches. Single BK channels had a conductance of 276+/-9 pS under symmetrical K(+) solutions, were Ca(2+)- and voltage-dependent and were inhibited by 0.1 microM charybdotoxin. In response to hypoxia, BK increased open probability, shifted its reversal potential (9.3+/-2.4 mV) in the positive direction and did not change its conductance. We conclude that (1) the properties at rest of this mitoplast K(+) channel are similar to those of BK channels in the plasma membrane; (2) hypoxia induces an increase, rather than a decrease (as in the plasmalemma), in the open probability of this K(+) channel, leading to K(+) efflux from the mitochondrial matrix to the outside. We speculate that this increase in K(+) efflux from mitochondria into the cytosol is important during hypoxia in maintaining cytosolic K(+).
Collapse
Affiliation(s)
- Xiang Q Gu
- Department of Pediatrics (Section of Respiratory Medicine), University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0735, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Mitochondrial oxidative damage contributes to a range of degenerative diseases. Consequently, the selective inhibition of mitochondrial oxidative damage is a promising therapeutic strategy. One way to do this is to invent antioxidants that are selectively accumulated into mitochondria within patients. Such mitochondria-targeted antioxidants have been developed by conjugating the lipophilic triphenylphosphonium cation to an antioxidant moiety, such as ubiquinol or alpha-tocopherol. These compounds pass easily through all biological membranes, including the blood-brain barrier, and into muscle cells and thus reach those tissues most affected by mitochondrial oxidative damage. Furthermore, because of their positive charge they are accumulated several-hundredfold within mitochondria driven by the membrane potential, enhancing the protection of mitochondria from oxidative damage. These compounds protect mitochondria from damage following oral delivery and may therefore form the basis for mitochondria-protective therapies. Here we review the background and work to date on this class of mitochondria-targeted antioxidants.
Collapse
Affiliation(s)
- Michael P Murphy
- MRC Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Cambridge CB2 2XY, United Kingdom.
| | | |
Collapse
|
13
|
Cochemé HM, Kelso GF, James AM, Ross MF, Trnka J, Mahendiran T, Asin-Cayuela J, Blaikie FH, Manas ARB, Porteous CM, Adlam VJ, Smith RAJ, Murphy MP. Mitochondrial targeting of quinones: therapeutic implications. Mitochondrion 2007; 7 Suppl:S94-102. [PMID: 17449335 DOI: 10.1016/j.mito.2007.02.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 02/12/2007] [Accepted: 02/19/2007] [Indexed: 01/11/2023]
Abstract
Mitochondrial oxidative damage contributes to a range of degenerative diseases. Ubiquinones have been shown to protect mitochondria from oxidative damage, but only a small proportion of externally administered ubiquinone is taken up by mitochondria. Conjugation of the lipophilic triphenylphosphonium cation to a ubiquinone moiety has produced a compound, MitoQ, which accumulates selectively into mitochondria. MitoQ passes easily through all biological membranes and, because of its positive charge, is accumulated several hundred-fold within mitochondria driven by the mitochondrial membrane potential. MitoQ protects mitochondria against oxidative damage in vitro and following oral delivery, and may therefore form the basis for mitochondria-protective therapies.
Collapse
Affiliation(s)
- Helena M Cochemé
- MRC Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Brady NR, Hamacher-Brady A, Westerhoff HV, Gottlieb RA. A wave of reactive oxygen species (ROS)-induced ROS release in a sea of excitable mitochondria. Antioxid Redox Signal 2006; 8:1651-65. [PMID: 16987019 DOI: 10.1089/ars.2006.8.1651] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Once considered simply as the main source of ATP, mitochondria are now implicated in the control of many additional aspects of cell physiology, such as calcium signaling, and pathology, as in injury incurred on ischemia and subsequent reperfusion (I/R). Mitochondrial respiration is ordinarily accompanied by low-level ROS production, but they can respond to elevated ROS concentrations by increasing their own ROS production, a phenomenon termed ROS-induced ROS release (RIRR). Two modes of RIRR have been described. In the first mode of RIRR, enhanced ROS leads to mitochondrial depolarization via activation of the MPTP, yielding a short-lived burst of ROS originating from the mitochondrial electron transport chain (ETC). The second mode of RIRR is MPTP independent but is regulated by the mitochondrial benzodiazepine receptor (mBzR). Increased ROS in the mitochondrion triggers opening of the inner mitochondrial membrane anion channel (IMAC), resulting in a brief increase in ETC-derived ROS. Both modes of RIRR have been shown to transmit localized mitochondrial perturbations throughout the cardiac cell in the form of oscillations or waves but are kinetically distinct and may involve different ROS that serve as second messengers. In this review, we discuss the mechanisms of these different modes of RIRR.
