1
|
Laird MG, Adlung N, Koivisto JJ, Scheller S. Thiol-Disulfide Exchange Kinetics and Redox Potential of the Coenzyme M and Coenzyme B Heterodisulfide, an Electron Acceptor Coupled to Energy Conservation in Methanogenic Archaea. Chembiochem 2024; 25:e202300595. [PMID: 37815851 DOI: 10.1002/cbic.202300595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
Methanogenic and methanotrophic archaea play important roles in the global carbon cycle by interconverting CO2 and methane. To conserve energy from these metabolic pathways that happen close to the thermodynamic equilibrium, specific electron carriers have evolved to balance the redox potentials between key steps. Reduced ferredoxins required to activate CO2 are provided by energetical coupling to the reduction of the high-potential heterodisulfide (HDS) of coenzyme M (2-mercaptoethanesulfonate) and coenzyme B (7-mercaptoheptanoylthreonine phosphate). While the standard redox potential of this important HDS has been determined previously to be -143 mV (Tietze et al. 2003 DOI: 10.1002/cbic.200390053), we have measured thiol disulfide exchange kinetics and reassessed this value by equilibrating thiol-disulfide mixtures of coenzyme M, coenzyme B, and mercaptoethanol. We determined the redox potential of the HDS of coenzyme M and coenzyme B to be -16.4±1.7 mV relative to the reference thiol mercaptoethanol (E0 '=-264 mV). The resulting E0 ' values are -281 mV for the HDS, -271 mV for the homodisulfide of coenzyme M, and -270 mV for the homodisulfide of coenzyme B. We discuss the importance of these updated values for the physiology of methanogenic and methanotrophic archaea and their implications in terms of energy conservation.
Collapse
Affiliation(s)
- Maxime G Laird
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Norman Adlung
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Jari J Koivisto
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Silvan Scheller
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| |
Collapse
|
2
|
Imaura Y, Okamoto S, Hino T, Ogami Y, Katayama YA, Tanimura A, Inoue M, Kamikawa R, Yoshida T, Sako Y. Isolation, Genomic Sequence and Physiological Characterization of Parageobacillus sp. G301, an Isolate Capable of Both Hydrogenogenic and Aerobic Carbon Monoxide Oxidation. Appl Environ Microbiol 2023; 89:e0018523. [PMID: 37219438 PMCID: PMC10304674 DOI: 10.1128/aem.00185-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/06/2023] [Indexed: 05/24/2023] Open
Abstract
Prokaryotes that can oxidize carbon monoxide (CO oxidizers) can use this gas as a source of carbon or energy. They oxidize carbon monoxide with carbon monoxide dehydrogenases (CODHs): these are divided into nickel-containing CODH (Ni-CODH), which are sensitive to O2, and molybdenum-containing CODH (Mo-CODH), which can function aerobically. The oxygen conditions required for CO oxidizers to oxidize CO may be limited, as those which have been isolated and characterized so far contain either Ni- or Mo-CODH. Here, we report a novel CO oxidizer, Parageobacillus sp. G301, which is capable of CO oxidation using both types of CODH based on genomic and physiological characterization. This thermophilic, facultatively anaerobic Bacillota bacterium was isolated from the sediments of a freshwater lake. Genomic analyses revealed that strain G301 possessed both Ni-CODH and Mo-CODH. Genome-based reconstruction of its respiratory machinery and physiological investigations indicated that CO oxidation by Ni-CODH was coupled with H2 production (proton reduction), whereas CO oxidation by Mo-CODH was coupled with O2 reduction under aerobic conditions and nitrate reduction under anaerobic conditions. G301 would thus be able to thrive via CO oxidation under a wide range of conditions, from aerobic environments to anaerobic environments, even with no terminal electron acceptors other than protons. Comparative genome analyses revealed no significant differences in genome structures and encoded cellular functions, except for CO oxidation between CO oxidizers and non-CO oxidizers in the genus Parageobacillus; CO oxidation genes are retained exclusively for CO metabolism and related respiration. IMPORTANCE Microbial CO oxidation has received much attention because it contributes to global carbon cycling in addition to functioning as a remover of CO, which is toxic to many organisms. Some microbial CO oxidizers, including both bacteria and archaea, exhibit sister relationships with non-CO oxidizers even in genus-level monophyletic groups. In this study, we demonstrated that a new isolate, Parageobacillus sp. G301, is capable of both anaerobic (hydrogenogenic) and aerobic CO oxidation, which has not been previously reported. The discovery of this new isolate, which is versatile in CO metabolism, will accelerate research on CO oxidizers with diverse CO metabolisms, expanding our understanding of microbial diversity. Through comparative genomic analyses, we propose that CO oxidation genes are not essential genetic elements in the genus Parageobacillus, providing insights into the factors which shape the punctate distribution of CO oxidizers in the prokaryote tree, even in genus-level monophyletic groups.
Collapse
Affiliation(s)
| | | | - Taiki Hino
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yusuke Ogami
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Ayumi Tanimura
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masao Inoue
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- R-GIRO, Ritsumeikan University, Kusatsu, Shiga, Japan
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshihiko Sako
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Feregrino-Mondragón RD, Santiago-Martínez MG, Silva-Flores M, Encalada R, Reyes-Prieto A, Rodríguez-Zavala JS, Peña-Ocaña BA, Moreno-Sánchez R, Saavedra E, Jasso-Chávez R. Lactate oxidation is linked to energy conservation and to oxygen detoxification via a putative terminal cytochrome oxidase in Methanosarcina acetivorans. Arch Biochem Biophys 2023:109667. [PMID: 37327962 DOI: 10.1016/j.abb.2023.109667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
The marine archaeon Methanosarcina acetivorans contains a putative NAD + -independent d-lactate dehydrogenase (D-iLDH/glycolate oxidase) encoded by the MA4631 gene, belonging to the FAD-oxidase C superfamily. Nucleotide sequences similar to MA4631 gene, were identified in other methanogens and Firmicutes with >90 and 35-40% identity, respectively. Therefore, the lactate metabolism in M. acetivorans is reported here. Cells subjected to intermittent pulses of oxygen (air-adapted; AA-Ma cells) consumed lactate only in combination with acetate, increasing methane production and biomass yield. In AA-Ma cells incubated with d-lactate plus [14C]-l-lactate, the radioactive label was found in methane, CO2 and glycogen, indicating that lactate metabolism fed both methanogenesis and gluconeogenesis. Moreover, d-lactate oxidation was coupled to O2-consumption which was sensitive to HQNO; also, AA-Ma cells showed high transcript levels of gene dld and those encoding subunits A (MA1006) and B (MA1007) of a putative cytochrome bd quinol oxidase, compared to anaerobic control cells. An E. coli mutant deficient in dld complemented with the MA4631 gene, grew with d-lactate as carbon source and showed membrane-bound d-lactate:quinone oxidoreductase activity. The product of the MA4631 gene is a FAD-containing monomer showing activity of iLDH with preference to d-lactate. The results suggested that air adapted M. acetivorans is able to co-metabolize lactate and acetate with associated oxygen consumption by triggering the transcription and synthesis of the D-iLDH and a putative cytochrome bd: methanophenazine (quinol) oxidoreductase. Biomass generation and O2 consumption, suggest a potentially new oxygen detoxification mechanism coupled to energy conservation in this methanogen.
