1
|
Rico CM, Wagner DC, Ofoegbu PC, Kirwa NJ, Clubb P, Coates K, Zenobio JE, Adeleye AS. Toxicity assessment of perfluorooctanesulfonic acid (PFOS) on a spontaneous plant, velvetleaf (Abutilon theophrasti), via metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167894. [PMID: 37866594 DOI: 10.1016/j.scitotenv.2023.167894] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
Spontaneous plants often play important ecological roles in terrestrial environments, but impacts of contaminants on spontaneous plants are seldom investigated. Per- and polyfluoroalkyl substances (PFAS), such as perfluorooctanesulfonic acid (PFOS) are ubiquitous in rural and urban soils. In this study, we assessed the effects of PFOS on a spontaneous plant, velvetleaf (Abutilon theophrasti), using endpoints such as plant growth, stress defense, PFOS uptake, and elemental and metabolite profile. We observed stunted growth in plants grown in PFOS-contaminated soils, with PFOS accumulating in their shoots by up to 3000 times more than the control plants. The other endpoints (decreased chlorophyll a synthesis, elevated oxidative stress, reduced shoot Mg concentration, and reduced biomass production) also explained the stunted growth of velvetleaf exposed to elevated PFOS concentrations. We found that 56 metabolites involved in 13 metabolic pathways were dysregulated. The synthesis of important antioxidants such as ascorbic acid, hydroxycinnamic acids (coumaric, caffeic, ferulic, and sinapic acids), and tocopherols decreased, resulting in loss of plant's defense to stress. PFOS also reduced the levels of growth-related and stress-coping metabolites including squalene, serotonin, noradrenalin, putrescine, and indole-3-propionic acid, which further corroborated the restricted growth of velvetleaf exposed to elevated PFOS. These findings provide insights on phytotoxicity of PFOS to velvetleaf, a resilient terrestrial spontaneous plant.
Collapse
Affiliation(s)
- Cyren M Rico
- Department of Chemistry and Biochemistry, Missouri State University, 901 S National Ave., Springfield, MO 65897, USA.
| | - Dane C Wagner
- Department of Chemistry and Biochemistry, Missouri State University, 901 S National Ave., Springfield, MO 65897, USA
| | - Polycarp C Ofoegbu
- Department of Chemistry and Biochemistry, Missouri State University, 901 S National Ave., Springfield, MO 65897, USA
| | - Naum J Kirwa
- Department of Chemistry and Biochemistry, Missouri State University, 901 S National Ave., Springfield, MO 65897, USA
| | - Preston Clubb
- Department of Chemistry and Biochemistry, Missouri State University, 901 S National Ave., Springfield, MO 65897, USA
| | - Kameron Coates
- Department of Chemistry and Biochemistry, Missouri State University, 901 S National Ave., Springfield, MO 65897, USA; Willard High School, 515 E Jackson St., Willard, MO 65781, USA
| | - Jenny E Zenobio
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA
| | - Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA
| |
Collapse
|
2
|
Shiko G, Paulmann MJ, Feistel F, Ntefidou M, Hermann-Ene V, Vetter W, Kost B, Kunert G, Zedler JAZ, Reichelt M, Oelmüller R, Klein J. Occurrence and conversion of progestogens and androgens are conserved in land plants. THE NEW PHYTOLOGIST 2023; 240:318-337. [PMID: 37559351 DOI: 10.1111/nph.19163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/28/2023] [Indexed: 08/11/2023]
Abstract
Progestogens and androgens have been found in many plants, but little is known about their biosynthesis and the evolution of steroidogenesis in these organisms. Here, we show that the occurrence and biosynthesis of progestogens and androgens are conserved across the viridiplantae lineage. An UHPLC-ESI-MS/MS method allowed high-throughput analysis of the occurrence and chemical conversion of progestogens and androgens in 41 species across the green plant lineage. Dehydroepiandrosterone, testosterone, and 5α-dihydrotestosterone are plants' most abundant mammalian-like steroids. Progestogens are converted into 17α-hydroxyprogesterone and 5α-pregnane-3,20-dione. Androgens are converted into testosterone and 5α-dihydrotestosterone. 17,20-Lyases, essential for converting progestogens to androgens, seem to be most effective in monocot species. Our data suggest that the occurrence of progestogens and androgens is highly conserved in plants, and their biosynthesis might favor a route using the Δ4 pathway.
