1
|
Yamamoto Y, Ito D, Akatsuka H, Noguchi H, Matsushita A, Kinekawa H, Nagano H, Yoshino A, Taga K, Shervani Z, Yamamoto M. The Interaction between Anesthetic Isoflurane and Model-Biomembrane Monolayer Using Simultaneous Quartz Crystal Microbalance (QCM) and Quartz Crystal Impedance (QCI) Methods. MEMBRANES 2024; 14:62. [PMID: 38535281 PMCID: PMC10972458 DOI: 10.3390/membranes14030062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 11/12/2024]
Abstract
The interaction between anesthetic Isoflurane (Iso) and model-biomembrane on the water surface has been investigated using quartz crystal microbalance (QCM) and quartz crystal impedance (QCI) methods. The model-biomembranes used were dipalmitoyl phosphatidyl choline (DPPC), DPPC-palmitic acid (PA) mixture (DPPC:PA = 8:2), DPPC-Alamethicin (Al) mixture (DPPC:Al = 39:1), and DPPC-β-Lactoglobulin (βLG) mixture (DPPC:βLG = 139:1) monolayers, respectively. The quartz crystal oscillator (QCO) was attached horizontally to each monolayer, and QCM and QCI measurements were performed simultaneously. It was found that Iso hydrate physisorbed on each monolayer/water interface from QCM and changed those interfacial viscosities from QCI. With an increase in Iso concentration, pure DPPC, DPPC-PA mixed, and DPPC-Al mixed monolayers showed a two-step process of Iso hydrate on both physisorption and viscosity, whereas it was a one-step for the DPPC-βLG mixed monolayer. The viscosity change in the DPPC-βLG mixed monolayer with the physisorption of Iso hydrate was much larger than that of other monolayers, in spite of the one-step process. From these results, the action mechanism of anesthetics and their relevance to the expression of anesthesia were discussed, based on the "release of interfacial hydrated water" hypothesis on the membrane/water interface.
Collapse
Affiliation(s)
- Yasushi Yamamoto
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Daiki Ito
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Honoka Akatsuka
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Hiroki Noguchi
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Arisa Matsushita
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Hyuga Kinekawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Hirotaka Nagano
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Akihiro Yoshino
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Keijiro Taga
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Zameer Shervani
- Food & Energy Security Research & Product Centre, Sendai 980-0871, Japan
| | - Masato Yamamoto
- Department of Chemistry, School of Arts and Sciences, Showa University, Fujiyoshida 403-0005, Japan
| |
Collapse
|
2
|
Yamamoto Y, Ando T, Takayama M, Egami T, Ohtsu Y, Sakurai A, Yoshida T, Taga K, Kamaya H, Ueda I. Interaction between phospholipid monolayer and volatile anesthetics using quartz crystal oscillator methods. Colloids Surf A Physicochem Eng Asp 2008. [DOI: 10.1016/j.colsurfa.2007.11.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Yamamoto Y, Taga K, Yoshida T, Kamaya H, Ueda I. Action mechanism of water soluble ethanol on phospholipid monolayers using a quartz crystal oscillator. J Colloid Interface Sci 2006; 298:529-34. [PMID: 16413028 DOI: 10.1016/j.jcis.2005.12.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2005] [Revised: 12/20/2005] [Accepted: 12/20/2005] [Indexed: 10/25/2022]
Abstract
Interaction between phospholipid monolayers (dihexadecyl phosphate: DHP, dipalmitoyl phosphatidyl choline: DPPC) and water soluble ethanol has been studied using quartz crystal microbalance (QCM) method and quartz crystal impedance (QCI) method. The quartz crystal oscillator was attached horizontally on the DHP and DPPC monolayers that were formed on the water surface. At low concentration, increased ethanol concentration decreased the frequency for QCM and increased the resistance for QCI. Both frequency and resistance approached asymptotically to a saturation value. A further increase in ethanol concentration induced a sudden and discontinuous linear change (a decrease in frequency and an increase in resistance). Based on these results, we propose the following action mechanism of ethanol on phospholipid monolayers: at low concentration, the ethanol hydrates adsorb into the monolayer/water interface and saturate on the interface. The monolayer viscosity also increases with the adsorption of hydrates. A further increase in concentration causes multilayer formation of hydrates and/or penetration of hydrates into the monolayer core. The viscosity of the interfacial layer (monolayer and interfacial structured water) changes dramatically according to the action of ethanol hydrates.