Collapse
Affiliation(s)
| | - Michel Geovanni Santiago-Martínez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico; Department of Molecular and Cell Biology, The University of Connecticut, Storrs, 06269, Connecticut, USA
| | - Mayel Silva-Flores
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Rusely Encalada
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Adrián Reyes-Prieto
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - José S Rodríguez-Zavala
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Betsy Anaid Peña-Ocaña
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Rafael Moreno-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Ricardo Jasso-Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico.
| |
Collapse
|
4
|
Haase A, Sawers RG. A redox-active HybG-HypD scaffold complex is required for optimal ATPase activity during [NiFe]-hydrogenase maturation in Escherichia coli. FEBS Open Bio 2023; 13:341-351. [PMID: 36602404 PMCID: PMC9900092 DOI: 10.1002/2211-5463.13546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023] Open
Abstract
Four Hyp proteins build a scaffold complex upon which the Fe(CN)2 CO group of the [NiFe]-cofactor of hydrogenases (Hyd) is made. Two of these Hyp proteins, the redox-active, [4Fe-4S]-containing HypD protein and the HypC chaperone, form the basis of this scaffold complex. Two different scaffold complexes exist in Escherichia coli, HypCD, and the paralogous HybG-HypD complex, both of which exhibit ATPase activity. Apart from a Rossmann fold, there is no obvious ATP-binding site in HypD. The aim of this study, therefore, was to identify amino acid motifs in HypD that are required for the ATPase activity of the HybG-HypD scaffold complex. Amino acid-exchange variants in three conserved motifs within HypD were generated. Variants in which individual cysteine residues coordinating the iron-sulfur ([4Fe-4S]) cluster were exchanged abolished Hyd enzyme activity and reduced ATPase activity but also destabilized the complex. Two conserved cysteine residues, C69 and C72, form part of HypD's Rossmann fold and play a role in HypD's thiol-disulfide exchange activity. Substitution of these two residues individually with alanine also abolished hydrogenase activity and strongly reduced ATPase activity, particularly the C72A exchange. Residues in a further conserved GFETT motif were exchanged, but neither hydrogenase enzyme activity nor ATPase activity of the isolated HybG-HypD complexes was significantly affected. Together, our findings identify a strong correlation between the redox activity of HypD, ATPase activity, and the ability of the complex to mature Hyd enzymes. These results further highlight the important role of thiol residues in the HybG-HypD scaffold complex during [NiFe]-cofactor biosynthesis.
Collapse
Affiliation(s)
- Alexander Haase
- Institute for Biology/MicrobiologyMartin‐Luther University Halle‐WittenbergGermany
| | - R. Gary Sawers
- Institute for Biology/MicrobiologyMartin‐Luther University Halle‐WittenbergGermany
| |
Collapse
|
5
|
Basak Y, Jeoung JH, Domnik L, Ruickoldt J, Dobbek H. Substrate Activation at the Ni,Fe Cluster of CO Dehydrogenases: The Influence of the Protein Matrix. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yudhajeet Basak
- Institute of Biology, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin 10099, Germany
| | - Jae-Hun Jeoung
- Institute of Biology, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin 10099, Germany
| | - Lilith Domnik
- Institute of Biology, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin 10099, Germany
| | - Jakob Ruickoldt
- Institute of Biology, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin 10099, Germany
| | - Holger Dobbek
- Institute of Biology, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin 10099, Germany
| |
Collapse
|
6
|
Kurth JM, Nobu MK, Tamaki H, de Jonge N, Berger S, Jetten MSM, Yamamoto K, Mayumi D, Sakata S, Bai L, Cheng L, Nielsen JL, Kamagata Y, Wagner T, Welte CU. Methanogenic archaea use a bacteria-like methyltransferase system to demethoxylate aromatic compounds. THE ISME JOURNAL 2021; 15:3549-3565. [PMID: 34145392 PMCID: PMC8630106 DOI: 10.1038/s41396-021-01025-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023]
Abstract
Methane-generating archaea drive the final step in anaerobic organic compound mineralization and dictate the carbon flow of Earth's diverse anoxic ecosystems in the absence of inorganic electron acceptors. Although such Archaea were presumed to be restricted to life on simple compounds like hydrogen (H2), acetate or methanol, an archaeon, Methermicoccus shengliensis, was recently found to convert methoxylated aromatic compounds to methane. Methoxylated aromatic compounds are important components of lignin and coal, and are present in most subsurface sediments. Despite the novelty of such a methoxydotrophic archaeon its metabolism has not yet been explored. In this study, transcriptomics and proteomics reveal that under methoxydotrophic growth M. shengliensis expresses an O-demethylation/methyltransferase system related to the one used by acetogenic bacteria. Enzymatic assays provide evidence for a two step-mechanisms in which the methyl-group from the methoxy compound is (1) transferred on cobalamin and (2) further transferred on the C1-carrier tetrahydromethanopterin, a mechanism distinct from conventional methanogenic methyl-transfer systems which use coenzyme M as final acceptor. We further hypothesize that this likely leads to an atypical use of the methanogenesis pathway that derives cellular energy from methyl transfer (Mtr) rather than electron transfer (F420H2 re-oxidation) as found for methylotrophic methanogenesis.
Collapse
Affiliation(s)
- Julia M Kurth
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Aalborg East, Denmark
| | - Stefanie Berger
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Nijmegen, The Netherlands
- Netherlands Earth System Science Center, Utrecht University, Utrecht, The Netherlands
| | - Kyosuke Yamamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Daisuke Mayumi
- Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Susumu Sakata
- Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Liping Bai
- Key Laboratory of Energy Microbiology and Its Application of Ministry of Agriculture, Biogas Institute of Ministry of Agriculture, Chengdu, China
| | - Lei Cheng
- Key Laboratory of Energy Microbiology and Its Application of Ministry of Agriculture, Biogas Institute of Ministry of Agriculture, Chengdu, China
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg East, Denmark
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Tristan Wagner
- Microbial Metabolism research group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands.
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Mutyala S, Kim C, Song YE, Khandelwal H, Baek J, Seol E, Oh YK, Kim JR. Enabling anoxic acetate assimilation by electrode-driven respiration in the obligate aerobe, Pseudomonas putida. Bioelectrochemistry 2020; 138:107690. [PMID: 33190096 DOI: 10.1016/j.bioelechem.2020.107690] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
This study examined the obligate aerobe, Pseudomonas putida, using acetate as the sole carbon and energy source, and respiration via an anode as the terminal electron acceptor under anoxic conditions. P. putida showed significantly different acetate assimilation in a closed-circuit microbial fuel cell (CC-MFC) compared to an open circuit MFC (OC-MFC). More than 72% (2.6 mmol) of acetate was consumed during 84 hrs in the CC-MFC in contrast to the no acetate consumption observed in the OC-MFC. The CC-MFC produced 150 μA (87 C) from acetate metabolization. Electrode-based respiration reduced the NADH/NAD+ ratio anaerobically, which is similar to the aerobic condition. The CC-MFC showed significantly higher acetyl-CoA synthetase activity than the OC-MFC (0.028 vs. 0.001 μmol/min/mg), which was comparable to the aerobic condition (circa 60%). Overall, electrode-based respiration enables P. putida to metabolize acetate under anoxic conditions and provide a platform to regulate the bacterial redox balance without oxygen.
Collapse
Affiliation(s)
- Sakuntala Mutyala
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Changman Kim
- Advanced Biofuel and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA
| | - Young Eun Song
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Himanshu Khandelwal
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Jiyun Baek
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Eunhee Seol
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - You-Kwan Oh
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea.
| |
Collapse
|
8
|
|
9
|
Mauerhofer LM, Reischl B, Schmider T, Schupp B, Nagy K, Pappenreiter P, Zwirtmayr S, Schuster B, Bernacchi S, Seifert AH, Paulik C, Rittmann SKMR. Physiology and methane productivity of Methanobacterium thermaggregans. Appl Microbiol Biotechnol 2018; 102:7643-7656. [PMID: 29959465 PMCID: PMC6097776 DOI: 10.1007/s00253-018-9183-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 11/29/2022]
Abstract
Accumulation of carbon dioxide (CO2), associated with global temperature rise, and drastically decreasing fossil fuels necessitate the development of improved renewable and sustainable energy production processes. A possible route for CO2 recycling is to employ autotrophic and hydrogenotrophic methanogens for CO2-based biological methane (CH4) production (CO2-BMP). In this study, the physiology and productivity of Methanobacterium thermaggregans was investigated in fed-batch cultivation mode. It is shown that M. thermaggregans can be reproducibly adapted to high agitation speeds for an improved CH4 productivity. Moreover, inoculum size, sulfide feeding, pH, and temperature were optimized. Optimization of growth and CH4 productivity revealed that M. thermaggregans is a slightly alkaliphilic and thermophilic methanogen. Hitherto, it was only possible to grow seven autotrophic, hydrogenotrophic methanogenic strains in fed-batch cultivation mode. Here, we show that after a series of optimization and growth improvement attempts another methanogen, M. thermaggregas could be adapted to be grown in fed-batch cultivation mode to cell densities of up to 1.56 g L-1. Moreover, the CH4 evolution rate (MER) of M. thermaggregans was compared to Methanothermobacter marburgensis, the CO2-BMP model organism. Under optimized cultivation conditions, a maximum MER of 96.1 ± 10.9 mmol L-1 h-1 was obtained with M. thermaggregans-97% of the maximum MER that was obtained utilizing M. marburgensis in a reference experiment. Therefore, M. thermaggregans can be regarded as a CH4 cell factory highly suited to be applicable for CO2-BMP.