Collapse
Affiliation(s)
- Nathan R Brady
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
15
|
Ross MF, Kelso GF, Blaikie FH, James AM, Cochemé HM, Filipovska A, Da Ros T, Hurd TR, Smith RAJ, Murphy MP. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. BIOCHEMISTRY (MOSCOW) 2005; 70:222-30. [PMID: 15807662 DOI: 10.1007/s10541-005-0104-5] [Citation(s) in RCA: 306] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lipophilic phosphonium cations were first used to investigate mitochondrial biology by Vladimir Skulachev and colleagues in the late 1960s. Since then, these molecules have become important tools for exploring mitochondrial bioenergetics and free radical biology. Here we review why these molecules are useful in mitochondrial research and outline some of the ways in which they are now being utilized.
Collapse
Affiliation(s)
- M F Ross
- MRC Dunn Human Nutrition Unit, Cambridge, CB2 2XY, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Korzeniewski B, Noma A, Matsuoka S. Regulation of oxidative phosphorylation in intact mammalian heart in vivo. Biophys Chem 2005; 116:145-57. [PMID: 15950827 DOI: 10.1016/j.bpc.2005.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 04/12/2005] [Accepted: 04/12/2005] [Indexed: 11/28/2022]
Abstract
A dynamic computer model of oxidative phosphorylation in intact heart was developed by modifying the model of oxidative phosphorylation in intact skeletal muscle published previously. Next, this model was used for theoretical studies on the regulation of oxidative phosphorylation in intact heart in vivo during transition between different work intensities. It is shown that neither a direct activation of ATP usage alone nor a direct activation of both ATP usage and substrate dehydrogenation, including the calcium-activated tricarboxylate acid cycle dehydrogenases, can account for the constancy of [ADP], [PCr], [P(i)] and [NADH] during a significant increase in oxygen consumption and ATP turnover encountered in intact heart in vivo. Only a direct activation of all oxidative phosphorylation complexes in parallel with a stimulation of ATP usage and substrate dehydrogenation enabled to reproduce the experimental data concerning the constancy of metabolite concentrations. The molecular background of the differences between heart and skeletal muscle in the kinetic behaviour of the oxidative phosphorylation system is also discussed.
Collapse
Affiliation(s)
- Bernard Korzeniewski
- Department of Physiology and Biophysics, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | |
Collapse
|
17
|
Smith RAJ, Porteous CM, Gane AM, Murphy MP. Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci U S A 2003; 100:5407-12. [PMID: 12697897 PMCID: PMC154358 DOI: 10.1073/pnas.0931245100] [Citation(s) in RCA: 537] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial dysfunction contributes to many human degenerative diseases but specific treatments are hampered by the difficulty of delivering bioactive molecules to mitochondria in vivo. To overcome this problem we developed a strategy to target bioactive molecules to mitochondria by attachment to the lipophilic triphenylphosphonium cation through an alkyl linker. These molecules rapidly permeate lipid bilayers and, because of the large mitochondrial membrane potential (negative inside), accumulate several hundredfold inside isolated mitochondria and within mitochondria in cultured cells. To determine whether this strategy could lead to the development of mitochondria-specific therapies, we investigated the administration and tissue distribution in mice of simple alkyltriphenylphosphonium cations and of mitochondria-targeted antioxidants comprising a triphenylphosphonium cation coupled to a coenzyme Q or vitamin E derivative. Significant doses of these compounds could be fed safely to mice over long periods, coming to steady-state distributions within the heart, brain, liver, and muscle. Therefore, mitochondria-targeted bioactive molecules can be administered orally, leading to their accumulation at potentially therapeutic concentrations in those tissues most affected by mitochondrial dysfunction. This finding opens the way to the testing of mitochondria-specific therapies in mouse models of human degenerative diseases.