Collapse
Affiliation(s)
- Yasushi Yamamoto
- Department of Life and Materials Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
| | | | | | | | | |
Collapse
|
4
|
Carnini A, Phillips HA, Shamrakov LG, Cramb DT. Revisiting lipid general anesthetic interactions (II): Halothane location and changes in lipid bilayer microenvironment monitored by fluorescence. CAN J CHEM 2004. [DOI: 10.1139/v04-024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A universal mechanism for the action of general anesthetics (GA) is not yet available. In this study, we investigated the interaction between halothane and 1,2-dipalmitoyl-sn-3-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl-sn-3-glycero-3-phosphocholine (DOPC) bilayers labeled with Laurdan, Prodan, and NBD-C6-PC as the reporter probes using steady-state fluorescence spectroscopy. We have evidence that halothane is located on the acyl chain side, near the headgroup region of the bilayer. Additionally, we find that halothane may be inhomogeneously distributed within DOPC and DPPC bilayers. We also show data that indicate halothane increases the free volume available to fluorescent probes. Differential scanning calorimetry and UV scanning calorimetry experiments were implemented to further observe the effects of halothane addition to the DPPC lipid bilayer. A significant shift of the phase-transition temperature of the DPPC system was observed. Our findings suggest that general anesthetic lipid bilayer interactions may play a significant role in the overall mechanism of anesthetic action, and these effects should not be ignored when interactions between membrane proteins and anesthetics are considered.Key words: liposomes, anesthesia, fluorescence, phase transition, phospholipid bilayers.
Collapse
|
5
|
Xu Y, Tang P, Liachenko S. Unifying characteristics of sites of anesthetic action revealed by combined use of anesthetics and non-anesthetics. Toxicol Lett 1998; 100-101:347-52. [PMID: 10049163 DOI: 10.1016/s0378-4274(98)00205-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
1. The usefulness of nonanesthetics in the study of mechanisms of general anesthesia lies in the possibility to identify the unifying characteristics of molecular sites that are shared by the anesthetics but not by the structurally similar nonanesthetics. 2. In model membranes, pairs of structurally similar anesthetics and nonanesthetics showed distinctly different submolecular distributions. 3. This difference may be the underlying cause for the different anesthetic and nonanesthetic interaction with gramicidin A, a model transmembrane cation channel. 4. Generalization of our findings suggests that the nature of the sites, whether in lipids or proteins, must be neither extremely hydrophilic nor extremely lipophilic, but amphiphilic.
Collapse
Affiliation(s)
- Y Xu
- Department of Anesthesiology and Critical Care Medicine, University of Pittsburgh, PA, USA.
| | | | | |
Collapse
|
6
|
Yoshino A, Yoshida T, Okabayashi H, Kamaya H, Ueda I. 19F and1H NMR and NOE Study on Halothane-Micelle Interaction: Residence Location of Anesthetic Molecules. J Colloid Interface Sci 1998. [DOI: 10.1006/jcis.1997.5322] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
A367 ANESTHETICS, BUT NOT NONANESTHETICS, DISTRIBUTE TO AMPHIPHILIC REGIONS IN MODEL MEMBRANE. Anesthesiology 1997. [DOI: 10.1097/00000542-199709001-00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Tang P, Yan B, Xu Y. Different distribution of fluorinated anesthetics and nonanesthetics in model membrane: a 19F NMR study. Biophys J 1997; 72:1676-82. [PMID: 9083671 PMCID: PMC1184361 DOI: 10.1016/s0006-3495(97)78813-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Despite their structural resemblance, a pair of cyclic halogenated compounds, 1-chloro-1,2,2-trifluorocyclobutane (F3) and 1,2-dichlorohexafluorocyclobutane (F6), exhibit completely different anesthetic properties. Whereas the former is a potent general anesthetic, the latter produces no anesthesia. Two linear compounds, isoflurane and 2,3-dichlorooctofluorobutane (F8), although not a structural pair, also show the same anesthetic discrepancy. Using 19F nuclear magnetic spectroscopy, we investigated the time-averaged submolecular distribution of these compounds in a vesicle suspension of phosphatidylcholine lipids. A two-site exchange model was used to interpret the observed changes in resonance frequencies as a function of the solubilization of these compounds in membrane and in water. At clinically relevant concentrations, the anesthetics F3 and isoflurane distributed preferentially to regions of the membrane that permit easy contact with water. The frequency changes of these two anesthetics can be well characterized by the two-site exchange model. In contrast, the nonanesthetics F6 and F8 solubilized deeply into the lipid core, and their frequency change significantly deviated from the prediction of the model. It is concluded that although anesthetics and nonanesthetics may show similar hydrophobicity in bulk solvents such as olive oil, their distributions in various regions in biomembranes, and hence their effective concentrations at different submolecular sites, may differ significantly.
