1
|
Ikeda T, Yamaguchi H, Tazuke S. Molecular Weight Dependence of Antibacterial Activity in Cationic Disinfectants. J BIOACT COMPAT POL 2016. [DOI: 10.1177/088391159000500104] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
New oligomers of in-chain quaternary ammonium salts as well as polymers were examined for antibacterial activity with special attention to the effect of their molecular weights. Two sets of homologs with different spacer structures were prepared: one with a rigid p-xylylene spacer and the other with a flexible hexamethylene spacer. It was found that the activity depends strongly on the molecular weight and that both bacteriostatic and bacteri cidal activity increase in the order of monomer — dimer < trimer < tetramer < polymer.
Collapse
Affiliation(s)
- Tomiki Ikeda
- Research Laboratory of Resources Utilization Tokyo Institute of Technology 4259, Nagatsuta, Midori-ku Yokohama 227, Japan
| | - Hideki Yamaguchi
- Research Laboratory of Resources Utilization Tokyo Institute of Technology 4259, Nagatsuta, Midori-ku Yokohama 227, Japan
| | - Shigeo Tazuke
- Research Laboratory of Resources Utilization Tokyo Institute of Technology 4259, Nagatsuta, Midori-ku Yokohama 227, Japan
| |
Collapse
|
2
|
Porcar I, Gómez CM, Codoñer A, Soria V, Campos A. Macromolecules in ordered media. II. A fluorescence study of the polymer-liposome association. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/masy.19950940115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Köberl M, Hinz HJ, Rappolt M, Rapp G. Kinetics of glycolipid phase transitions: ms laser T-jump synchrotron studies. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bbpc.19971010504] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
4
|
Abstract
Melittin is the principal toxic component in the venom of the European honey bee Apis mellifera and is a cationic, hemolytic peptide. It is a small linear peptide composed of 26 amino acid residues in which the amino-terminal region is predominantly hydrophobic whereas the carboxy-terminal region is hydrophilic due to the presence of a stretch of positively charged amino acids. This amphiphilic property of melittin has resulted in melittin being used as a suitable model peptide for monitoring lipid-protein interactions in membranes. In this review, the solution and membrane properties of melittin are highlighted, with an emphasis on melittin-membrane interaction using biophysical approaches. The recent applications of melittin in various cellular processes are discussed.
Collapse
Affiliation(s)
- H Raghuraman
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
5
|
Panicker L. Effect of propyl paraben on the dipalmitoyl phosphatidic acid vesicles. J Colloid Interface Sci 2007; 311:407-16. [PMID: 17451735 DOI: 10.1016/j.jcis.2007.03.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 03/26/2007] [Accepted: 03/27/2007] [Indexed: 11/23/2022]
Abstract
The effect of the preservative propyl paraben (PPB) on the phase transition and dynamics of dipalmitoyl phosphatidic acid (DPPA)-buffer (pH 7.4/9.3) vesicles has been studied using DSC and ((1)H and (31)P) NMR. These investigations were carried out with DPPA dispersion in both multilamellar vesicular (MLV) and unilamellar vesicular (ULV) forms. DSC results indicate that the mechanism by which PPB interact with the DPPA vesicles is similar in MLV and ULV and is independent of pH of the buffer used to form the dispersion. However, for a given concentration of PPB, the perturbation in DPPA bilayer is more when the dispersion is prepared in buffer pH 7.4. PPB affected both the thermotropic phase transition and the molecular mobility of the DPPA membrane. In the presence of PPB, the gel to liquid crystalline phase transition temperature (T(m)) of the DPPA vesicles decreases hence increases membrane fluidity due to reduced headgroup-headgroup interaction. For all concentrations, the PPB molecules seem to get intercalated between the polar groups of the phospholipids with its alkyl chain penetrating into the co-operative region. At high PPB concentration, additional transitions are observed whose intensity increases with increasing PPB concentration. The large enthalpy values obtained at high PPB concentration suggest that presence of PPB makes the DPPA bilayer more ordered (rigid). The interesting finding obtained with MLV is that the stable gel phase of DPPA-buffer (pH 9.3/7.4) system in the presence of high PPB concentration becomes a metastable gel phase, this metastable gel phase on equilibration at 25 degrees C or when cooled to -20 degrees C transforms to a stable crystalline phase(s). The intensity of this new phase(s) increases with increasing PPB concentration. However, the transition temperatures of these new phases are not significantly changed with increasing PPB concentration. The effect of inclusion of cholesterol in the PPB-free and PPB-doped DPPA dispersion was also studied.