Collapse
Affiliation(s)
- Robin A J Smith
- Medical Research Council-Dunn Human Nutrition Unit, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 2XY, United Kingdom
| | | | | | | |
Collapse
|
18
|
Murphy MP. Development of lipophilic cations as therapies for disorders due to mitochondrial dysfunction. Expert Opin Biol Ther 2001; 1:753-64. [PMID: 11728211 DOI: 10.1517/14712598.1.5.753] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mitochondrial dysfunction causes or exacerbates a number of diseases. These include genetic disorders such as Friedreich's ataxia where the primary lesion is a defect in a nuclear gene and those diseases caused by mutations to mitochondrial DNA. Mitochondrial damage also contributes to neurodegenerative diseases, diabetes and ischaemia-reperfusion injury. Drug therapies to prevent or alleviate mitochondrial dysfunction use redox active compounds, anti-oxidants or mitochondrial co-factors, however, their effectiveness is limited. A promising approach to increase the selectivity and potency of these compounds is to modify them so that they concentrate within mitochondria. This can be done by incorporating a lipophilic cation which causes the molecules to concentrate several hundred-fold in mitochondria, driven by the membrane potential across the inner membrane. As lipophilic cations cross biological membranes easily, they can be delivered to mitochondria of the heart, brain and skeletal muscle, the organs most affected by mitochondrial damage. Mitochondria-targeted lipophilic cations may lead to improved therapies for diseases involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- M P Murphy
- MRC-Dunn Human Nutrition Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge CB2 2XY, UK.
| |
Collapse
|
19
|
Abstract
The major function of mitochondria in human cells is to provide ATP by oxidative phosphorylation. However, mitochondria have many other roles including the modulation of intracellular calcium concentration and the regulation of apoptotic cell death. Furthermore, the mitochondrial respiratory chain is a major source of damaging free radicals. Consequently, mitochondrial dysfunction contributes to a number of human diseases, ranging from neurodegenerative diseases and ischaemia-reperfusion injury to obesity and diabetes. In addition, mutations to nuclear or mitochondrial DNA cause a number of human diseases. Therefore, strategies to prevent mitochondrial damage or to manipulate mitochondrial function in clinically useful ways may provide new therapies for a range of human disorders. Here we outline why mitochondria are a potentially important target for drug delivery and discuss how to deliver bioactive molecules selectively to mitochondria within cells.
Collapse
Affiliation(s)
- M P Murphy
- Department of Biochemistry, University of Otago, Box 56, Dunedin, New Zealand.
| | | |
Collapse
|
20
|
Korzeniewski B. Regulation of ATP supply during muscle contraction: theoretical studies. Biochem J 1998; 330 ( Pt 3):1189-95. [PMID: 9494084 PMCID: PMC1219260 DOI: 10.1042/bj3301189] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The dynamic computer model of oxidative phosphorylation developed previously and successfully tested for large-scale changes in fluxes and metabolite concentrations was used to study the question of how the rate of ATP production by oxidative phosphorylation is adjusted to meet the energy demand during muscle contraction, which causes a great increase in ATP consumption in relation to the resting state. The changes in the respiration rate and ATP/ADP ratio after the onset of maximal work measured experimentally were compared with simulated changes in the respiration rate and ATP/ADP in several different cases, assuming direct activation of different steps by an external effector. On the basis of the computer simulations performed, it was possible to conclude which enzymes/metabolic blocks should be directly activated to cause the experimentally observable changes in fluxes and metabolite concentrations. The theoretical results obtained suggest that the parallel direct activation of actinomyosin-ATP-ase and oxidative phosphorylation by an external effector (for example calcium ions) is the main mechanism responsible for fitting of ATP production to ATP consumption, while the negative feedback via an increase in ADP concentration (decrease in ATP/ADP), which indirectly activates the ATP supply, plays only a minor role. Additionally, the conclusion is drawn that most of the oxidative phosphorylation steps should be directly activated in order to explain the observed changes in the respiration rate and ATP/ADP ratio (and also in other parameters) during muscle contraction. It is suggested that there should exist a universal external activator/regulatory mechanism which causes a parallel stimulation of different enzymes/processes. A possible nature of such an activator is shortly discussed.