Collapse
Affiliation(s)
- Glendis Shiko
- Department of Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Max-Jonas Paulmann
- Department of Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Felix Feistel
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany
| | - Maria Ntefidou
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Vanessa Hermann-Ene
- Institute of Food Chemistry, University of Hohenheim, 70599, Stuttgart, Germany
| | - Walter Vetter
- Institute of Food Chemistry, University of Hohenheim, 70599, Stuttgart, Germany
| | - Benedikt Kost
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Grit Kunert
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany
| | - Julie A Z Zedler
- Synthetic Biology of Photosynthetic Organisms, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Michael Reichelt
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Jan Klein
- Department of Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| |
Collapse
|
3
|
Weigle AT, Carr M, Shukla D. Impact of Increased Membrane Realism on Conformational Sampling of Proteins. J Chem Theory Comput 2021; 17:5342-5357. [PMID: 34339605 DOI: 10.1021/acs.jctc.1c00276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The realism and accuracy of lipid bilayer simulations through molecular dynamics (MD) are heavily dependent on the lipid composition. While the field is pushing toward implementing more heterogeneous and realistic membrane compositions, a lack of high-resolution lipidomic data prevents some membrane protein systems from being modeled with the highest level of realism. Given the additional diversity of real-world cellular membranes and protein-lipid interactions, it is still not fully understood how altering membrane complexity affects modeled membrane protein functions or if it matters over long-timescale simulations. This is especially true for organisms whose membrane environments have little to no computational study, such as the plant plasma membrane. Tackling these issues in tandem, a generalized, realistic, and asymmetric plant plasma membrane with more than 10 different lipid species is constructed herein. Classical MD simulations of pure membrane constructs were performed to evaluate how altering the compositional complexity of the membrane impacted the plant membrane properties. The apo form of a plant sugar transporter, OsSWEET2b, was inserted into membrane models where lipid diversity was calculated in either a size-dependent or size-independent manner. An adaptive sampling simulation regime validated by Markov-state models was performed to capture the gating dynamics of OsSWEET2b in each of these membrane constructs. In comparison to previous OsSWEET2b simulations performed in a pure POPC bilayer, we confirm that simulations performed within a native-like membrane composition alter the stabilization of apo OsSWEET2b conformational states by ∼1 kcal/mol. The free-energy barriers of intermediate conformational states decrease when realistic membrane complexity is simplified, albeit roughly within sampling error, suggesting that protein-specific responses to membranes differ due to altered packing caused by compositional fluctuations. This work serves as a case study where a more realistic bilayer composition makes unbiased conformational sampling easier to achieve than with simplified bilayers.
Collapse
Affiliation(s)
- Austin T Weigle
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthew Carr
- Independent Software Development Provider310 East Marlette Avenue, Phoenix, Arizona 85012, United States
| | - Diwakar Shukla
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Andrade P, Caudepón D, Altabella T, Arró M, Ferrer A, Manzano D. Complex interplays between phytosterols and plastid development. PLANT SIGNALING & BEHAVIOR 2017; 12:e1387708. [PMID: 28990832 PMCID: PMC5703248 DOI: 10.1080/15592324.2017.1387708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 09/29/2017] [Indexed: 05/29/2023]
Abstract
Isoprenoids comprise the largest class of natural compounds and are found in all kinds of organisms. In plants, they participate in both primary and specialized metabolism, playing essential roles in nearly all aspects of growth and development. The enormous diversity of this family of compounds is extensively exploited for biotechnological and biomedical applications as biomaterials, biofuels or drugs. Despite their variety of structures, all isoprenoids derive from the common C5 precursor isopentenyl diphosphate (IPP). Plants synthesize IPP through two different metabolic pathways, the mevalonic acid (MVA) and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways that operate in the cytosol-RE and plastids, respectively. MEP-derived isoprenoids include important compounds for chloroplast function and as such, knock-out mutant plants affected in different steps of this pathway display important alterations in plastid structure. These alterations often lead to albino phenotypes and lethality at seedling stage. MVA knock-out mutant plants show, on the contrary, lethal phenotypes already exhibited at the gametophyte or embryo developmental stage. However, the recent characterization of conditional knock-down mutant plants of farnesyl diphosphate synthase (FPS), a central enzyme in cytosolic and mitochondrial isoprenoid biosynthesis, revealed an unexpected role of this pathway in chloroplast development and plastidial isoprenoid metabolism in post-embryonic stages. Upon FPS silencing, chloroplast structure is severely altered, together with a strong reduction in the levels of MEP pathway-derived major end products. This phenotype is associated to misregulation of genes involved in stress responses predominantly belonging to JA and Fe homeostasis pathways. Transcriptomic experiments and analysis of recent literature indicate that sterols are the cause of the observed alterations through an as yet undiscovered mechanism.