Collapse
Affiliation(s)
- P Tang
- Department of Anesthesiology and Critical Care Medicine, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
9
|
|
10
|
Eger EI, Koblin DD, Harris RA, Kendig JJ, Pohorille A, Halsey MJ, Trudell JR. Hypothesis: inhaled anesthetics produce immobility and amnesia by different mechanisms at different sites. Anesth Analg 1997; 84:915-8. [PMID: 9085981 DOI: 10.1097/00000539-199704000-00039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- E I Eger
- Department of Anesthesia, University of California, San Francisco 94143-0464, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Chipot C, Wilson MA, Pohorille A. Interactions of anesthetics with the water-hexane interface. A molecular dynamics study. J Phys Chem B 1997; 101:782-91. [PMID: 11542402 DOI: 10.1021/jp961513o] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The free energy profiles characterizing the transfer of nine solutes across the liquid-vapor interfaces of water and hexane and across the water-hexane interface were calculated from molecular dynamics simulations. Among the solutes were n-butane and three of its halogenated derivatives, as well as three halogenated cyclobutanes. The two remaining molecules, dichlorodifluoromethane and 1,2-dichloroperfluoroethane, belong to series of halo-substituted methanes and ethanes, described in previous studies (J. Chem. Phys. 1996, 104, 3760; Chem. Phys. 1996, 204, 337). Each series of molecules contains structurally similar compounds that differ greatly in anesthetic potency. The accuracy of the simulations was tested by comparing the calculated and the experimental free energies of solvation of all nine compounds in water and in hexane. In addition. the calculated and the measured surface excess concentrations of n-butane at the water liquid-vapor interface were compared. In all cases, good agreement with experimental results was found. At the water-hexane interface, the free energy profiles for polar molecules exhibited significant interfacial minima, whereas the profiles for nonpolar molecules did not. The existence of these minima was interpreted in terms of a balance between the free energy contribution arising from solute-solvent interactions and the work to form a cavity that accommodates the solute. These two contributions change monotonically, but oppositely, across the interface. The interfacial solubilities of the solutes, obtained from the free energy profiles, correlate very well with their anesthetic potencies. This is the case even when the Meyer-Overton hypothesis, which predicts a correlation between anesthetic potency and solubility in oil, fails.
Collapse
Affiliation(s)
- C Chipot
- Exobiology Branch, NASA-Ames Research Center, Moffett Field, California 94035-1000, USA
| | | | | |
Collapse
|
12
|
Phonphok N, Chidichimo G, Westerman PW. Disposition of chloroform in phosphatidylcholine membranes: a 2H- and 31P-NMR study. Chem Phys Lipids 1996. [DOI: 10.1016/0009-3084(96)02590-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
13
|
Chiou JS, Krishna PR, Kamaya H, Ueda I. Alcohols dehydrate lipid membranes: an infrared study on hydrogen bonding. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1110:225-33. [PMID: 1390852 DOI: 10.1016/0005-2736(92)90363-q] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effects of alcohols (methanol, ethanol, and n-butanol) on the hydrogen bonding of dipalmitoylphosphatidylcholine (DPPC) were studied by Fourier-transform infrared spectroscopy (FTIR) in water-in-oil (carbon tetrachloride) reversed micelles. The bound O-H stretching mode of water, bonded to DPPC, appeared as a broad band at around 3400 cm-1. The O-H bending mode of this complex appeared as a weak broad band at 1644 cm-1. No free O-H signal was observed. When alcohols were added, a part of DPPC-bound water was replaced by the alcohols. The released 'free' water appeared at 3680 cm-1. This free O-H stretching band represents water-alcohol complex. A new broad band of O-H stretching appeared at 3235 cm-1, which represents the alcohol molecules bound to the phosphate moiety of DPPC. When the alcohol concentration was increased, the intensities of the free O-H stretching and bending bands increased. The P = O- antisymmetric stretching band at 1238 cm-1 became broader and shifted to lower frequencies. This means that alcohols interacted with the phosphate moiety and replaced the bound water. In the deconvoluted spectra of the C = O stretching mode, the ratio between the free sn-2 and the hydrogen-bonded sn-2 bands increased; a part of the bound water at the sn-2 carbon in the glycerol skeleton is also released and the free sn-2 signal increased. From the change in the intensity of the P = O- stretching band, the partition coefficients of alcohols between the phosphate region of DPPC and water were estimated: methanol 7.8, ethanol 16.7 at 22.0 degrees C in mole fraction bases. In molality, these values translates into methanol 0.21 and ethanol 0.45. These results indicate that short-chain alcohols interact with lipid membranes at the phosphate moiety at the hydrophilic head, weaken the membrane-water interaction, and destabilize membranes.