Collapse
Affiliation(s)
- Lisa-Maria Mauerhofer
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Althanstraße 14, 1090, Wien, Austria
| | - Barbara Reischl
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Althanstraße 14, 1090, Wien, Austria
- Krajete GmbH, Linz, Austria
| | - Tilman Schmider
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Althanstraße 14, 1090, Wien, Austria
| | - Benjamin Schupp
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Althanstraße 14, 1090, Wien, Austria
| | - Kinga Nagy
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Althanstraße 14, 1090, Wien, Austria
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Institute of Synthetic Bioarchitectures, Wien, Austria
| | - Patricia Pappenreiter
- Johannes Kepler Universität Linz, Institute for Chemical Technology of Organic Materials, Linz, Austria
| | - Sara Zwirtmayr
- Johannes Kepler Universität Linz, Institute for Chemical Technology of Organic Materials, Linz, Austria
| | - Bernhard Schuster
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Institute of Synthetic Bioarchitectures, Wien, Austria
| | | | | | - Christian Paulik
- Johannes Kepler Universität Linz, Institute for Chemical Technology of Organic Materials, Linz, Austria
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Althanstraße 14, 1090, Wien, Austria.
| |
Collapse
|
10
|
Schut GJ, Lipscomb GL, Nguyen DMN, Kelly RM, Adams MWW. Heterologous Production of an Energy-Conserving Carbon Monoxide Dehydrogenase Complex in the Hyperthermophile Pyrococcus furiosus. Front Microbiol 2016; 7:29. [PMID: 26858706 PMCID: PMC4731540 DOI: 10.3389/fmicb.2016.00029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/11/2016] [Indexed: 11/13/2022] Open
Abstract
Carbon monoxide (CO) is an important intermediate in anaerobic carbon fixation pathways in acetogenesis and methanogenesis. In addition, some anaerobes can utilize CO as an energy source. In the hyperthermophilic archaeon Thermococcus onnurineus, which grows optimally at 80°C, CO oxidation and energy conservation is accomplished by a respiratory complex encoded by a 16-gene cluster containing a CO dehydrogenase, a membrane-bound [NiFe]-hydrogenase and a Na+/H+ antiporter module. This complex oxidizes CO, evolves CO2 and H2, and generates a Na+ motive force that is used to conserve energy by a Na+-dependent ATP synthase. Herein we used a bacterial artificial chromosome to insert the 13.2 kb gene cluster encoding the CO-oxidizing respiratory complex of T. onnurineus into the genome of the heterotrophic archaeon, Pyrococcus furiosus, which grows optimally at 100°C. P. furiosus is normally unable to utilize CO, however, the recombinant strain readily oxidized CO and generated H2 at 80°C. Moreover, CO also served as an energy source and allowed the P. furiosus strain to grow with a limiting concentration of sugar or with peptides as the carbon source. Moreover, CO oxidation by P. furiosus was also coupled to the re-utilization, presumably for biosynthesis, of acetate generated by fermentation. The functional transfer of CO utilization between Thermococcus and Pyrococcus species demonstrated herein is representative of the horizontal gene transfer of an environmentally relevant metabolic capability. The transfer of CO utilizing, hydrogen-producing genetic modules also has applications for biohydrogen production and a CO-based industrial platform for various thermophilic organisms.
Collapse
Affiliation(s)
- Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens GA, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens GA, USA
| | - Diep M N Nguyen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens GA, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh NC, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens GA, USA
| |
Collapse
|
11
|
Finkelmann AR, Stiebritz MT, Reiher M. Kinetic modeling of hydrogen conversion at [Fe] hydrogenase active-site models. J Phys Chem B 2013; 117:4806-17. [PMID: 23560849 DOI: 10.1021/jp312662y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
By means of density functional theory, we investigate the catalytic cycle of active-site model complexes of [Fe] hydrogenase and study how ligand substitutions in the first coordination sphere of the reactive Fe center affect the free-energy surface of the whole reaction pathway. Interestingly, dispersion interactions between the active site and the hydride acceptor MPT render the hydride transfer step less endergonic and lower its barrier. Substitution of CO by CN(-), which resembles [FeFe] hydrogenase-like coordination, inverts the elementary steps H(-) transfer and H2 cleavage. A simplified kinetic model reveals the specifics of the interplay between active-site composition and catalysis. Apparently, the catalytic efficiency of [Fe] hydrogenase can be attributed to a flat energy profile throughout the catalytic cycle. Intermediates that are too stable, as they occur, e.g., when one CO ligand is substituted by CN(-), significantly slow down the turnover rate of the enzyme. The catalytic activity of the wild-type form of the active-site model could, however, be enhanced by a PH3 ligand substitution of the CO ligand.
Collapse
Affiliation(s)
- Arndt R Finkelmann
- Laboratorium für Physikalische Chemie, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland
| | | | | |
Collapse
|
12
|
Abstract
Methanogens are the only significant biological producers of methane. A limited number of C(1) substrates, such as methanol, methylamines, methyl sulfate, formate, H(2)+CO(2) or CO, and acetate, serve as carbon and energy source. During degradation of these compounds, a primary proton as well as a primary sodium ion gradient is established, which is a unique feature of methanogens. This raises the question about the coupling ion for ATP synthesis by the unique A(1)A(o) ATP synthase. Here, we describe how to analyze and determine the Na(+) dependence of two model methanogens, the hydrogenotrophic Methanothermobacter thermautotrophicus and the methylotrophic Methanosarcina barkeri. Furthermore, the determination of important bioenergetic parameters like the ΔpH, ΔΨ, or the intracellular volume in M. barkeri is described. For the analyses of the A(1)A(O) ATP synthase, methods for measurement of ATP synthesis as well as ATP hydrolysis in Methanosarcina mazei Gö1 are described.
Collapse
|
13
|
Garcia JL, Patel BK, Ollivier B. Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 2007; 6:205-26. [PMID: 16887666 DOI: 10.1006/anae.2000.0345] [Citation(s) in RCA: 388] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- J L Garcia
- Laboratoire de Microbiologie IRD, Université de Provence, ESIL case 925, 163 Avenue de Luminy, 13288, Marseille cedex 9, France
| | | | | |
Collapse
|
14
|
Forzi L, Sawers RG. Maturation of [NiFe]-hydrogenases in Escherichia coli. Biometals 2007; 20:565-78. [PMID: 17216401 DOI: 10.1007/s10534-006-9048-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
Hydrogenases catalyze the reversible oxidation of dihydrogen. Catalysis occurs at bimetallic active sites that contain either nickel and iron or only iron and the nature of these active sites forms the basis of categorizing the enzymes into three classes, the [NiFe]-hydrogenases, the [FeFe]-hydrogenases and the iron sulfur cluster-free [Fe]-hydrogenases. The [NiFe]-hydrogenases and the [FeFe]-hydrogenases are unrelated at the amino acid sequence level but the active sites share the unusual feature of having diatomic ligands associated with the Fe atoms in the these enzymes. Combined structural and spectroscopic studies of [NiFe]-hydrogenases identified these diatomic ligands as CN- and CO groups. Major advances in our understanding of the biosynthesis of these ligands have been achieved primarily through the study of the membrane-associated [NiFe]-hydrogenases of Escherichia coli. A complex biosynthetic machinery is involved in synthesis and attachment of these ligands to the iron atom, insertion of the Fe(CN)2CO group into the apo-hydrogenase, introduction of the nickel atom into the pre-formed active site and ensuring that the holoenzyme is correctly folded prior to delivery to the membrane. Although much remains to be uncovered regarding each of the individual biochemical steps on the pathway to synthesis of a fully functional enzyme, our understanding of the initial steps in CN- synthesis have revealed that it is generated from carbamoyl phosphate. What is becoming increasingly clear is that the metabolic origins of the carbonyl group may be different.