Collapse
Affiliation(s)
- B Korzeniewski
- Institute of Molecular Biology, Jagiellonian University, al. Mickiewicza 3, 31-120 Krakow, Poland
| |
Collapse
|
21
|
Studies of Physiological Control of ATP Synthesis. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1569-2558(08)60252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
22
|
LaNoue KF, Duszynski J. Kinetic studies of ATP synthase: the case for the positional change mechanism. J Bioenerg Biomembr 1992; 24:499-506. [PMID: 1429543 DOI: 10.1007/bf00762368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mitochondrial ATP synthases shares many structural and kinetic properties with bacterial and chloroplast ATP synthases. These enzymes transduce the energy contained in the membrane's electrochemical proton gradients into the energy required for synthesis of high-energy phosphate bonds. The unusual three-fold symmetry of the hydrophilic domain, F1, of all these synthases is striking. Each F1 has three identical beta subunits and three identical alpha subunits as well as three additional subunits present as single copies. The catalytic site for synthesis is undoubtedly contained in the beta subunit or an alpha, beta interface, and thus each enzyme appears to contain three identical catalytic sites. This review summarizes recent isotopic and kinetic evidence in favour of the concept, originally proposed by Boyer and coworkers, that energy from the proton gradient is exerted not directly for the reaction at the catalytic site, but rather to release product from a single catalytic site. A modification of this binding change hypotheses is favored by recent data which suggest that the binding change is due to a positional change in all three beta subunits relative to the remaining subunits of F1 and F0 and that the vector of rotation is influenced by energy. The positional change, or rotation, appears to be the slow step in the process of catalysis and it is accelerated in all F1F0 ATPases studied by substrate binding and by the proton gradient. However, in the mammalian mitochondrial enzyme, other types of allosteric rate regulation not yet fully elucidated seem important as well.
Collapse
Affiliation(s)
- K F LaNoue
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, College of Medicine, Pennsylvania State University, Hershey 17033
| | | |
Collapse
|
23
|
Affiliation(s)
- D A Harris
- Department of Biochemistry, University of Oxford, U.K
| | | |
Collapse
|
24
|
Korzeniewski B, Froncisz W. An extended dynamic model of oxidative phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1060:210-23. [PMID: 1657162 DOI: 10.1016/s0005-2728(09)91009-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The presented model based on an earlier one (Korzeniewski, B. and Froncisz, W. (1989) Studia Biophys. 132, 173-187) simulates concentration changes in time of chemical compounds and thermodynamic forces during respiration of cell suspension in a closed chamber. A set of differential equations solved numerically describes the utilization of oxygen up to anaerobiosis and the behaviour of the system after a sudden pulse of oxygen. Flux control coefficients for most important reactions (enzymes) of oxidative phosphorylation were calculated. A good qualitative and (when a direct comparison is possible) quantitative agreement with experimental results can be observed. The following conclusions can be drawn from the simulation: (1) Wilson's steady state model is not in contradiction with sharing of the control over the respiration between some steps and displacement of the ATP/ADP carrier from equilibrium. (2) The overshoot characteristics of the delta microH+ time-course after reoxygenation can be explained without using the lag-phase kinetics of ATP-synthetase. (3) A 'hot region' (sharp changes of many parameters) can be distinguished when the oxygen concentration approaches zero; only cytochrome oxidase is clearly sensitive on oxygen concentration in all its range. (4) Control over oxidative phosphorylation is shared mainly between inputs of the system (ATP utilization and substrate dehydrogenation) and the proton leak.