Collapse
Affiliation(s)
- Paola Andrade
- Plant Metabolism and Metabolic Engineering Program Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Daniel Caudepón
- Plant Metabolism and Metabolic Engineering Program Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Teresa Altabella
- Plant Metabolism and Metabolic Engineering Program Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Montserrat Arró
- Plant Metabolism and Metabolic Engineering Program Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Albert Ferrer
- Plant Metabolism and Metabolic Engineering Program Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - David Manzano
- Plant Metabolism and Metabolic Engineering Program Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Lu Y, Zhou W, Wei L, Li J, Jia J, Li F, Smith SM, Xu J. Regulation of the cholesterol biosynthetic pathway and its integration with fatty acid biosynthesis in the oleaginous microalga Nannochloropsis oceanica. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:81. [PMID: 24920959 PMCID: PMC4052811 DOI: 10.1186/1754-6834-7-81] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/01/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND Sterols are vital structural and regulatory components in eukaryotic cells; however, their biosynthetic pathways and functional roles in microalgae remain poorly understood. RESULTS In the oleaginous microalga Nannochloropsis oceanica, the sterol biosynthetic pathway produces phytosterols as minor products and cholesterol as the major product. The evidence together with their deduced biosynthetic pathways suggests that N. oceanica exhibits features of both higher plants and mammals. Temporal tracking of sterol profiles and sterol-biosynthetic transcripts in response to changes in light intensity and nitrogen supply reveal that sterols play roles in cell proliferation, chloroplast differentiation, and photosynthesis. Furthermore, the dynamics of fatty acid (FA) and FA-biosynthetic transcripts upon chemical inhibitor-induced sterol depletion reveal possible co-regulation of sterol production and FA synthesis, in that the squalene epoxidase inhibitor terbinafine reduces sterol content yet significantly elevates free FA production. Thus, a feedback regulation of sterol and FA homeostasis is proposed, with the 1-deoxy-D-xylulose 5-phosphate synthase (DXS, the committed enzyme in isoprenoid and sterol biosynthesis) gene potentially subject to feedback regulation by sterols. CONCLUSION These findings reveal features of sterol function and biosynthesis in microalgae and suggest new genetic engineering or chemical biology approaches for enhanced oil production in microalgae.
Collapse
Affiliation(s)
- Yandu Lu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Wenxu Zhou
- Australian Research Council, Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Li Wei
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Jing Li
- Australian Research Council, Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jing Jia
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Fei Li
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Steven M Smith
- Australian Research Council, Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| |
Collapse
|
6
|
Carmona-Salazar L, El Hafidi M, Enríquez-Arredondo C, Vázquez-Vázquez C, González de la Vara LE, Gavilanes-Ruíz M. Isolation of detergent-resistant membranes from plant photosynthetic and non-photosynthetic tissues. Anal Biochem 2011; 417:220-7. [PMID: 21723848 DOI: 10.1016/j.ab.2011.05.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 05/27/2011] [Accepted: 05/28/2011] [Indexed: 11/25/2022]
Abstract
Microdomains, or lipid rafts, are transient membrane regions enriched in sphingolipids and sterols that have only recently, but intensively, been studied in plants. In this work, we report a detailed, easy-to-follow, and fast procedure to isolate detergent-resistant membranes (DRMs) from purified plasma membranes (PMs) that was used to obtain DRMs from Phaseolus vulgaris and Nicotiana tabacum leaves and germinating Zea mays embryos. Characterized according to yield, ultrastructure, and sterol composition, these DRM preparations showed similarities to analogous preparations from other eukaryotic cells. Isolation of DRMs from germinating maize embryos reveals the presence of microdomains at very early developmental stages of plants.