Collapse
Affiliation(s)
- Lucia Forzi
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| | | |
Collapse
|
15
|
Vancek M, Vidová M, Majerník AI, Smigán P. Methanogenesis is Ca2+ dependent in Methanothermobacter thermautotrophicus strain DeltaH. FEMS Microbiol Lett 2006; 258:269-73. [PMID: 16640584 DOI: 10.1111/j.1574-6968.2006.00232.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The effect of Ca2+ ions on methanogenesis and growth of Methanothermobacter thermautotrophicus was investigated. The calcium chelator ethylene glycol bis(2-aminoethylether)-N,N,N',N'-tetra-acetic acid, calcium ionophore A23187 and ruthenium red all inhibited growth of this strain. Methane formation was strongly dependent on the external Ca2+ concentration in a resting cell suspension. In addition, methanogenesis of Ca2+ preloaded cells was stimulated by 400%. Inhibitor studies revealed that Co2+ and Ni2+, inorganic antagonists of Ca2+ transport, strongly inhibited methanogenesis in these cells. Interestingly, our findings imply that one of the enzymes of methanogenesis might catalyse a Ca2+ -dependent step and allow a direct activation of methanogenesis by Ca2+ ions.
Collapse
Affiliation(s)
- Matús Vancek
- Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Ivanka pri Dunaji, Slovak Republic
| | | | | | | |
Collapse
|
16
|
Müller V, Lemker T, Lingl A, Weidner C, Coskun U, Grüber G. Bioenergetics of archaea: ATP synthesis under harsh environmental conditions. J Mol Microbiol Biotechnol 2006; 10:167-80. [PMID: 16645313 DOI: 10.1159/000091563] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Archaea are a heterogeneous group of microorganisms that often thrive under harsh environmental conditions such as high temperatures, extreme pHs and high salinity. As other living cells, they use chemiosmotic mechanisms along with substrate level phosphorylation to conserve energy in form of ATP. Because some archaea are rooted close to the origin in the tree of life, these unusual mechanisms are considered to have developed very early in the history of life and, therefore, may represent first energy-conserving mechanisms. A key component in cellular bioenergetics is the ATP synthase. The enzyme from archaea represents a new class of ATPases, the A1A0 ATP synthases. They are composed of two domains that function as a pair of rotary motors connected by a central and peripheral stalk(s). The structure of the chemically-driven motor (A1) was solved by small-angle X-ray scattering in solution, and the structure of the first A1A0 ATP synthases was obtained recently by single particle analyses. These studies revealed novel structural features such as a second peripheral stalk and a collar-like structure. In addition, the membrane-embedded electrically-driven motor (A0) is very different in archaea with sometimes novel, exceptional subunit composition and coupling stoichiometries that may reflect the differences in energy-conserving mechanisms as well as adaptation to temperatures at or above 100 degrees C.
Collapse
Affiliation(s)
- V Müller
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Campus Riedberg, Frankfurt a. Main, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Rapheal SV, Swaminathan KR, Lalitha K. Metabolic characteristics of an aerobe isolated from a methylotrophic methanogenic enrichment culture. J Biosci 2003; 28:235-42. [PMID: 12711816 DOI: 10.1007/bf02706223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An anaerobic methylotrophic methanogenic enrichment culture, with sustained metabolic characteristics, including that of methanation for over a decade, was the choice of the present study on interspecies interactions. Growth and methanation by the enrichment were suppressed in the presence of antibiotics, and no methanogen grown on methanol could be isolated using stringent techniques. The present study confirmed syntrophic metabolic interactions in this enrichment with the isolation of a strain of Pseudomonas sp. The organism had characteristic metabolic versatility in metabolizing a variety of substrates including alcohols, aliphatic acids, amino acids, and sugars. Anaerobic growth was favoured with nitrate in the growth medium. Cells grown anaerobically with methanol, revealed maximal nitrate reductase activity. Constitutive oxidative activity of the membrane system emerged from the high-specific oxygen uptake and nitrate reductase activities of the aerobically and anerobically grown cells respectively. Cells grown anaerobically on various alcohols effectively oxidized methanol in the presence of flavins, cofactor FAD and the methanogenic cofactor F420, suggesting a constitutive alcohol oxidizing capacity. In cells grown anaerobically on methanol, the rate of methanol oxidation with F420 was three times that of FAD. Efficient utilization of alcohols in the presence of F420 is a novel feature of the present study. The results suggest that utilization of methanol by the mixed culture would involve metabolic interactions between the Pseudomonas sp. and the methanogen(s). Methylotrophic, methanogenic partnership involving an aerobe is a novel feature hitherto unreported among anaerobic syntrophic associations and is of ecological significance
Collapse
Affiliation(s)
- Stephen V Rapheal
- Department of Chemistry HSB 264, Indian Institute of Technology Madras, Chennai 600 036, India
| | | | | |
Collapse
|
18
|
Hoehler TM, Alperin MJ, Albert DB, Martens CS. Apparent minimum free energy requirements for methanogenic Archaea and sulfate-reducing bacteria in an anoxic marine sediment. FEMS Microbiol Ecol 2001. [DOI: 10.1111/j.1574-6941.2001.tb00879.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
19
|
Liu JS, Marison IW, von Stockar U. Microbial growth by a net heat up-take: a calorimetric and thermodynamic study on acetotrophic methanogenesis by Methanosarcina barkeri. Biotechnol Bioeng 2001; 75:170-80. [PMID: 11536139 DOI: 10.1002/bit.1176] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To answer the intriguing question whether or not endothermic microbial growth exists, and in particular, to verify Heijnen and van Dijken's prediction (1992), acetotrophic methanogen, Methanosarcina barkeri, has been cultivated in a highly sensitive bench-scale calorimeter (an improved Bio-RC1 reaction calorimeter) in a pH auxostat fashion. A growth yield of 0.043 C-mol C-mol(-1) has been obtained and a cell density as high as 3 g L(-1) was attained. Heat uptake during growth has indeed been quantitatively measured with calorimetry, resulting in a heat yield of +145 kJ C-mol(-1). Thermodynamics of the growth of acetotrophic methanogens was analyzed in detail. The changes in Gibbs energy, enthalpy, and entropy during growth of M. barkeri were compared with some typical aerobic and anaerobic growth processes of different microorganisms on various substrates. In the growth of M. barkeri on acetate, the retarding effect of the positive enthalpy change on the driving force of growth is overcompensated by the large positive entropy change, resulting from converting one organic molecule (acetic acid) to two gaseous products, CH(4) and CO(2). Both the enthalpy and the entropy increases are due partially to the transition of these two products into the gaseous phase. The thermodynamic role of this phase transition for the growth process is analyzed. Microbial growth characterized by enthalpy increase and correspondingly by a large increase in entropy may be called enthalpy-retarded growth.