Collapse
Affiliation(s)
- J S Chiou
- Department of Anesthesia, University of Utah School of Medicine, Salt Lake City
| | | | | | | |
Collapse
|
14
|
Tsukamoto I, Yokono S, Shirakawa Y, Kinoshita H, Komatsu H, Aibiki M, Ogli K. Interactions between volatile anesthetics and dipalmitoyl phosphatidylcholine liposomes as studied by fluorometry with a thiacarbocyanine dye. J Anesth 1992; 6:38-44. [PMID: 15278581 DOI: 10.1007/s0054020060038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/1991] [Accepted: 05/20/1991] [Indexed: 11/27/2022]
Abstract
The effects of volatile anesthetics on the properties of dipalmitoyl phosphatidylcholine liposome were investigated by fluorescence spectroscopy with a thiacarbocyanine dye (3,3"-dioctadecyl-2,2"-thiacarbocyanine) which is sensitive to the viscosity and the dielectric constant of the environment. Seven volatile anesthetics, halothane, enflurane, isoflurane, methoxyflurane, sevoflurane, diethylether and chloroform were used. All anesthetics decreased the phase transition temperature of the liposome and increased the effective dielectric constant of the water-liposome interface. The increase of the effective dielectric constant was attributed to the release of the hydrated water molecules from the membrane surface. The increment of the effective dielectric constant depended on the thermodynamic activity of anesthetics in the solution, and was not affected seriously by the kind of anesthetics. On the other hand, the degree of the depression of the phase transition temperature depended on the molar concentrations of anesthetics. Considering from the Ferguson's report, which is dealt with the relationship between the physiological effect and the thermodynamic activity, the effect of anesthetics on the effective dielectric constant of the membrane surface is more correlated to the anesthetic action than the effect on the phase transition temperature.
Collapse
Affiliation(s)
- I Tsukamoto
- Department of Anesthesiology and Emergency Medicine, Kagawa Medical School, Kagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Shibata A, Morita K, Yamashita T, Kamaya H, Ueda I. Anesthetic-protein interaction: effects of volatile anesthetics on the secondary structure of poly(L-lysine). J Pharm Sci 1991; 80:1037-41. [PMID: 1815054 DOI: 10.1002/jps.2600801108] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Effects of volatile anesthetics (chloroform, halothane, and enflurane) on the secondary structure of poly(L-lysine) were analyzed by circular dichroism (CD). The relative proportions among alpha-helix, beta-sheet, and random-coil conformations were calculated by the curve-fitting method on the CD data. Volatile anesthetics partially transformed alpha-helix to beta-sheet but not to random-coil under the present experimental condition. When expressed by the anesthetic partial pressures in the gas phase in equilibrium with the solution, the values that partially transformed alpha to beta conformation by 10% were 1.1 x 10(-2), 4.7 x 10(-2), and 7.9 x 10(-2) atm for chloroform, halothane, and enflurane, respectively. The order of potency is in reasonable agreement with the order of the anesthetic potencies of the agents. The alpha-to-beta transition was completely reversible when anesthetics were purged by nitrogen gas. Volatile anesthetics disrupted the hydrogen bonds of alpha-helix backbones and rearranged them to form the beta-sheet conformation. The beta-sheet conformation is stabilized mainly by the hydrophobic interaction among methylene side groups of poly(L-lysine). Volatile anesthetics promoted the transition by enhancing the hydrophobic interaction among side-chains and by rearranging the hydrogen bonds in the peptide backbone.