Collapse
Affiliation(s)
- Lata Panicker
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| |
Collapse
|
6
|
Balakrishna R, Wood SJ, Nguyen TB, Miller KA, Suresh Kumar EVK, Datta A, David SA. Structural correlates of antibacterial and membrane-permeabilizing activities in acylpolyamines. Antimicrob Agents Chemother 2006; 50:852-61. [PMID: 16495242 PMCID: PMC1426419 DOI: 10.1128/aac.50.3.852-861.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A homologous series of mono- and bis-acyl polyamines with varying acyl chain lengths originally synthesized for the purpose of sequestering lipopolysaccharide were evaluated for antimicrobial activity to test the hypothesis that these bis-cationic amphipathic compounds may also bind to and permeabilize intact gram-negative bacterial membranes. Some compounds were found to possess significant antimicrobial activity, mediated via permeabilization of bacterial membranes. Structure-activity relationship studies revealed a strong dependence of the acyl chain length on antimicrobial potency and permeabilization activity. Homologated spermine, bis-acylated with C8 or C9 chains, was found to profoundly sensitize Escherichia coli to hydrophobic antibiotics such as rifampin. Nonspecific cytotoxicity is a potential drawback of these membranophilic compounds. However, the surface activity of these cationic amphipaths is strongly attenuated under physiological conditions via binding to serum albumin. Significant antibacterial activity is still retained in the presence of physiological concentrations of human serum albumin, suggesting that these compounds may serve as leads in the development of novel adjuncts to conventional antimicrobial chemotherapy.
Collapse
Affiliation(s)
- Rajalakshmi Balakrishna
- Department of Medicinal Chemistry, 145E Bldg. B, University of Kansas, Life Sciences Research Laboratories, 1501 Wakarusa Drive, Lawrence, Kansas 66049, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Miller KA, Suresh Kumar EVK, Wood SJ, Cromer JR, Datta A, David SA. Lipopolysaccharide sequestrants: structural correlates of activity and toxicity in novel acylhomospermines. J Med Chem 2005; 48:2589-99. [PMID: 15801849 PMCID: PMC1360202 DOI: 10.1021/jm049449j] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lipopolysaccharides (LPS), otherwise termed "endotoxins", are outer membrane constituents of Gram-negative bacteria. Lipopolysaccharides play a key role in the pathogenesis of "septic shock", a major cause of mortality in the critically ill patient. Therapeutic options aimed at limiting downstream systemic inflammatory processes by targeting lipopolysaccharide do not exist at the present time. We have defined the pharmacophore necessary for small molecules to specifically bind and neutralize LPS and, using animal models of sepsis, have shown that the sequestration of circulatory LPS by small molecules is a therapeutically viable strategy. In this paper, the interactions of a series of acylated homologated spermine compounds with LPS have been characterized. The optimal acyl chain length for effective sequestration of LPS was identified to be C(16) for the monoacyl compounds. The most promising of these compounds, 4e, binds LPS with an ED(50) of 1.37 muM. Nitric oxide production in murine J774A.1 cells, as well as TNF-alpha in human blood, is inhibited in a dose-dependent manner by 4e at concentrations orders of magnitude lower than toxic doses. Administration of 4e to d-galactosamine-sensitized mice challenged with supralethal doses of LPS provided significant protection against lethality. Potent antiendotoxic activity, low toxicity, and ease of synthesis render this class of compounds candidate endotoxin-sequestering agents of potential significant therapeutic value.