Collapse
Affiliation(s)
- J S Liu
- Laboratory of Chemical and Biochemical Engineering, Department of Chemistry, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
20
|
Mukhopadhyay B, Johnson EF, Wolfe RS. A novel pH2 control on the expression of flagella in the hyperthermophilic strictly hydrogenotrophic methanarchaeaon Methanococcus jannaschii. Proc Natl Acad Sci U S A 2000; 97:11522-7. [PMID: 11027352 PMCID: PMC17233 DOI: 10.1073/pnas.97.21.11522] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The methanarchaeon, Methanococcus jannaschii, a hyperthermophilic, autotrophic, and strictly hydrogenotrophic inhabitant of submarine hydrothermal vents, was cultivated in a reactor at two hydrogen partial pressure (p(H(2))) values, 178 kPa (high) and 650 Pa (ultralow), and the cells were subjected to a comparative proteome analysis. From these studies, it was discovered that, when p(H(2)) was high and the cell density was low (a combination representing a hydrogen-excess condition), the cells possessed very low or undetectable levels of four flagella-related polypeptides (FlaB2, FlaB3, FlaD, and FlaE); electron microscopic examination showed that most of these cells were devoid of flagella. Flagella synthesis occurred when hydrogen became limiting either at high cell density under high p(H(2)) or at low cell density under low p(H(2)). The results from a p(H(2))-shift experiment corroborated the above observations. The p(H(2))-dependent changes in the levels of two methanogenic enzymes (MTD and HMDX) were as expected, and thus they served as internal controls. To our knowledge, this is the first example for the regulation of expression of flagella by hydrogen in any domain of life and for a control of any kind on flagella synthesis in the archaea. Our work also provides the only known example for each of the following: (i) the pure culture cultivation of a methanogen at an ultralow, near ecologically relevant p(H(2)); (ii) experimental functional genomics for M. jannaschii; and (iii) the use of proteomics with M. jannaschii.
Collapse
Affiliation(s)
- B Mukhopadhyay
- Department of Microbiology, University of Illinois at Urbana-Champaign, B103 Chemical and Life Sciences Laboratory, 601 South Goodwin Avenue, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
21
|
Abstract
Numerous microbial conversions in methanogenic environments proceed at (Gibbs) free energy changes close to thermodynamic equilibrium. In this paper we attempt to describe the consequences of this thermodynamic boundary condition on the kinetics of anaerobic conversions in methanogenic environments. The anaerobic fermentation of butyrate is used as an example. Based on a simple metabolic network stoichiometry, the free energy change based balances in the cell, and the flux of substrates and products in the catabolic and anabolic reactions are coupled. In butyrate oxidation, a mechanism of ATP-dependent reversed electron transfer has been proposed to drive the unfavorable oxidation of butyryl-CoA to crotonyl-CoA. A major assumption in our model is that ATP-consumption and electron translocation across the cytoplasmic membrane do not proceed according to a fixed stoichiometry, but depend on the cellular concentration ratio of ATP and ADP. The energetic and kinetic impact of product inhibition by acetate and hydrogen are described. A major consequence of the derived model is that Monod-based kinetic description of this type of conversions is not feasible, because substrate conversion and biomass growth are proposed to be uncoupled. It furthermore suggests that the specific substrate conversion rate cannot be described as a single function of the driving force of the catabolic reaction but depends on the actual substrate and product concentrations. By using nonfixed stoichiometries for the membrane associated processes, the required flexibility of anaerobic bacteria to adapt to varying environmental conditions can be described.
Collapse
Affiliation(s)
- R Kleerebezem
- Department of Agricultural, Environmental and Systems Technology, Sub-department of Environmental Technology, Wageningen Agricultural University, The Netherlands.
| | | |
Collapse
|
22
|
Abstract
Growth of Methanobacterium thermoautotrophicum, an anaerobic archaebacterium using methanogenesis as the catabolic pathway, is characterized by large heat production rates, up to 13 W g-1, and low biomass yields, in the order of 0.02 C-mol mol-1 H2 consumed. These values, indicating a possibly "inefficient" growth mechanism, warrant a thermodynamic analysis to obtain a better understanding of the growth process. The growth-associated heat production (DeltarHX0, min) and the growth-associated Gibbs energy dissipation per mol biomass formed (DeltarGXmin) were -3730 kJ C-mol-1 and -802 kJ C-mol-1, respectively. The Gibbs energy change found in this study is indeed unusually high as compared to aerobic methylotrophes, but not untypical for methanogens grown on CO2. It explains the low biomass yield. Based on the information available on the energetic metabolism and on an ATP balance, the biomass yield can be predicted to be approximately in the range of the experimentally determined value. The fact that the exothermicity exceeds vastly even the Gibbs energy change can be explained by a dramatic entropy decrease of the catabolic reaction. Microbial growth characterized by entropy reduction and correspondingly by unusually large heat production may be called entropy-retarded growth. Copyright 1999 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- NA Schill
- Institute of Chemical Engineering, Swiss Federal Institute of Technology Lausanne (EPFL),CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
23
|
Thauer RK. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 9):2377-2406. [PMID: 9782487 DOI: 10.1099/00221287-144-9-2377] [Citation(s) in RCA: 628] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Straße, D-35043 Marburg, and Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Karl-von-Frisch-Straße, D-35032 Marburg, GermanyIn 1933, Stephenson & Stickland (1933a) published that they had isolated from river mud, by the single cell technique, a methanogenic organism capable of growth in an inorganic medium with formate as the sole carbon source.
Collapse
Affiliation(s)
- Rudolf K Thauer
- (Delivered at the 140th Ordinary Meeting of the Society for General Microbiology, 31 March 1998)
| |
Collapse
|
24
|
Kim JS, Reibenspies JH, Darensbourg MY. Lightinduced sulfur-dealkylation of phosphino-thioether nickel(0) complexes. Inorganica Chim Acta 1996. [DOI: 10.1016/s0020-1693(96)05237-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Keltjens JT, Vogels GD. Metabolic regulation in methanogenic archaea during growth on hydrogen and CO2. ENVIRONMENTAL MONITORING AND ASSESSMENT 1996; 42:19-37. [PMID: 24193491 DOI: 10.1007/bf00394040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Methanogenic Archaea represent a unique group of micro-organisms in their ability to derive their energy for growth from the conversion of their substrates to methane. The common substrates are hydrogen and CO2. The energy obtained in the latter conversion is highly dependent on the hydrogen concentration which may dramatically vary in their natural habitats and under laboratory conditions. In this review the bio-energetic consequences of the variations in hydrogen supply will be investigated. It will be described how the organisms seem to be equipped as to their methanogenic apparatus to cope with extremes in hydrogen availability and how they could respond to hydrogen changes by the regulation of their metabolism.
Collapse
Affiliation(s)
- J T Keltjens
- Department of Microbiology, Faculty of Science, University of Nijmegen, Toernooiveld, NL-6525 ED, Nijmegen, The Netherlands
| | | |
Collapse
|
26
|
Adams MW, Kletzin A. Oxidoreductase-type enzymes and redox proteins involved in fermentative metabolisms of hyperthermophilic Archaea. ADVANCES IN PROTEIN CHEMISTRY 1996; 48:101-80. [PMID: 8791625 DOI: 10.1016/s0065-3233(08)60362-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA
| | | |
Collapse
|
27
|
Affiliation(s)
- M Lübben
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Germany
| |
Collapse
|
28
|
Bertram PA, Thauer RK. Thermodynamics of the formylmethanofuran dehydrogenase reaction in Methanobacterium thermoautotrophicum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 226:811-8. [PMID: 7813470 DOI: 10.1111/j.1432-1033.1994.t01-1-00811.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Purified formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum, which is a thermophilic methanogenic Archaeon growing on H2 and CO2, was shown to catalyze the reversible reduction of CO2 to N-formylmethanofuran with 1,1',2,2'-tetramethylviologen (E'0 = -550 mV) as electron donor. The rate of CO2 reduction was approximately 25 times higher than the rate of N-formylmethanofuran dehydrogenation. From determinations of equilibrium concentrations at 60 degrees C and pH 7.0 a midpoint potential (E'0) for the CO2 + methanofuran/formylmethanofuran couple of approximately -530 mV was estimated. The initial step of methanogenesis from CO2 thus has a midpoint potential considerably more negative than that of the H+/H2 couple (E'0 = -460 mV at 60 degrees C). Evidence is described indicating that the as-yet unidentified physiological electron donor of the formylmethanofuran dehydrogenase is present in the soluble cell fraction.