Collapse
Affiliation(s)
- A Shibata
- Faculty of Pharmaceutical Sciences, Tokushima University, Japan
| | | | | | | | | |
Collapse
|
16
|
Yoshida T, Taga K, Okabayashi H. Binding of volatile anesthetic halothane with micelles. J Colloid Interface Sci 1990. [DOI: 10.1016/0021-9797(90)90133-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Yoshida T, Taga K, Okabayashi H, Kamaya H, Ueda I. Proton flow along lipid bilayer surfaces: effect of halothane on the lateral surface conductance and membrane hydration. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1028:95-102. [PMID: 2169883 DOI: 10.1016/0005-2736(90)90270-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Impedance dispersion in liposomes measures the lateral charge transfer of lipid membrane surfaces. Depending on the choice of frequency between 1 kHz and 100 GHz, relaxation of the counterions at the interface, orientation of the head group, and relaxation of the bound and free water are revealed. This study measured the impedance dispersion in dipalmitoylphosphatidylcholine (DPPC) liposomes at 10 kHz. The surface conductance and capacitance showed breaks at pre- and main transition temperatures. Below the pre-transition temperature, the activation energy of the ion movement was 18.1 kJ.mol-1, which corresponded to that of the spin-lattice relaxation time of water (18.0 kJ.mol-1). At temperatures between pre- and main transition it increased to 51.3 kJ.mol-1, and agreed with 46.2-58.0 kJ.mol-1 of the activation energy of the dielectric relaxation of ice. Because the present system was salt-free, the ions were H3O+ and OH-, hence, their behavior represents that of water. The above results show that below the pre-transition temperature, the conductance is regulated by the mobility of free ions, or the number of free water molecules near the interface. On the other hand when the temperature exceeded pre-transition, melting of the surface-bound water crystals became the rate-limiting step for the proton flow. Halothane did not show any effect on the ion movement when the temperature was below pre-transition. When the temperature exceeded pre-transition, 0.35 mM halothane (equilibrium concentration) decreased the activation energy of the ion movement to 29.3 kJ.mol-1. This decrease indicates that halothane enhanced the release of the surface-bound water molecules at pre-transition. The surface-disordering effect of halothane was also shown by depression of the pre-transition temperature and decrease of the association energy among head groups from 9.7 kJ.mol-1 of the control to 5.2 kJ.mol-1 at 0.35 mM.
Collapse
Affiliation(s)
- T Yoshida
- Department of Applied Chemistry, Nagoya Institute of Technology, Japan
| | | | | | | | | |
Collapse
|
18
|
Tsai YS, Ma SM, Nishimura S, Ueda I. Infrared spectra of phospholipid membranes: interfacial dehydration by volatile anesthetics and phase transition. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1022:245-50. [PMID: 2306457 DOI: 10.1016/0005-2736(90)90120-d] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fourier-transform infrared attenuated total reflection (ATR) spectroscopy was used to study the effect of volatile anesthetics on fully hydrated dipalmitoylphosphatidylcholine (DPPC) vesicle membranes. The main phase transition was monitored by the change in the C-H2 asymmetric stretching frequencies of the lipid tails. The surface property was analyzed by the changes in the P = O stretching, (CH3)3-N+ stretching of the hydrophilic head, and C = O stretching of the glycerol skeleton. The partial pressures of those agents that decreased the transition temperature 1.0 C degree were halothane 0.75, enflurane 1.90 and CCl4 0.85 kPa. At a 2:1 lipid/anesthetic mole ratio, the polar anesthetics, halothane and enflurane, increased the ratio of (P = O stretching band area)/((CH3)3-N+ stretching band area) by 26.3% and 21.1%, respectively, whereas apolar CCl4 increased it 10.5%. The water molecules bound to the P = O moiety are apparently replaced by the anesthetic molecules. The deconvoluted C = O spectra showed two peaks: free sn-1 that is closer to the lipid core and hydrogen-bonded sn-2 that is closer to the polar head. Addition of halothane and enflurane, but not CCl4, increased the number of peaks to three. The third peak is free sn-2, formed by disrupting hydrogen-bonding to water. Because the temperature-induced spectral change was limited to C-H2 stretching at the main phase transition, the effects of anesthetics on the lipid membrane structure are not identical to temperature elevation. Among anesthetics, the effects of apolar and polar molecules on the interfacial properties are different.
Collapse
Affiliation(s)
- Y S Tsai
- Department of Anesthesia, University of Utah School of Medicine, Salt Lake City
| | | | | | | |
Collapse
|
19
|
Yoshida T, Takahashi K, Ueda I. Molecular orientation of volatile anesthetics at the binding surface: 1H- and 19F-NMR studies of submolecular affinity. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 985:331-3. [PMID: 2804113 DOI: 10.1016/0005-2736(89)90421-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The shift of 1H- and 19F-NMR peaks in the frequency domain was used to resolve the solubilization of volatile anesthetics into sodium dodecylsulfate micelles to submolecular level. Enflurane has protons at both ends of the molecule, and the solubilization parameters (partition coefficients in a broad sense) of each end were estimated by 1H-NMR. The values were: 2130 for the hydrophobic end and 1980 for the hydrophilic end. The hydrophobic end of halothane is CF3, hence 19F-NMR was used: 4330 for the hydrophobic end and 2670 for the hydrophilic end. The ratios of the solubilization parameters between hydrophobic and hydrophilic ends were methoxyflurane 1.9 (Kaneshina et al. (1981) Biochim. Biophys. Acta 647, 223-226), enflurane 1.1, and halothane 1.6. The results indicate that methoxyflurane and halothane adsorb perpendicular to the membrane surface, whereas enflurane molecules stay parallel to the interface. The averaged solubilization parameters of both ends of these anesthetics were in good agreement with their conventional partition coefficients between dipalmitoylphosphatidylcholine (DPPC) membranes and water. The solubilization parameter of chloroform (1H-NMR) was 1580 in agreement with the reported values of DPPC-water partition coefficient.