Collapse
Affiliation(s)
- Laura Carmona-Salazar
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, México DF 04510, Mexico
| | | | | | | | | | | |
Collapse
|
7
|
Connor WE, Wang Y, Green M, Lin DS. Effects of diet and metamorphosis upon the sterol composition of the butterfly Morpho peleides. J Lipid Res 2006; 47:1444-8. [PMID: 16582035 DOI: 10.1194/jlr.m600056-jlr200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whole body sterol metabolism in insects has seldom been studied. We were able to design an appropriate study at a butterfly farm in Belize. We collected six larvas of butterfly (Morpho peleides), their food (leaves of Pterocarpus bayessii), and their excretions. In addition, six adult butterflies were collected. The sterols of the diet, the larva, and adult butterfly were analyzed by gas-liquid chromatography. The structures of these sterols were identified by digitonin precipitation, GC-MS, and NMR. Four sterols (cholesterol, campesterol, stigmasterol, and sitosterol) and a sterol mixture were found in the food, the body, and the excreta of the larva. The tissue sterol content of the larva was 326 microg. They consumed 276 microg of sterols per day. Their excretion was 185 microg per day as sterols. The total tissue sterol contents of the larva and butterfly were similar, but they had different sterol compositions, which indicated interconversion of sterols during development. There was a progressive increase in the cholesterol content from larva to butterfly and a decrease in the content of sitosterol and other plant sterols, which were likely converted to cholesterol. Our data indicated an active sterol metabolism in butterfly larva. Diet played an important role in determining its sterol composition. During metamorphosis, there was an interconversion of sterols. This is the first paper documenting the fecal sterol excretion in insects as related to dietary intakes.
Collapse
Affiliation(s)
- William E Connor
- Department of Medicine, Division of Endocrinology, Diabetes, and Clinical Nutrition, Oregon Health and Science University, Portland, USA.
| | | | | | | |
Collapse
|
8
|
Noda M, Tanaka M, Seto Y, Aiba T, Oku C. Occurrence of cholesterol as a major sterol component in leaf surface lipids. Lipids 1988. [DOI: 10.1007/bf02535517] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Abstract
Anaerobically grown Saccharomyces cerevisiae retained the ability to transfer a C1-group to the C-24 position of a delta 24(25)-sterol and to reduce the delta 25(28)-bond of a 24-methylenesterol. Both desmosterol and 24-methylenecholesterol yielded 24 beta-methylcholesterol. However, when the substituent at C-24 was enlarged to a 24-ethylidene group (fucosterol), reduction of the delta 24(28)-bond did not occur. In no cases was a delta 7- or a delta 22-bond introduced. Because the delta 24(28)-bond was reduced in the absence of the delta 22-bond, the delta 22-bond is not an obligatory requirement for reduction.
Collapse
|
10
|
Garcia RE, Mudd JB. Fatty acid and sterol specificity in the biosynthesis of steryl esters by enzyme preparations from spinach leaves. Arch Biochem Biophys 1978; 190:315-21. [PMID: 708076 DOI: 10.1016/0003-9861(78)90281-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Knights BA, Smith AR. Sterols of male and female flowers of Cucumis sativus. PLANTA 1977; 134:115-117. [PMID: 24419688 DOI: 10.1007/bf00384959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/1976] [Accepted: 11/19/1976] [Indexed: 06/03/2023]
Abstract
Sterols of male and female flowers of Cucumis sativus L. were similar in composition. The principal compound was 24ξ-ethyl-5α-cholesta-7,22-dien-3β-ol. Five other 5α-Δ(7) were detected: 24ξ-methyl-7-ene, 24ξ-ethyl-7-ene, 24-ethyl-7,24(28)Z-diene, 24ξ-ethyl-7,25-diene and 24ξ-ethyl-7,22,25-triene. Small amounts of Δ(5) (cholesterol, 24ξ-methylcholesterol and 24ξ-ethylcholesterol) were detected. The possible significance of these sterols is discussed.