Collapse
Affiliation(s)
- B Korzeniewski
- Institute of Molecular Biology, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
25
|
Humphrey SM, Buckman JE, Holliss DG. Subcellular distribution of energy metabolites in the pre-ischaemic and post-ischaemic perfused working rat heart. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 191:755-9. [PMID: 2143988 DOI: 10.1111/j.1432-1033.1990.tb19184.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Isolated working rat hearts were subjected to 20 min of global ischaemia and either 5 min or 15 min of reperfusion. The subcellular distribution of ATP, ADP, AMP, phosphocreatine and Pi were determined before and after ischaemia by the method of non-aqueous tissue fractionation. Ventricular function and the cytosolic, mitochondrial and ATPase-associated compartmentation of metabolites were measured. After 5 min of reperfusion, only 13 +/- 9% of the pre-ischaemic contractile function was restored compared to 67 +/- 8% after 15 min reperfusion. ATP was reduced in all cellular compartments after 5 min of reperfusion but was only decreased from pre-ischaemic values in the cytosolic compartment after 15 min of reperfusion (17.1 +/- 3.9 nmol/mg vs. 4.3 +/- 1.5 nmol/mg total protein; P less than 0.05). The mitochondrial [ATP]/[ADP] was reduced from a normal value of 4.36 to 1.79 after 5 min but recovered to 4.62 after 15 min of reperfusion. Most of the Pi was located in the mitochondria or with the ATPase fraction of the cell, with only 16% of the total Pi free in the cytosol. This study indicates that the capacity of the heart to recover function may be compromised during early reperfusion by a 59% increase in mitochondrial phosphate content and during late reperfusion by a reduced cytosolic/mitochondrial concentration ratio of both ATP (from 0.85 to 0.19) and phosphocreatine (from 3.9 to 1.24).
Collapse
Affiliation(s)
- S M Humphrey
- Department of Pathology, University of Auckland School of Medicine, New Zealand
| | | | | |
Collapse
|
26
|
Pörtner HO, Boutilier RG, Tang Y, Toews DP. Determination of intracellular pH and PCO2 after metabolic inhibition by fluoride and nitrilotriacetic acid. RESPIRATION PHYSIOLOGY 1990; 81:255-73. [PMID: 2124717 DOI: 10.1016/0034-5687(90)90050-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mean intracellular pH (pHi) and PCO2 (PiCO2) have been analysed based on pH and total CO2 measurements in tissue homogenates. Tissues were sampled from undisturbed worms (Sipunculus nudus), squid (Illex illecebrosus), trout (Salmo gairdneri), toads (Bufo marinus), and rats. Homogenate metabolism was inhibited by the addition of potassium fluoride and nitrilotriacetic acid (NTA). Model calculations revealed that the influence of dilution, medium buffers, and contamination by extracellular fluids was negligible. In white muscle tissue the resulting pHi values were virtually the same as found in studies using DMO (dimethyloxazolidinedione). If large fractions of mitochondria were present (e.g. in heart muscle), DMO derived pHi values were considerably higher, probably representing overestimates. Homogenate derived pHi values are concluded to represent the effective mean pHi by taking into account pH gradients, and the volumes and buffering of cellular compartments. High time resolution and small variability make this method especially useful to assess rapid changes in pHi, e.g. in exercising animals.
Collapse
Affiliation(s)
- H O Pörtner
- Institut für Zoologie, Heinrich-Heine-Universität, Düsseldorf, F.R.G
| | | | | | | |
Collapse
|
27
|
Kiviluoma KT, Karhunen M, Lapinlampi T, Peuhkurinen KJ, Hassinen IE. Acetate-induced changes in cardiac energy metabolism and hemodynamics in the rat. Basic Res Cardiol 1988; 83:431-44. [PMID: 3190660 DOI: 10.1007/bf02005829] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The hemodynamic and metabolic effects of acetate were studied in rats in vivo and in the isolated perfused heart. Hemodynamic parameters, myocardial phosphagens, inorganic phosphate, and adenosine were measured in vivo. Acetate uptake, coronary flow, O2 consumption, parameters of the cellular energy state, and hypoxanthine compounds and their washout were measured in heart perfusion experiments. Heart rate (HR), cardiac output, and the peak derivative of the left ventricular pressure rise (dP/dtmax) increased significantly during acetate infusion in vivo, but mean arterial pressure, systolic arterial pressure, and systemic vascular resistance decreased. Heart muscle ATP concentrations decreased after 7 min of acetate infusion. In vivo cardiac work load (HR.(peak left ventricular pressure] showed a positive correlation with tissue adenosine concentration and a negative correlation with phosphorylation potential. Acetate uptake in the perfused hearts was about 2.5 mumol/min per gram wet weight. Acetate perfusion increased O2 consumption and coronary flow concomitantly with a decrease in tissue ATP concentration. Tissue AMP and perfusate effluent adenosine concentration and adenosine output increased significantly, perfusate adenosine showing a non-linear positive correlation with coronary flow. The results demonstrate that acetate induces considerable changes in hemodynamics and metabolism in the heart.