Collapse
Affiliation(s)
- T Yoshida
- Department of Applied Chemistry, Nagoya Institute of Technology, Japan
| | | | | |
Collapse
|
20
|
Yokono S, Ogli K, Miura S, Ueda I. 400 MHz two-dimensional nuclear Overhauser spectroscopy on anesthetic interaction with lipid bilayer. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 982:300-2. [PMID: 2752029 DOI: 10.1016/0005-2736(89)90068-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Interaction between a volatile anesthetic, methoxyflurane, and dipalmitoylphosphatidylcholine (DPPC) vesicle membrane was analyzed by nuclear Overhauser effect (NOE) difference spectroscopy and two-dimensional nuclear Overhauser spectroscopy (NOESY). The NOE difference spectra were obtained by selectively irradiating methoxy protons (hydrophobic end) of the anesthetic: a negative nuclear Overhauser effect of -2.94% was observed with the choline methyl protons of DPPC. The NOESY spectra revealed a cross-peak between the anesthetic methoxy protons and the choline methyl protons. A dipole-dipole interaction exists between the hydrophobic end of the anesthetic and the hydrophilic head group of DPPC. No other cross-peaks were observed. The anesthetic orients itself at the membrane/water interface by interacting with the hydrophilic surface of the DPPC membrane, leaving the hydrophilic end of the anesthetic molecule in the aqueous phase. The preferred residence site of dipolar volatile anesthetics is the membrane/water interface.
Collapse
Affiliation(s)
- S Yokono
- Department of Anesthesiology and Emergency Medicine, Kagawa Medical School, Japan
| | | | | | | |
Collapse
|
21
|
Yoshida T, Okabayashi H, Kamaya H, Ueda I. Saturable and unsaturable binding of a volatile anesthetic enflurane with model lipid vesicle membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 979:287-93. [PMID: 2923883 DOI: 10.1016/0005-2736(89)90246-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Presence of specific receptors for volatile anesthetics has recently been proposed (Evers, A.S. et al. (1987) Nature 328, 157-160) by a finding that halothane uptake by the rat brain was characterized, in part, by saturable binding. We report here that volatile anesthetics bind model lipid membranes also with saturable and unsaturable kinetics. Binding of enflurane to dipalmitoylphosphatidylcholine vesicle membranes was measured by gas chromatography. At low anesthetic concentrations, comparable to the clinical level, the interaction was saturable. After reaching a temporary saturation, a sudden increase in the anesthetic binding to the membrane occurred, when the anesthetic concentration in the aqueous phase exceeded 2.7 mM, or 6.3 x 10(-2) atm partial pressure in the gas phase in equilibrium with the aqueous phase. The secondary binding was linear to the aqueous anesthetic concentrations and was unsaturable to the limit of this study. We also found that enflurane self-aggregated in water above 4 mM. When the aqueous concentration exceeded 6 mM, the aggregation number was about 8. We conclude that the saturable binding indicates adsorption onto the vesicle surface, and the unsaturable binding indicates multilayer stacking of the enflurane molecules, where the initially adsorbed molecules provide the binding sites to the succeeding molecules according to the multilayer condensation kinetics. The tendency of enflurane to self-aggregate in water promotes the multilayer stacking at the surface of the membrane.