Collapse
Affiliation(s)
- B A Knights
- Department of Botany, University of Glasgow, G12 8QQ, Glasgow, U.K
| | | |
Collapse
|
12
|
Rademacher E, Feierabend J. Formation of chloroplast pigments and sterols in rye leaves deficient in plastid ribosomes. PLANTA 1976; 129:147-153. [PMID: 24430906 DOI: 10.1007/bf00390021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/1975] [Accepted: 11/17/1975] [Indexed: 06/03/2023]
Abstract
1. In rye (Secale cereale L.) leaves the formation of plastidic ribosomes is sensitive to elevated growth temperatures. Parallel to the loss of 70S ribosomes, in leaves growing at 32° chlorophyll accumulation was also prevented. Except for the tips of the first leaves which still contained some 70S ribosomes, the leaves were chlorotic. The amount of chlorophyll formed at 32° depended on the light intensity and decreased with higher intensities. After return to normal temperature (22°) chlorotic parts of the first leaves greened to a varying extent while those parts of most 2. or 3. leaves which had been formed in light at 32° remained permanently bleached until they died. Those parts of 2. and 3. leaves which were newly formed at 22° became normally green again. - 2. Formation and distribution of total and individual carotenoids were compared after development at 22° and 32°. In dark-grown leaves the higher growth temperature had no marked influence on the quantity or composition of carotenoids. At 22° the content of total carotenoids was 5fold and that of β-carotene 25fold increased by light. At 32° these light-induced increases were much lower. Only 41% of the total carotenoids and 18% of the β-carotene formed at 22° in light were found at 32°. Of the carotenoids present at 32°, 76% were located in the light green tips of the leaves. In plastids isolated from completely chlorotic leaf parts, carotenoids were still present and were even the predominant pigments. - 3. The contents of total sterols, the fractions of free sterols, sterol glycosides and esters, and the composition of individual sterols were compared in rye leaves grown at 22° and at 32°, in light or darkness. Light had little effect on the total sterol contents per leaf. However, more than 2fold higher sterol contents were observed in leaves grown at 32°, as compared to those from 22°. The amounts of most sterol fractions and individual sterols were similarly increased at the higher temperature but the sterol glycosides being relatively more increased than the total sterols.
Collapse
Affiliation(s)
- E Rademacher
- Lehrstuhl für Pflanzenphysiologie, Arbeitsgruppe Pflanzliche Zellphysiologie der Ruhr-Universität Bochum, Postfach 2148, D-4630, Bochum, Federal Republic of Germany
| | | |
Collapse
|
13
|
Hartmann M, Normand G, Benveniste P. Sterol composition of plasma membrane enriched fractions from maize coleoptiles. ACTA ACUST UNITED AC 1975. [DOI: 10.1016/0304-4211(75)90056-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Carbonero P, Torres JV, Garcia-Olmedo F. Effects of n-butanol and filipin on membrane permeability of developing wheat endosperms with different sterol phenotypes. FEBS Lett 1975; 56:198-201. [PMID: 1157939 DOI: 10.1016/0014-5793(75)81090-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Gellerman JL, Anderson WH, Richardson DG, Schlenk H. Distribution of arachidonic and eicosapentaenoic acids in the lipids of mosses. BIOCHIMICA ET BIOPHYSICA ACTA 1975; 388:277-90. [PMID: 1138900 DOI: 10.1016/0005-2760(75)90133-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lipid classes from four species of mosses, Mnium cuspidatum, and Mnium medium from Minnesota, and Hylocomium splendens and Pleurozium schreberi from Alaska, were analyzed. The total lipids of all species contained 30-40% arachidonic and eicosapentaenoic acids. However, the lipids from the Alaskan mosses contained about 75% neutral lipids (triacylglycerols, steryl esters and wax esters) whereas the lipids of the other species contained only 20% or less of these neutral lipids. Consistently, monogalactosyldiacylglycerols and phosphatidylethanol-amines were enriched in arachidonic acid and the galactolipids in eicosapentaenoic acid. The distribution of these acids in the phospholipids shows some preference for position 2. Together, the highly unsaturated C20 acids represented 80% of acyl groups in steryl esters. In triacylglycerols they were at average levels, while they were much less in sulfolipids and phosphatidylglycerols. Wax esters contained very little of the highly unsaturated acids but appreciable amounts of phytol and phytenic acid were found as wax constituents.
Collapse
|
16
|
Atallah AM, Nicholas HJ. Function of steryl esters in plants: a hypothesis that liquid crystalline properties of some steryl esters may be significant in plant sterol metabolism. Lipids 1974; 9:613-22. [PMID: 4424696 DOI: 10.1007/bf02532510] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Rohmer M, Ourisson G, Brandt RD. Hydrosoluble complexes of sterols, sterol esters and their precursors from Zea mays L. EUROPEAN JOURNAL OF BIOCHEMISTRY 1972; 31:172-9. [PMID: 4640462 DOI: 10.1111/j.1432-1033.1972.tb02516.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|