Collapse
Affiliation(s)
- P A Bertram
- Max-Planck-Institut für terrestrische Mikrobiologie Marburg, Philipps-Universität Marburg, Germany
| | | |
Collapse
|
29
|
Lehmacher A, Klenk HP. Characterization and phylogeny of mcrII, a gene cluster encoding an isoenzyme of methyl coenzyme M reductase from hyperthermophilic Methanothermus fervidus. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:198-206. [PMID: 8177216 DOI: 10.1007/bf00280317] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A 5.7 kb region of chromosomal DNA from Methanothermus fervidus, harbouring a second mcr gene cluster, was cloned and sequenced. This gene cluster, termed mcrII, encodes an isoenzyme of methyl coenzyme M reductase (MCR). In contrast to the known mcr gene clusters from other methanogens, mcrII lacks mcrC, a gene of unknown function. But the remaining mcrII genes B, D, G and A are arranged in the same order as in previously sequenced mcr gene clusters. The mcrII genes from M. fervidus are located 3' to the open reading frame (ORF) B of the methylviologen-reducing hydrogenase (mvh) gene cluster. The genes of mcrII are cotranscribed, resulting in an mRNA of 4500 nucleotides. The transcriptional initiation and termination sites were identified. Phylogenetic reconstructions reveal that the mcr gene clusters fall into two different types, I and II, and that the ancestral mcr gene cluster was duplicated before the segregation of methanogens into three major orders occurred.
Collapse
Affiliation(s)
- A Lehmacher
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | |
Collapse
|
30
|
Bertram PA, Karrasch M, Schmitz RA, Böcher R, Albracht SP, Thauer RK. Formylmethanofuran dehydrogenases from methanogenic Archaea. Substrate specificity, EPR properties and reversible inactivation by cyanide of the molybdenum or tungsten iron-sulfur proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:477-84. [PMID: 8125106 DOI: 10.1111/j.1432-1033.1994.tb18646.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Formylmethanofuran dehydrogenases, which are found in methanogenic Archaea, are molybdenum or tungsten iron-sulfur proteins containing a pterin cofactor. We report here on differences in substrate specificity, EPR properties and susceptibility towards cyanide inactivation of the enzymes from Methanosarcina barkeri, Methanobacterium thermoautotrophicum and Methanobacterium wolfei. The molybdenum enzyme from M. barkeri (relative activity with N-formylmethanofuran = 100%) was found to catalyze, albeit at considerably reduced apparent Vmax, the dehydrogenation of N-furfurylformamide (11%), N-methylformamide (0.2%), formamide (0.1%) and formate (1%). The molybdenum enzyme from M. wolfei could only use N-furfurylformamide (1%) and formate (3%) as pseudosubstrates. The molybdenum enzyme from M. thermoautotrophicum and the tungsten enzymes from M. thermoautotrophicum and M. wolfei were specific for N-formylmethanofuran. The molybdenum formylmethanofuran dehydrogenases exhibited at 77 K two rhombic EPR signals, designated FMDred and FMDox, both derived from Mo as shown by isotopic substitution with 97Mo. The FMDred signal was only displayed by the active enzyme in the reduced form and was lost upon enzyme oxidation; the FMDox signal was displayed by an inactive form and was not quenched by O2. The tungsten isoenzymes were EPR silent. The molybdenum formylmethanofuran dehydrogenases were found to be inactivated by cyanide whereas the tungsten isoenzymes, under the same conditions, were not inactivated. Inactivation was associated with a characteristic change in the molybdenum-derived EPR signal. Reactivation was possible in the presence of sulfide.
Collapse
Affiliation(s)
- P A Bertram
- Max-Planck-Institut für Terrestrische Mikrobiologie, Philipps-Universität Marburg, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Bock AK, Prieger-Kraft A, Sch�nheit P. Pyruvate ? a novel substrate for growth and methane formation in Methanosarcina barkeri. Arch Microbiol 1994. [DOI: 10.1007/bf00248891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Stams AJ. Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenhoek 1994; 66:271-94. [PMID: 7747937 DOI: 10.1007/bf00871644] [Citation(s) in RCA: 290] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In methanogenic environments organic matter is degraded by associations of fermenting, acetogenic and methanogenic bacteria. Hydrogen and formate consumption, and to some extent also acetate consumption, by methanogens affects the metabolism of the other bacteria. Product formation of fermenting bacteria is shifted to more oxidized products, while acetogenic bacteria are only able to metabolize compounds when methanogens consume hydrogen and formate efficiently. These types of metabolic interaction between anaerobic bacteria is due to the fact that the oxidation of NADH and FADH2 coupled to proton or bicarbonate reduction in thermodynamically only feasible at low hydrogen and formate concentrations. Syntrophic relationships which depend on interspecies hydrogen or formate transfer were described for the degradation of e.g. fatty acids, amino acids and aromatic compounds.
Collapse
Affiliation(s)
- A J Stams
- Department of Microbiology, Wageningen Agricultural University, The Netherlands
| |
Collapse
|
33
|
Stupperich E, Juza A, Hoppert M, Mayer F. Cloning, sequencing and immunological characterization of the corrinoid-containing subunit of the N5-methyltetrahydromethanopterin: coenzyme-M methyltransferase from Methanobacterium thermoautotrophicum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 217:115-21. [PMID: 8223548 DOI: 10.1111/j.1432-1033.1993.tb18225.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A 3.5-kb EcoRI fragment of the Methanobacterium thermoautotrophicum chromosome contains five open reading frames, mtrA to mtrE. The deduced N-terminal amino acid sequence of mtrA is identical with 26 N-terminal amino acids of a corrinoid-containing membrane protein from Methanobacterium. Computer-aided analyses of mtrA predicts 237 amino acids with a molecular mass of 25,603 Da for its gene product. A hydropathy plot of this amino acid sequence indicates one hydrophobic helical conformation near the N-terminus of the peptide which represents a tentative membrane-spanning region. The main part of the protein, however, shows hydrophilic domains, suggesting a location outside the cytoplasmic membrane. These domains are probably accessible by monospecific polyclonal antibodies raised previously against the corrinoid-containing membrane protein. The immunogold-labeling technique revealed that the corrinoid-dependent membrane protein was detectable at the cytoplasmic face of the membranes and of vesicle preparations. No significant identity of the deduced amino acid sequence was found with sequences of several corrinoid-containing enzymes. In contrast to the hydrophilic gene product of mtrA, four other gene products from the gene cluster encode extremely hydrophobic proteins. The N-terminal sequences of mtrC and mtrD are identical with two peptides of the N5-methyltetrahydromethanopterin:coenzyme-M methyltransferase complex from Methanobacterium, indicating that the mtr genes encode this membrane protein.
Collapse
|
34
|
Klein AR, Koch J, Stetter KO, Thauer RK. Two N5,N10-methylenetetrahydromethanopterin dehydrogenases in the extreme thermophile Methanopyrus kandleri: characterization of the coenzyme F420-dependent enzyme. Arch Microbiol 1993; 160:186-92. [PMID: 8215796 DOI: 10.1007/bf00249123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
It was recently reported that the extreme thermophile Methanopyrus kandleri contains only a H2-forming N5,N10-methylenetetrahydromethanopterin dehydrogenase which uses protons as electron acceptor. We describe here the presence in this Archaeon of a second N5,N10-methylenetetrahydromethanopterin dehydrogenase which is coenzyme F420-dependent. This enzyme was purified and characterized. The enzyme was colourless, had an apparent molecular mass of 300 kDa, an isoelectric point of 3.7 +/- 0.2 and was composed of only one type of subunit of apparent molecular mass of 36 kDa. The enzyme activity increased to an optimum with increasing salt concentrations. Optimal salt concentrations were e.g. 2 M (NH4)2SO4, 2 M Na2HPO4, 1.5 M K2HPO4, and 2 M NaCl. In the absence of salts the enzyme exhibited almost no activity. The salts affected mainly the Vmax rather than the Km of the enzyme. The catalytic mechanism of the dehydrogenase was determined to be of the ternary complex type, in agreement with the finding that the enzyme lacked a chromophoric prosthetic group. In the presence of 1 M (NH4)2SO4 the Vmax was 4000 U/mg (kcat = 2400 s-1) and the Km for N5,N10-methylenetetrahydromethanopterin and for coenzyme F420 were 80 microM and 20 microM, respectively. The enzyme was relatively heat-stable and lost no activity when incubated anaerobically in 50 mM K2HPO4 at 90 degrees C for one hour. The N-terminal amino acid sequence was found to be similar to that of the F420-dependent N5,N10-methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum, Methanosarcina barkeri, and Archaeoglobus fulgidus.