Collapse
Affiliation(s)
- K T Kiviluoma
- Department of Medical Biochemistry, University of Oulu, Finland
| | | | | | | | | |
Collapse
|
28
|
Connett RJ. The cytosolic redox is coupled to VO2. A working hypothesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1988; 222:133-42. [PMID: 3364234 DOI: 10.1007/978-1-4615-9510-6_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- R J Connett
- Department of Physiology, University of Rochester, New York
| |
Collapse
|
29
|
Sundqvist KE, Heikkilä J, Hassinen IE, Hiltunen JK. Role of NADP+ (corrected)-linked malic enzymes as regulators of the pool size of tricarboxylic acid-cycle intermediates in the perfused rat heart. Biochem J 1987; 243:853-7. [PMID: 3663104 PMCID: PMC1147935 DOI: 10.1042/bj2430853] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cytosolic and mitochondrial concentrations of malate, 2-oxoglutarate, isocitrate and pyruvate in the isolated perfused rat heart were measured by non-aqueous tissue fractionation, taking the NADP-linked isocitrate dehydrogenase as indicator reactions for the free [NADPH]/[NADP+] ratios. The mass-action ratios of NADP-linked malic enzymes (EC 1.1.1.40) were found to be on the side of pyruvate carboxylation by more than one order of magnitude in both the cytosolic and the mitochondrial spaces in hearts perfused with glucose, whereas during propionate perfusion this ratio approached the equilibrium constant (Keq.) of malic enzyme. The results consequently indicate that the NADP-linked malic enzymes cannot be responsible for the feed-out (cataplerotic) reactions from the tricarboxylic acid cycle which occur during glucose perfusion. Only when other anaplerotic fluxes into the cycle are high, as during propionate oxidation, which results in accumulation of tricarboxylic acid-cycle intermediates, is a steady state reached which allows efflux via the malic enzyme.
Collapse
Affiliation(s)
- K E Sundqvist
- Department of Medical Biochemistry, University of Oulu, Finland
| | | | | | | |
Collapse
|
30
|
Fukuda H, Syrota A, Charbonneau P, Vallois J, Crouzel M, Prenant C, Sastre J, Crouzel C. Use of 11C-triphenylmethylphosphonium for the evaluation of membrane potential in the heart by positron-emission tomography. EUROPEAN JOURNAL OF NUCLEAR MEDICINE 1986; 11:478-83. [PMID: 3488216 DOI: 10.1007/bf00252793] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The membrane potential in cells can be estimated by electrophysiological techniques and biomedical methods using lipophilic cations labelled with 14C. However, these techniques cannot be applied to the human heart. In this study a lipophilic cation, triphenylmethylphosphonium (TPMP), was labelled with carbon-11 with the purpose of investigating its suitability for the estimation of membrane potential in vivo. A biodistribution study in mice and rats showed significant uptake of the cation in the heart a few minutes after IV injection which remained constant for 60 min. In vivo study by positron-emission tomography showed that after IV injection of 11C-TPMP in the dog, activity rose almost immediately in the myocardium and then remained constant for 60 min. A rapid injection of KCl (greater than 40 mg/kg) 20 min after injection of 11C-TPMP led to an instantaneous fall in myocardial 11C-TPMP concentration. Membrane potential (delta psi), calculated from the TPMP distribution ratio between intracellular and plasma water space by the Nernst equation, was estimated at -148.1 +/- 6.0 mV for the dog heart. This value reflected both cell membrane potential and mitochondrial membrane potential and, thus, the energy state of the myocardial cells.
