1
|
Sutherland G, Pidgeon JP, Lee HKH, Proctor MS, Hitchcock A, Wang S, Chekulaev D, Tsoi WC, Johnson MP, Hunter CN, Clark J. Twisted Carotenoids Do Not Support Efficient Intramolecular Singlet Fission in the Orange Carotenoid Protein. J Phys Chem Lett 2023; 14:6135-6142. [PMID: 37364284 PMCID: PMC10331831 DOI: 10.1021/acs.jpclett.3c01139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Singlet exciton fission is the spin-allowed generation of two triplet electronic excited states from a singlet state. Intramolecular singlet fission has been suggested to occur on individual carotenoid molecules within protein complexes provided that the conjugated backbone is twisted out of plane. However, this hypothesis has been forwarded only in protein complexes containing multiple carotenoids and bacteriochlorophylls in close contact. To test the hypothesis on twisted carotenoids in a "minimal" one-carotenoid system, we study the orange carotenoid protein (OCP). OCP exists in two forms: in its orange form (OCPo), the single bound carotenoid is twisted, whereas in its red form (OCPr), the carotenoid is planar. To enable room-temperature spectroscopy on canthaxanthin-binding OCPo and OCPr without laser-induced photoconversion, we trap them in a trehalose glass. Using transient absorption spectroscopy, we show that there is no evidence of long-lived triplet generation through intramolecular singlet fission despite the canthaxanthin twist in OCPo.
Collapse
Affiliation(s)
- George
A. Sutherland
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - James P. Pidgeon
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| | - Harrison Ka Hin Lee
- SPECIFIC,
Faculty of Science and Engineering, Swansea
University, Swansea SA1 8EN, U.K.
| | - Matthew S. Proctor
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - Andrew Hitchcock
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - Shuangqing Wang
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| | - Dimitri Chekulaev
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K.
| | - Wing Chung Tsoi
- SPECIFIC,
Faculty of Science and Engineering, Swansea
University, Swansea SA1 8EN, U.K.
| | - Matthew P. Johnson
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - C. Neil Hunter
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - Jenny Clark
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| |
Collapse
|
2
|
Papadopoulos I, Gutiérrez-Moreno D, Bo Y, Casillas R, Greißel PM, Clark T, Fernández-Lázaro F, Guldi DM. Altering singlet fission pathways in perylene-dimers; perylene-diimide versus perylene-monoimide. NANOSCALE 2022; 14:5194-5203. [PMID: 35315470 DOI: 10.1039/d1nr08523a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We used a systematic approach to shed light on the inherent differences in perylenes, namely monoimides versus diimides, including coplanarity and dipole moment, and their impact on singlet fission (SF) by designing, synthesizing, and probing a full fledged series of phenylene- and naphthalene-linked dimers. Next to changing the functionality of the perylene core, we probed the effect of the spacers and their varying degrees of rotational freedom, molecular electrostatic potentials, and intramolecular interactions on the SF-mechanism and -efficiencies. An arsenal of spectroscopic techniques revealed that for perylene-monoimides, a strong charge-transfer mixing with the singlet and triplet excited states restricts SF and yields low triplet quantum yields. This is accompanied by an up-conversion channel that includes geminate triplet-triplet recombination. Using perylene-diimides alters the SF-mechanism by populating a charge-separated-state intermediate, which either favors or shuts-down SF. Napthylene-spacers bring about higher triplet quantum yields and overall better SF-performance for all perylene-monoimides and perylene-diimides. The key to better SF-performance is rotational freedom because it facilitates the overall excited-state polarization and amplifies intramolecular interactions between chromophores.
Collapse
Affiliation(s)
- Ilias Papadopoulos
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| | - David Gutiérrez-Moreno
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203 Elche, Spain.
| | - Yifan Bo
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany.
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Rubén Casillas
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany.
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Phillip M Greißel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| | - Timothy Clark
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Fernando Fernández-Lázaro
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203 Elche, Spain.
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| |
Collapse
|
3
|
Abstract
Singlet fission (SF) is a photophysical downconversion pathway, in which a singlet excitation transforms into two triplet excited states. As such, it constitutes an exciton multiplication generation process, which is currently at the focal point for future integration into solar energy conversion devices. Beyond this, various other exciting applications were proposed, including quantum cryptography or organic light emitting diodes. Also, the mechanistic understanding evolved rapidly during the last year. Unfortunately, the number of suitable SF-chromophores is still limited. This is per se problematic, considering the wide range of envisaged applicability. With that in mind, we emphasize uncommon SF-scaffolds and outline requirements as well as strategies to expand the chromophore pool of SF-materials.