Collapse
Affiliation(s)
- T Yoshida
- Department of Applied Chemistry, Nagoya Institute of Technology, Japan
| | | | | | | |
Collapse
|
22
|
|
23
|
Yoshida T, Takahashi K, Kamaya H, Ueda I. 19F-NMR study on micellar solubilization of a volatile anesthetic halothane: Dose-related biphasic interaction. J Colloid Interface Sci 1988. [DOI: 10.1016/0021-9797(88)90338-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Ohshima H, Kamaya H, Yoshida T, Ueda I. A model for binding of inhalation anesthetics to membranes: two dose-dependent distinctly different binding modes. Colloid Polym Sci 1986. [DOI: 10.1007/bf01500760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Counterion binding to micelles measured by sodium-23 NMR relaxation times: Enhancement by anesthetics. J Colloid Interface Sci 1986. [DOI: 10.1016/0021-9797(86)90312-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Yoshida T, Kamaya H, Ueda I. Giant planar lipid bilayer. III. Maxwell—Wagner impedance dispersion and anesthetic effects upon interfacial capacitance. J Colloid Interface Sci 1985. [DOI: 10.1016/0021-9797(85)90355-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Inoue T, Kamaya H, Ueda I. Alcohol effects on rapid kinetics of water transport through lipid membranes and location of the main barrier. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 815:68-74. [PMID: 3986204 DOI: 10.1016/0005-2736(85)90475-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effect of 1-alkanols (from 1-butanol up to 1-dodecanol) on the water permeability of dimyristoylphosphatidylcholine vesicle membranes was studied by measuring the osmotic swelling rate as functions of 1-alkanol concentrations and temperatures above the gel-to-liquid-crystalline phase transition. For 1-butanol and 1-hexanol, the activation energy for water permeation was invariant with the addition of alkanols, whereas for 1-octanol, 1-decanol and 1-dodecanol, the activation energy decreased depending on the alkanol concentration, and the extent of the decrease was larger for alkanol with a longer hydrocarbon chain. These results suggests that hydrocarbon moiety beyond seven or eight carbon atoms from the head group in phospholipid molecules constitutes the main barrier for water permeation through the dimyristoylphosphatidylcholine vesicle membrane. The relative volume change of the vesicle due to osmotic swelling increased with the addition of 1-alkanols. Presumably, the membrane structural strength is weakened by the presence of 1-alkanols in the membrane. Contrary to the dependence of the swelling rate upon the alkanol carbon-chain length, no significant difference in the effect on the relative volume changes was seen among the 1-alkanols. This result suggests that weakening of the membrane structure is caused by perturbation of the membrane/water interface induced by incorporation of 1-alkanols into the membrane.
Collapse
|
28
|
Inoue T, Kamaya H, Ueda I. Stopped-flow study of anesthetic effect on water-transport kinetics through phospholipid membranes. Interfacial versus lipid core ligands. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 812:393-401. [PMID: 3967019 DOI: 10.1016/0005-2736(85)90314-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have compared ligand effects between polar and apolar anesthetic molecules upon water transport across phospholipid membranes by kinetic analysis of the osmotic swelling rate, using a stopped-flow technique. Chloroform and 1-hexanol were used as interfacial ligands, and carbon tetrachloride and n-hexane were used as their counterparts, representing lipid core action. Because anesthetics transform the solid-gel membrane into a liquid-crystalline state, and because phospholipid membranes display an anomaly in permeability at the phase transition, dimyristoylphosphatidylcholine vesicles were studied at temperatures above the main phase transition to avoid this anomaly. All these molecules increased the osmotic swelling rate. However, a significant difference was observed in the activation energy, delta Ep, between polar and apolar molecules; delta Ep was almost unaltered by the addition of polar molecules (chloroform and 1-hexanol), whereas it was decreased by apolar molecules (carbon tetrachloride and n-hexane). The obtained results were analyzed in terms of the dissolution-diffusion mechanism for water permeation across the lipid membrane. It is suggested that polar molecules affect water permeability by altering the partition of water between the membrane interior and water phase, and apolar molecules affect it by altering both the partition and the diffusion of water within the membrane interior.
Collapse
|
29
|
Kaneshina S, Kamaya H, Ueda I. Benzyl alcohol penetration into micelles, dielectric constant of the binding site, partition coefficient and high-pressure squeeze-out. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 777:75-83. [PMID: 6487618 DOI: 10.1016/0005-2736(84)90498-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The absorbance maximum, lambda max, of a local anesthetic, benzyl alcohol, is shifted to longer wavelengths when solvent polarity is decreased. The shift was approximately a linear function of the dielectric constant of the solvent. This transition in electronic spectra according to the microenvironmental polarity is used to analyze benzyl alcohol binding to surfactant micelles. A facile method is devised to estimate the micelle/water partition coefficient from the dependence of lambda max of benzyl alcohol on surfactant concentrations. The effective dielectric constants of the sodium decyl sulfate, dodecyl sulfate and tetradecyl sulfate micelles were 29, 31 and 33, respectively. The partition coefficient of benzyl alcohol between the micelles and the aqueous phase was 417, 610 and 1089, respectively, in the mole fraction unit. The pressure dependence of the partition coefficient was estimated from the depression of the critical micelle concentration of sodium dodecyl sulfate by benzyl alcohol under high pressure up to 200 MPa. High pressure squeezed out benzyl alcohol molecules from the micelle until about 120 MPa, then started to squeeze in when the pressure was further increased. The volume change of benzyl alcohol by transfer from the aqueous to the micellar phase was calculated from the pressure dependence of the partition coefficient. The volume change, estimated from the thermodynamic argument, was 3.5 +/- 1.1 cm3.mol-1 at 298.15 K, which was in reasonable agreement with the partial molal volume change determined directly from the solution density measurements, 3.1 +/- 0.2 cm3.mol-1. Benzyl alcohol apparently solvates into the micelles close to surface without losing contact with the aqueous phase.