Collapse
Affiliation(s)
- A R Klein
- Laboratorium für Mikrobiologie des Fachbereichs Biologie der Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|
35
|
Pepper CB, Monbouquette HG. Issues in the culture of the extremely thermophilic methanogen,methanothermus fervidus. Biotechnol Bioeng 1993; 41:970-8. [DOI: 10.1002/bit.260411008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Heiden S, Hedderich R, Setzke E, Thauer RK. Purification of a cytochrome b containing H2:heterodisulfide oxidoreductase complex from membranes of Methanosarcina barkeri. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:529-35. [PMID: 8477725 DOI: 10.1111/j.1432-1033.1993.tb17791.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The reduction of CoM-S-S-HTP, the heterodisulfide of coenzyme M (H-S-CoM) and N-7-mercaptoheptanoylthreonine phosphate (H-S-HTP), with H2 is an energy-conserving step in methanogenic archaea. We report here that in Methanosarcina barkeri this reaction is catalyzed by a membrane-bound multienzyme complex, designated H2:heterodisulfide oxidoreductase complex, which was purified to apparent homogeneity. The preparation was found to be composed of nine polypeptides of apparent molecular masses 46 kDa, 39 kDa, 28 kDa, 25 kDa, 23 kDa, 21 kDa, 20 kDa, 16 kDa, and 15 kDa and to contain 3.2 nmol cytochrome b, 70 to 80 nmol non-heme iron and acid-labile sulfur, 5 nmol Ni, and 0.6 nmol FAD per mg protein. The 23 kDa polypeptide possessed heme-derived peroxidase activity indicating that this polypeptide is the cytochrome b. The purified H2:heterodisulfide oxidoreductase complex catalyzed the reduction of CoM-S-S-HTP with H2 at a specific activity of 6 U/mg protein (1 U = 1 mumol.min-1), the reduction of benzylviologen with H2 at a specific activity of 66 U/mg protein and the reduction of CoM-S-S-HTP benzylviologen with H2 at a specific activity of 66 U/mg protein and the reduction of CoM-S-S-HTP HTP with reduced benzylviologen at a specific activity of 24 U/mg protein. The complex did not mediate the reduction of coenzyme F420 with H2 nor the oxidation of reduced coenzyme F420 with CoM-S-S-HTP. The reduced cytochrome b in the enzyme complex could be oxidized by CoM-S-S-HTP and re-reduced by H2. The specific rates of cytochrome oxidation and reduction were too high to be resolved under our experimental conditions. The findings suggest that the H2:heterodisulfide oxidoreductase complex is composed of a F420-non-reducing hydrogenase, a cytochrome b and heterodisulfide reductase and that cytochrome b is a redox carrier in the electron transport chain involved in CoM-S-S-HTP reduction with H2.
Collapse
Affiliation(s)
- S Heiden
- Laboratorium für Mikrobiologie des Fachbereichs Biologie, Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|
37
|
Schwörer B, Breitung J, Klein AR, Stetter KO, Thauer RK. Formylmethanofuran: tetrahydromethanopterin formyltransferase and N5,N10-methylenetetrahydromethanopterin dehydrogenase from the sulfate-reducing Archaeoglobus fulgidus: similarities with the enzymes from methanogenic Archaea. Arch Microbiol 1993; 159:225-32. [PMID: 8481089 DOI: 10.1007/bf00248476] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The sulfate-reducing Archaeoglobus fulgidus contains a number of enzymes previously thought to be unique for methanogenic Archaea. The purification and properties of two of these enzymes, of formylmethanofuran: tetrahydromethanopterin formyltransferase and of N5,N10-methylenetetrahydromethanopterin dehydrogenase (coenzyme F420 dependent) are described here. A comparison of the N-terminal amino acid sequences and of other molecular properties with those of the respective enzymes from three methanogenic Archaea revealed a high degree of similarity.
Collapse
Affiliation(s)
- B Schwörer
- Laboratorium für Mikrobiologie des Fachbereichs Biologie, Philipps-Universität Marburg, Germany
| | | | | | | | | |
Collapse
|
38
|
Mukhopadhyay B, Purwantini E, Daniels L. Effect of methanogenic substrates on coenzyme F420-dependent N5,N10-methylene-H4MPT dehydrogenase, N5,N10-methenyl-H4MPT cyclohydrolase and F420-reducing hydrogenase activities in Methanosarcina barkeri. Arch Microbiol 1993. [DOI: 10.1007/bf00250274] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Chapter 4 Bioenergetics and transport in methanogens and related thermophilic archaea. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
40
|
|
41
|
Schleucher J, Schwörer B, Zirngibl C, Koch U, Weber W, Egert E, Thauer RK, Griesinger C. Determination of the relative configuration of 5,6,7,8-tetrahydromethanopterin by two-dimensional NMR spectroscopy. FEBS Lett 1992; 314:440-4. [PMID: 1468581 DOI: 10.1016/0014-5793(92)81522-n] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The relative configuration of the pterin moiety of 5,6,7,8-tetrahydromethanopterin 1, a coenzyme isolated from methanogenic archaea, has been determined by two-dimensional NMR spectroscopy of N5,N10-methenyl-5,6,7,8-tetrahydromethanopterin 2 to be rel-(6R; 7S; 11R). The complete proton resonance assignment of the pterin moiety of N5,N10-methylene-5,6,7,8-tetrahydromethanopterin 3 is described including the relative stereospecific assignment of the C(14a) methylene protons.
Collapse
Affiliation(s)
- J Schleucher
- Institute for Organic Chemistry, University of Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Becher B, Müller V, Gottschalk G. N5-methyl-tetrahydromethanopterin:coenzyme M methyltransferase of Methanosarcina strain Gö1 is an Na(+)-translocating membrane protein. J Bacteriol 1992; 174:7656-60. [PMID: 1447136 PMCID: PMC207478 DOI: 10.1128/jb.174.23.7656-7660.1992] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
To determine the cellular localization of components of the methyltransferase system, we separated cell extracts of Methanosarcina strain Gö1 into cytoplasmic and inverted-vesicle fractions. Measurements demonstrated that 83% of the methylene-tetrahydromethanopterin reductase activity resided in the cytoplasm whereas 88% of the methyl-tetrahydromethanopterin:coenzyme M methyltransferase (methyltransferase) was associated with the vesicles. The activity of the methyltransferase was stimulated 4.6-fold by ATP and 10-fold by ATP plus a reducing agent [e.g., Ti(III)]. In addition, methyltransferase activity depended on the presence of Na+ (apparent Km = 0.7 mM) and Na+ was pumped into the lumen of the vesicles in the course of methyl transfer from methyl-tetrahydromethanopterin not only to coenzyme M but also to hydroxycobalamin. Both methyl transfer reactions were inhibited by 1-iodopropane and reconstituted by illumination. A model for the methyl transfer reactions is presented.
Collapse
Affiliation(s)
- B Becher
- Institut für Mikrobiologie, Georg-August-Universität, Göttingen, Germany
| | | | | |
Collapse
|
43
|
Purwantini E, Mukhopadhyay B, Spencer RW, Daniels L. Effect of temperature on the spectral properties of coenzyme F420 and related compounds. Anal Biochem 1992; 205:342-50. [PMID: 1443583 DOI: 10.1016/0003-2697(92)90446-e] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The uv-visible spectra of 7,8-didemethyl-8-hydroxy-5-deazaflavin-5'-phosphoryllactyl glutamate (coenzyme F420), a naturally occurring 5-deazaflavin derivative, in three different buffers changed with a rise in temperature; the effect on the extinction coefficient at 420 nm (epsilon 420) was as follows: In phosphate-buffered solutions at pH less than 7.5, the epsilon 420 increased (at pH 5.0 for a temperature shift from 15 to 60 degrees C, delta epsilon 420 was +87%), but between pH 7.5 and 8, epsilon 420 changed very little. At pH greater than 8.0 in phosphate- or borate-buffered solutions, epsilon 420 decreased slightly. In morpholineethanesulfonic acid (Mes)-buffered F420 solutions at pH 5 and 5.5, epsilon 420 changed very little, whereas at pH 6-8, the epsilon 420 decreased. Absorbance of F420 at 401 nm in phosphate buffer at pH 5 to 9 was not significantly affected by temperature. Changes in epsilon 420 due to temperature change corresponded to changes in the pKa of 8-OH of the deazaflavin molecule; studies with adenylated F420 showed that the 8-OH of F420 was responsible for these changes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E Purwantini
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | | | | | |
Collapse
|
44
|
Abstract
The general features are known for the pathway by which most methane is produced in nature. All acetate-utilizing methanogenic microorganisms contain CODH which catalyzes the cleavage of acetyl-CoA; however, the pathway differs from all other acetate-utilizing anaerobes in that the methyl group is reduced to methane with electrons derived from oxidation of the carbonyl group of acetyl-CoA to CO2. The current understanding of the methanogenic fermentation of acetate provides impressions of nature's novel solutions to problems of methyl transfer, electron transport, and energy conservation. The pathway is now at a level of understanding that will permit productive investigations of these and other interesting questions in the near future.