Collapse
Affiliation(s)
- Tobias Ullrich
- Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Department für Chemie und Pharmazie, Egerlandstr. 1-3, 91058 Erlangen, Germany.
| | | | | |
Collapse
|
4
|
Affiliation(s)
- Millicent B Smith
- Department of Chemistry and Biochemistry, University of Colorado, 215 UCB, Boulder, Colorado 80309-0215, United States
| | | |
Collapse
|
5
|
|
6
|
Gradinaru CC, Kennis JT, Papagiannakis E, van Stokkum IH, Cogdell RJ, Fleming GR, Niederman RA, van Grondelle R. An unusual pathway of excitation energy deactivation in carotenoids: singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna. Proc Natl Acad Sci U S A 2001; 98:2364-9. [PMID: 11226245 PMCID: PMC30144 DOI: 10.1073/pnas.051501298] [Citation(s) in RCA: 278] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2000] [Indexed: 11/18/2022] Open
Abstract
Carotenoids are important biomolecules that are ubiquitous in nature and find widespread application in medicine. In photosynthesis, they have a large role in light harvesting (LH) and photoprotection. They exert their LH function by donating their excited singlet state to nearby (bacterio)chlorophyll molecules. In photosynthetic bacteria, the efficiency of this energy transfer process can be as low as 30%. Here, we present evidence that an unusual pathway of excited state relaxation in carotenoids underlies this poor LH function, by which carotenoid triplet states are generated directly from carotenoid singlet states. This pathway, operative on a femtosecond and picosecond timescale, involves an intermediate state, which we identify as a new, hitherto uncharacterized carotenoid singlet excited state. In LH complex-bound carotenoids, this state is the precursor on the reaction pathway to the triplet state, whereas in extracted carotenoids in solution, this state returns to the singlet ground state without forming any triplets. We discuss the possible identity of this excited state and argue that fission of the singlet state into a pair of triplet states on individual carotenoid molecules constitutes the mechanism by which the triplets are generated. This is, to our knowledge, the first ever direct observation of a singlet-to-triplet conversion process on an ultrafast timescale in a photosynthetic antenna.
Collapse
Affiliation(s)
- C C Gradinaru
- Department of Biophysics and Physics of Complex Systems, Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Triplet excitation of precursors of spirilloxanthin bound to the chromatophores of Rhodospirillum rubrum as detected by transient Raman spectroscopy. J Mol Struct 1991. [DOI: 10.1016/0022-2860(91)87123-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Time-resolved absorption spectroscopy of the triplet state produced from the all-trans, 7-cis, 9-cis, 13-cis, and 15-cis isomers of β-carotene. Chem Phys Lett 1989. [DOI: 10.1016/0009-2614(89)87017-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Cogdell RJ, Frank HA. How carotenoids function in photosynthetic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 895:63-79. [PMID: 3332774 DOI: 10.1016/s0304-4173(87)80008-3] [Citation(s) in RCA: 310] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Carotenoids are essential for the survival of photosynthetic organisms. They function as light-harvesting molecules and provide photoprotection. In this review, the molecular features which determine the efficiencies of the various photophysical and photochemical processes of carotenoids are discussed. The behavior of carotenoids in photosynthetic bacterial reaction centers and light-harvesting complexes is correlated with data from experiments carried out on carotenoids and model systems in vitro. The status of the carotenoid structural determinations in vivo is reviewed.
Collapse
Affiliation(s)
- R J Cogdell
- Department of Botany, University of Glasgow, U.K
| | | |
Collapse
|
11
|
Woodbury NW, Parson WW. Nanosecond fluorescence from chromatophores of Rhodopseudomonas sphaeroides and Rhodospirillum rubrum. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 850:197-210. [PMID: 3087422 DOI: 10.1016/0005-2728(86)90174-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Single-photon counting techniques were used to measure the fluorescence decay from Rhodopseudomonas sphaeroides and Rhodospirillum rubrum chromatophores after excitation with a 25-ps, 600-nm laser pulse. Electron transfer was blocked beyond the initial radical-pair state (PF) by chemical reduction of the quinone that serves as the next electron acceptor. Under these conditions, the fluorescence decays with multiphasic kinetics and at least three exponential decay components are required to describe the delayed fluorescence. Weak magnetic fields cause a small increase in the decay time of the longest component. The components of the delayed fluorescence are similar to those found previously with isolated reaction centers. We interpret the multi-exponential decay in terms of two small (0.01-0.02 eV) relaxations in the free energy of PF, as suggested previously for reaction centers. From the initial amplitudes of the delayed fluorescence, it is possible to calculate the standard free-energy difference between the earliest resolved form of PF and the excited singlet state of the antenna complexes in R. rubrum strains S1 and G9. The free-energy gap is found to be about 0.10 eV. It also is possible to calculate the standard free-energy difference between PF and the excited singlet state of the reaction center bacteriochlorophyll dimer (P). Values of 0.17 to 0.19 eV were found in both R. rubrum strains and also in Rps. sphaeroides strain 2.4.1. This free-energy gap agrees well with the standard free-energy difference between PF and P determined previously for reaction centers isolated from Rps. sphaeroides strain R26. The temperature dependence of the delayed fluorescence amplitudes between 180 K and 295 K is qualitatively different in isolated reaction centers and chromatophores. However, the temperature dependence of the calculated standard free-energy difference between P* and PF is similar in reaction centers and chromatophores of Rps. sphaeroides. The different temperature dependence of the fluorescence amplitudes in reaction centers and chromatophores arises because the free-energy difference between P* and the excited antenna is dominated by the entropy change associated with delocalization of the excitation in the antenna. We conclude that the state PF is similar in isolated reaction centers and in the intact photosynthetic membrane. Chromatophores from Rps. sphaeroides strain R-26 exhibit an anomalous fluorescence component that could reflect heterogeneity in their antenna.
Collapse
|
12
|
Magnetic-field effects in photosynthetic bacteria. II. Formation of triplet states in the reaction center and the antenna of Rhodospirillum rubrum and Rhodopseudomonas sphaeroides. Magnetic-field effects. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1985. [DOI: 10.1016/0005-2728(85)90147-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|