Collapse
Affiliation(s)
- Kelly A Miller
- Department of Medicinal Chemistry, Life Sciences Research Laboratories, 1501 Wakarusa Drive, University of Kansas, Lawrence, Kansas 66049, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Castano S, Desbat B, Delfour A, Dumas JM, da Silva A, Dufourcq J. Study of structure and orientation of mesentericin Y105, a bacteriocin from Gram-positive Leuconostoc mesenteroides, and its Trp-substituted analogues in phospholipid environments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1668:87-98. [PMID: 15670734 DOI: 10.1016/j.bbamem.2004.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 11/16/2004] [Accepted: 11/16/2004] [Indexed: 11/19/2022]
Abstract
Mesentericin Y105 (Mes-Y105) is a bacteriocin secreted by Leuconostoc mesenteroides which is particularly active on Listeria. It is constituted by 37 residues and reticulated by one disulfide bridge. It has two W residues, W18 and W37, which can be studied by fluorescence. Two single substituted W/F analogues were synthesized (Mes-Y105/W18 and Mes-Y105/W37) to differentiate the local environment around each W and to study their changes in the presence of lipid vesicles. Fluorescence experiments show that, for the pure Trp-analogues, W18 and W37 are fully exposed to solvent whatever pH and buffer conditions. In the presence of lipid vesicles, both became buried. Lipid affinities were estimated: they are weak for zwitterionic phospholipids but an order of magnitude higher for negatively charged phosphatidylserine (PS) and phosphatidylglycerol (PG) lipids. On negatively charged PG lipids, Mes-Y105 and Mes-Y105/W37 display comparable lipid affinities. A decrease in lipid affinity is observed for Mes-Y105/W18 compared to Mes-Y105, which means that W37 would seem to be required for increased lipid selectivity. In the lipid-bound state W18 is strongly dehydrated, probably embedded into the acyl chains, while W37 stands more at the interface. Mes-Y105 was also studied by polarization modulation infrared reflection absorption spectroscopy (PMIRRAS), alone and in various phospholipid environments, to obtain structural information and to assess lipid perturbations. At nanomolar concentrations close to those required for anti-Listeria activity, Mes-Y105 forms films at the air/water interface and inserts into negatively charged lipid monolayers. In situ infrared data show that Mes-Y105 binding only affects the polar head group vibrations while the lipid order of the acyl chains remains unaffected. The PMIRRAS show that Mes-Y105 folds into an N-terminal antiparallel beta-sheet followed by an alpha-helix, both structures being tilted (40 degrees) compared to the normal at the interface, which is in agreement with the thickness estimated by Brewster angle microscopy (BAM). All these data support the proposal of a new model for Mes-Y105 at the membrane interface.
Collapse
Affiliation(s)
- Sabine Castano
- Laboratoire de Physico-Chimie Moléculaire, Université de Bordeaux I, 351 cours de la Libération, 33405 Talence, France.
| | | | | | | | | | | |
Collapse
|
9
|
Pott T, Maillet JC, Abad C, Campos A, Dufourcq J, Dufourc EJ. The lipid charge density at the bilayer surface modulates the effects of melittin on membranes. Chem Phys Lipids 2001; 109:209-23. [PMID: 11269939 DOI: 10.1016/s0009-3084(00)00223-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The influence of melittin on two DMPA membrane systems at pH 4.2 and 8.2 has been investigated by solid-state 31P and 2H NMR, as a function of temperature and peptide concentration. Melittin promotes greater morphological changes for both systems in the fluid phase, the effect being larger at pH 4.2. Close inspection of fatty acyl chain dynamics suggests that some parallels can be drawn between the DMPA/melittin at pH 8.2 and PC/melittin systems. In addition, at pH 8.2 a direct neutralization at the interface of one of the lipid negative charges by a positive charge of the peptide occurs, as can be monitored by 31P NMR at the molecular level. For the system at pH 4.2 and at high temperature, a lipid-to-peptide molar ratio of 30 is sufficient to transform the whole system into an isotropic phase, proposed to be inverted micelles. When the system is cooled down towards the gel phase one observes an intermediate hexagonal phase in a narrow range of temperature.
Collapse
Affiliation(s)
- T Pott
- Centre de Recherche Paul Pascal, CNRS, Pessac, France
| | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Crowe JH, Tablin F, Tsvetkova N, Oliver AE, Walker N, Crowe LM. Are lipid phase transitions responsible for chilling damage in human platelets? Cryobiology 1999; 38:180-91. [PMID: 10328908 DOI: 10.1006/cryo.1998.2137] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In previous studies we have proposed that the well-known chilling-induced activation of human blood platelets can be ascribed at least in part to a thermotropic phase transition in membrane lipids. The evidence that this is the case is reviewed and amplified in this review, followed by an examination of the available physical data concerning phase transitions in lipid mixtures that mimic the mixture found in platelet membranes. Assuming complete mixing at all temperatures and equal contributions of the members of the mixture to the phase transition, the lipid mixture found in platelets should give values for Tm ranging from about 1 degrees C to about 16 degrees C, depending on the isomers present in the mixture. (The former value is not in agreement with the observed Tm, but the latter is in excellent agreement.) However, examination of the phase diagram for a binary pair of lipids found in platelet membranes shows that ideal mixing almost certainly does not occur; instead of a linear phase diagram, a convex one was obtained. This shape for the phase diagram, which would displace Tm to an unexpectedly elevated temperature, is in agreement with previously published phase diagrams for mixtures of this type. The prediction, based on thermodynamic properties of lipids found in the platelets, is that Tm will be displaced upward in more complex mixtures of the composition found in platelets, a prediction that requires experimental testing.