Collapse
|
30
|
Yoshida T, Okabayashi H, Takahashi K, Ueda I. A proton nuclear magnetic resonance study on the release of bound water by inhalation anesthetic in water-in-oil emulsion. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 772:102-7. [PMID: 6712949 DOI: 10.1016/0005-2736(84)90522-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Water-in-oil emulsion was prepared from glycerol-alpha-monooleate, n-decane and water, and was used to analyze the behavior of bound water molecules in response to the addition of an inhalation anesthetic, enflurane. The motion of water molecules is monitored by proton nuclear magnetic resonance spectroscopy. To the first approximation, the half-height width of the proton signal of dispersed water is related to the spin-spin relaxation time and represents the motion of the water molecule. It appears that one of the two OH moieties of glycerol-alpha-monooleate forms a hydrogen bond with the water molecule in average. The half-height width of the dispersed water proton showed a maximal value when the glycerol alpha-monooleate/n-decane mole ratio was 4 X 10(-2). The cause of this maximum is not immediately clear, but it is suggested that the assembly mode of glycerol-alpha-monooleate may be different between the lower and higher concentration range. Enflurane decreased the half-height width of the dispersed water, indicating an increase in the motion of water molecules. This results demonstrates that the anesthetic weakened the hydrogen bond between water and glycerol-alpha-monooleate molecules, and released bound interfacial water. It is postulated that dehydration of the interface, as shown by the release of bound water, would interfere with the transport of current-carrying hydrated ions through membranes and may constitute a molecular mechanism of anesthesia.
Collapse
|
31
|
|
32
|
Suezaki Y, Kaneshina S, Ueda I. Statistical mechanics of pressure-anesthetic antagonism on the phase transition of phospholipid membranes: Interfacial water hypothesis. J Colloid Interface Sci 1983. [DOI: 10.1016/0021-9797(83)90400-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Electrostriction around colloid molecules and interfacial action of inhalation anesthetic: Volume function. J Colloid Interface Sci 1982. [DOI: 10.1016/0021-9797(82)90314-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Kaneshina S, Kamaya H, Ueda I. Interfacial adsorption of an inhalation anesthetic onto ionic surfactant micelles and its desorption by high pressure. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 685:307-14. [PMID: 7066315 DOI: 10.1016/0005-2736(82)90072-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The effects of pressure and temperature on the critical micelle concentration (CMC) of sodium dodecylsulfate (SDS) wer measured in the presence of various concentrations of an inhalation anesthetic, methoxyflurane. The change in the partial molal volume of SDS on micellization delta Vm, increased with the increase in the concentration of methoxyflurane. The CMC-decreasing power, which is defined as the slope of the linear plot between In(CMC) vs. mole fraction of anesthetic, was determined as a function of pressure and temperature. Since the CMC-decreasing power is correlated to the micelle/water partition coefficient of anesthetic, the volume change of the transfer (delta Vop) of methoxyflurane from water to the micelle can be determined from the pressure dependence of the CMC-decreasing power. The value of delta Vop amounts 6.5 +/- 1.8 cm3.mol-1, which is in reasonable agreement with the volume change determined directly from the density data, 5.5+/-0.6 cm3.mol-1. Under the convention of thermodynamics, this indicates that the application of pressure squeezes out anesthetic molecules from the micelle. The transfer enthalpy of anesthetic from water to the micelle is slightly endothermic. The partial molal volume of methoxyflurane in the micelle (112.0 cm3.mol-1) is smaller than that in decane (120.5 cm3.mol-1) and is larger than that in water (108.0 cm3. mol-1. This indicates that the anesthetic molecules are incorporated into the micellar surfaces region, i.e., the palisade layer of the micelle in contact with water molecules, rather than into the micelle core.
Collapse
|