Collapse
|
31
|
Abstract
The heart muscle has proved to be a practical model for studying respiratory control in intact tissues. It also demonstrates that control at the level of the respiratory chain is augmented by metabolic control at the substrate level as exemplified by the very narrow range of changes in the redox state of the mitochondrial NADH/NAD couple even during extensive changes in ATP and oxygen consumption. The behaviour of mitochondria when isolated can largely be duplicated in the intact myocardium. Moreover, the high intracellular concentrations of enzymes, coenzymes and adenine nucleotides create conditions of high reaction rates, enabling the formation of a near equilibrium network of certain main pathways. This equilibrium network in connection with metabolic regulation of the hydrogen pressure upon the matrix NADH/NAD pool is a prerequisite for the regulation of cellular respiration at a high efficiency of energy transfer. Experimentation on the intact myocardium also seems to be capable of resolving some of the uncertainties about prevailing mechanisms for the regulation of cellular respiration.
Collapse
|
32
|
Kauppinen RA, Hiltunen JK, Hassinen IE. Mitochondrial transmembrane proton electrochemical potential, di- and tricarboxylate distribution and the poise of the malate-aspartate cycle in the intact myocardium. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1986; 194:331-41. [PMID: 2875626 DOI: 10.1007/978-1-4684-5107-8_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
33
|
Sundqvist KE, Peuhkurinen KJ, Hiltunen JK, Hassinen IE. Effect of acetate and octanoate on tricarboxylic acid cycle metabolite disposal during propionate oxidation in the perfused rat heart. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 801:429-36. [PMID: 6487652 DOI: 10.1016/0304-4165(84)90149-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Tricarboxylic acid cycle pool size is determined by anaplerosis and metabolite disposal. The regulation of the latter during propionate metabolism was studied in isolated perfused rat hearts in the light of the characteristics of NADP-linked malic enzyme, which is inhibited by acetyl-CoA. The acetyl-CoA concentration was varied by infusions of acetate and octanoate, and the rate of metabolite disposal was calculated from a metabolic balance sheet compiled from the relevant metabolic fluxes. Propionate addition increased the tricarboxylic acid cycle pool size 4-fold and co-infusion of acetate or octanoate did not change it further. Propionate caused a decrease in the CoA-SH concentration and a 10-fold increase in the propionyl-CoA concentration. A paradoxical increase in the CoA-SH concentration was observed upon co-infusion of acetate in the presence of propionate, an effect probably caused by competitive inhibition of propionate activation. A more pronounced decline in the propionyl-CoA concentration was observed upon the co-infusion of octanoate. In a metabolic steady state, acetate and octanoate reduced propionate disposal only slightly, but did not increase the tricarboxylic acid cycle pool size. The results are in accord with the notion that the tricarboxylic acid pool size is mainly regulated by the anaplerotic mechanisms.
Collapse
|
34
|
Kauppinen RA, Hiltunen JK, Hassinen IE. Mitochondrial membrane potential, transmembrane difference in the NAD+ redox potential and the equilibrium of the glutamate-aspartate translocase in the isolated perfused rat heart. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 725:425-33. [PMID: 6652078 DOI: 10.1016/0005-2728(83)90183-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The distribution of glutamate and aspartate and the mitochondrial membrane potential (delta psi) were studied in isolated rat heart mitochondria and in the intact perfused rat heart. The diffusion potential imposed by the glutamate-aspartate exchange through mediation of the electrogenic glutamate-aspartate translocator attained a value close to the mitochondrial delta psi measured from the distribution of triphenylmethylphosphonium ion (TPMP+) both in isolated mitochondria and in intact myocardium. Distributions of the delta psi probe and metabolites were determined by subcellular fractionation of the heart muscle in a non-aqueous medium. The results indicate that the glutamate-aspartate translocator is in near equilibrium in the myocardium. The diffusion potential of the glutamate-aspartate exchange, and the mitochondrial/cytosolic difference in the redox potentials of the free NAD+/NADH pools are equal allowing for experimental error. These data obtained from intact tissue can therefore be interpreted as supporting the notion of the transmembrane uphill transport of reducing equivalent from the cytosolic free NAD+/NADH pool being driven by the malate-aspartate cycle energized by the mitochondrial delta psi.
Collapse
|