Collapse
Affiliation(s)
- J H Crowe
- Section of Molecular and Cellular Biology and Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis 95616, USA
| | | | | | | | | | | |
Collapse
|
12
|
Porcar I, Garcia R, Gómez C, Campos A, Abad C. Macromolecules in ordered media: 7. Influence of ionic strength and bilayer composition on the association of polyelectrolytes to mixed liposomes. POLYMER 1997. [DOI: 10.1016/s0032-3861(97)00061-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Macromolecules in ordered media VIII. High-performance size-exclusion chromatography as a technique for characterizing the interaction between polyanions and cationic liposomes. J Chromatogr A 1997. [DOI: 10.1016/s0021-9673(97)00385-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
el-Jastimi R, Lafleur M. Structural characterization of free and membrane-bound nisin by infrared spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1324:151-8. [PMID: 9059508 DOI: 10.1016/s0005-2736(96)00221-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study reports two new trends about nisin affinity for lipid membranes. First, there is a very strong dependence of nisin binding on the membrane surface charge. As illustrated in this work, the binding of nisin is much greater for phosphatidylglycerol (PG) than for phosphatidylcholine (PC) membranes. This can be rationalized by electrostatic attraction between the positively charged peptide and the negatively charged PG. Second, the affinity of nisin shows a very weak dependence on the lipid phase, the binding to fluid or gel phase membranes being nearly equivalent. Therefore, our results suggest that nisin behaves as an extrinsic peptide. This work also presents the first piece of information relative to the structure of membrane-bound nisin. The Amide I band of the peptide is different for free nisin in water and for membrane-bound nisin. By analyzing this region using self-deconvolution and band fitting, and by comparing with results obtained from nisin dissolved in various H2O/trifluoroethanol mixtures, it can be inferred that the binding of nisin to phospholipid membranes leads to an increased proportion of beta-turns.
Collapse
Affiliation(s)
- R el-Jastimi
- Department of Chemistry, Université de Montréal, Québec, Canada
| | | |
Collapse
|
15
|
Macromolecules in ordered media: 4. Poly(2-vinyl pyridine)-liposome association induced by electrostatic interactions. POLYMER 1997. [DOI: 10.1016/s0032-3861(96)00915-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Porcar I, García R, Soria V, Campos A. Macromolecules in ordered media: 5. Poly(4-vinyl pyridine)—liposome association induced by electrostatic interactions. POLYMER 1997. [DOI: 10.1016/s0032-3861(96)00916-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Porcar I, Gómez CM, Pérez-Payá E, Soria V, Campos A. Macromolecules in ordered media: 1. Interfacial interactions between a cationic polymer and oppositely charged liposomes. POLYMER 1994. [DOI: 10.1016/0032-3861(94)90814-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Maggio B, Yu RK. Modulation by glycosphingolipids of membrane-membrane interactions induced by myelin basic protein and melittin. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1112:105-14. [PMID: 1384707 DOI: 10.1016/0005-2736(92)90260-s] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effect of glycosphingolipids (GSLs) with oligosaccharide chains of different length and charge on membrane-membrane interactions induced by myelin basic protein (MBP) or melittin (Mel) was comparatively investigated with small unilamellar vesicles. MBP induces a fast vesicle aggregation and close membrane apposition. Merging of lipid bilayers and vesicle fusion induced by MBP are slower and less extensive processes compared to membrane apposition. The changes of membrane permeability concomitant to these phenomena are small. The Trp region of MBP remains in a rather polar environment when interacting with vesicles; its accessibility to NO3- or acrylamide quenching depends on the type of GSLs in the membrane. The Trp region of Mel is inserted more deeply into the lipid bilayer and its accessibility to the aqueous quenchers is less dependent on variations of the oligosaccharide chain of the GSLs. Mel induces a faster and more extensive membrane apposition and bilayer merging than does MBP. Extensive vesicle disruption occurs in the presence of Mel. Negatively charged GSLs facilitate membrane proximity and vesicle aggregation but an increase of the oligosaccharide chain length of either neutral or acidic GSLs decreases the interaction among vesicles that are induced by either protein. This effect is independent of the different mode of insertion of MBP and Mel into the membrane. Our results suggest that the modulation by the oligosaccharide chain on the protein-induced interactions between bilayers containing GSLs is probably exerted beyond the level of local molecular interactions between the basic proteins and the lipids.