Collapse
Affiliation(s)
- J G Ferry
- Department of Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg 24061-0305
| |
Collapse
|
45
|
Zirngibl C, Van Dongen W, Schwörer B, Von Bünau R, Richter M, Klein A, Thauer RK. H2-forming methylenetetrahydromethanopterin dehydrogenase, a novel type of hydrogenase without iron-sulfur clusters in methanogenic archaea. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 208:511-20. [PMID: 1521540 DOI: 10.1111/j.1432-1033.1992.tb17215.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel hydrogenase has recently been found in methanogenic archaea. It catalyzes the reversible dehydrogenation of methylenetetrahydromethanopterin (CH2 = H4MPT) to methenyltetrahydromethanopterin (CH identical to H4MPT+) and H2 and was therefore named H2-forming methylenetetrahydromethanopterin dehydrogenase. The hydrogenase, which is composed of only one polypeptide with an apparent molecular mass of 43 kDa, does not mediate the reduction of viologen dyes with either H2 or CH2 = H4MPT. We report here that the purified enzyme from Methanobacterium thermoautotrophicum exhibits the following other unique properties: (a) the colorless protein with a specific activity of 2000 U/mg (Vmax) did not contain iron-sulfur clusters, nickel, or flavins; (b) the activity was not inhibited by carbon monoxide, acetylene, nitrite, cyanide, or azide; (c) the enzyme did not catalyze an isotopic exchange between 3H2 and 1H+; (d) the enzyme catalyzed the reduction of CH identical to H4MPT+ with 3H2 generating [methylene-3H]CH2 = H4MPT; and (e) the primary structure contained at most four conserved cysteines as revealed by a comparison of the DNA-deduced amino acid sequence of the proteins from M. thermoautotrophicum and Methanopyrus kandleri. None of the four cysteines were closely spaced as would be indicative for a (NiFe) hydrogenase or a ferredoxin-type iron-sulfur protein. Properties of the H2-forming methylenetetrahydromethanopterin dehydrogenase from Methanobacterium wolfei are also described indicating that the enzyme from this methanogenic archaeon is very similar to the enzyme from M. thermoautotrophicum with respect both to molecular and catalytic properties.
Collapse
Affiliation(s)
- C Zirngibl
- Laboratorium für Mikrobiologie des Fachbereichs Biologie, Philipps-Universität Marburg, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Schmitz RA, Richter M, Linder D, Thauer RK. A tungsten-containing active formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 207:559-65. [PMID: 1633810 DOI: 10.1111/j.1432-1033.1992.tb17082.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Methanobacterium wolfei is a thermophilic methanogenic archaeon which requires tungsten or molybdenum for growth. We have found that the organism contains two formylmethanofuran dehydrogenases, one of which is a tungsten enzyme. Indirect evidence indicates that the other formylmethanofuran dehydrogenase is a molybdenum enzyme. The tungsten enzyme was purified and characterized. The native enzyme had an apparent molecular mass of 130 kDa. SDS/PAGE revealed a composition of three subunits of apparent molecular mass 35, 51 and 64 kDa, the N-terminal amino acid sequences of two of which were determined. 0.3-0.4 mol tungsten/mol enzyme was found but no molybdenum. The pterin cofactor was identified as molybdopterin guanine dinucleotide. The purified enzyme exhibited a specific activity of 8.3 mumol.min-1.mg protein-1 and an apparent Km for formylmethanofuran and methylviologen of 13 microM and 0.4 mM, respectively. The optimum temperature for activity was 65 degrees C. At 40-60 degrees C, the rate increased with a Q10 of 1.9; the activation energy of the reaction was 45 kJ/mol. The enzyme was found to require potassium ions for thermostability. The oxygen-sensitive enzyme was not inactivated by cyanide.
Collapse
Affiliation(s)
- R A Schmitz
- Laboratorium für Mikrobiologie, Philipps-Universität Marburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
47
|
Jetten MS, Stams AJ, Zehnder AJ. Methanogenesis from acetate: a comparison of the acetate metabolism inMethanothrix soehngeniiandMethanosarcinaspp. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb04987.x] [Citation(s) in RCA: 342] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
48
|
Bonacker LG, Baudner S, Thauer RK. Differential expression of the two methyl-coenzyme M reductases in Methanobacterium thermoautotrophicum as determined immunochemically via isoenzyme-specific antisera. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 206:87-92. [PMID: 1587287 DOI: 10.1111/j.1432-1033.1992.tb16904.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Methanobacterium thermoautotrophicum contains two isoenzymes of methyl-coenzyme M reductase (MCR), MCR I and MCR II, which catalyze the methane-forming step and which together represent more than 10% of the cellular protein. We describe here the preparation of isoenzyme-specific antisera against the two MCR isoenzymes and their use in the quantitative immunochemical determination of the two isoenzymes in the methanogen. The relative and absolute cellular concentration of the two proteins is shown to be strongly affected by growth conditions such as the temperature, pH, and substrate concentration. Conditions were found yielding cells which contained essentially only MCR I or MCR II. Using antisera against MCR I and MCR II, MCR from other methanogens were immunochemically compared. Evidence is presented that Methanobacterium wolfei also contains two isoenzymes of MCR.
Collapse
Affiliation(s)
- L G Bonacker
- Max-Planck-Institut für Terrestrische Mikrobiologie Marburg, Federal Republic of Germany
| | | | | |
Collapse
|
49
|
McFarlan S, Terrell C, Hogenkamp H. The purification, characterization, and primary structure of a small redox protein from Methanobacterium thermoautotrophicum, an archaebacterium. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50053-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
50
|
Hedderich R, Albracht SP, Linder D, Koch J, Thauer RK. Isolation and characterization of polyferredoxin from Methanobacterium thermoautotrophicum. The mvhB gene product of the methylviologen-reducing hydrogenase operon. FEBS Lett 1992; 298:65-8. [PMID: 1312016 DOI: 10.1016/0014-5793(92)80023-a] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The methylviologen-reducing hydrogenase operon of Methanobacterium thermoautotrophicum contains an open reading frame, mvhB, the product of which was predicted to have a molecular weight of 44 kDa and to contain as many as 48 iron atoms in 12 [4Fe-4S] clusters, and was therefore suggested to be a polyferredoxin. We have now, for the first time, isolated this polyferredoxin. Its identity with the mvhB gene product was evidenced by a comparison of the N-terminal amino acid sequence. The dark-brown protein of apparent molecular weight 44 kDa was found to contain 53 mol Fe and 43 mol acid-labile sulfur per mol. The UV/visible spectrum showed two maxima at 280 nm and 390 nm, and a shoulder at 308 nm. The A390/A280 ratio was 0.73. The molar extinction coefficient at 390 nm was 170,000 M-1.cm-1. In the dithionite reduced state the protein displayed an EPR spectrum like that of [4Fe-4S] clusters. The results indicate that the mvhB gene product is indeed a polyferredoxin.
Collapse
Affiliation(s)
- R Hedderich
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität Marburg, Germany
| | | | | | | | | |
Collapse
|