Collapse
Affiliation(s)
- B Maggio
- Department of Biochemistry and Molecular Biophysics, School of Basic Health Sciences, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0614
| | | |
Collapse
|
19
|
Freisleben HJ, Blöcher D, Ring K. Calorimetry of tetraether lipids from Thermoplasma acidophilum: incorporation of alamethicin, melittin, valinomycin, and nonactin. Arch Biochem Biophys 1992; 294:418-26. [PMID: 1567197 DOI: 10.1016/0003-9861(92)90706-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The development and application of model membrane systems on the basis of tetraether lipids from Thermoplasma acidophilum has been proposed. In this respect incorporation of membrane proteins and ionophores is indispensable and is demonstrated in the case of alamethicin, melittin, nonactin, and valinomycin by calorimetry. Dipalmitoylphosphatidylcholine (DPPC) and dihexadecylmaltosylglycerol (DHMG) were chosen for comparison. Melittin and alamethicin prove to broaden the lipid phase transition and to reduce the melting temperature Tm and enthalpy change (delta H) of the main phospholipid from T. acidophilum (MPL) and DPPC. The decrease in Tm, however, is more pronounced in DPPC than in MPL. Valinomycin shows only a marginal effect on the temperature and width of the transition; delta H is reduced in MPL and remains constant in DPPC and DHMG. With nonactin the phase transition of DPPC is quenched, and delta H and the half-height width are increased. DHMG is affected to a lesser extent and MPL only marginally. The four ionophores exhibit different modulation of the phase transition behavior of the various lipids as expected from their varying molecular structures. Thus, the integral membrane protein alamethicin, the peripheral protein melittin, valinomycin, and nonactin interact primarily with lipid head groups and are readily incorporated into the tetraether lipid structures.
Collapse
Affiliation(s)
- H J Freisleben
- Gustav-Embden-Zentrum der Biologischen Chemie, Johann Wolfgang Goethe-Universität, Frankfurt/Main, Germany
| | | | | |
Collapse
|
20
|
Gromova IA, Molotkovsky JG, Bergelson LD. Anthrylvinyl-labeled phospholipids as fluorescent membrane probes. The action of melittin on multilipid systems. Chem Phys Lipids 1992; 60:235-46. [PMID: 1505062 DOI: 10.1016/0009-3084(92)90075-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The interaction of melittin with multicomponent lipid mixtures composed of phosphatidylcholine, sphingomyelin and phosphatidylserine or phosphatidylglycerol was investigated by measuring the intrinsic fluorescence of the peptide, steady state fluorescence anisotropy of, and Trp-fluorescence energy transfer to fluorescent analogs of the same phospholipids bearing the anthrylvinyl fluorophore in one of the aliphatic chains at various distances from the polar head group. Based on the finding that at high lipid/peptide ratio the peptide induces unequal changes in the fluorescence parameters of phospholipid probes differing structurally only in their polar head groups, it is concluded that melittin induces lipid demixing in its nearest environment. Comparison of the fluorescence energy transfer from Trp to different lipid probes indicates that the depth of penetration of melittin into the bilayer depends on the polar head group composition of the phospholipid matrix and that certain segments of the melittin chain display a specific affinity for a given lipid head group.
Collapse
Affiliation(s)
- I A Gromova
- M.M. Shemyakin Institute of Bioorganic Chemistry, Academy of Sciences of the USSR, Moscow
| | | | | |
Collapse
|
21
|
Abstract
The phospholipid-hydrolyzing enzyme phospholipase A2 (PLA2) (EC 3.1.1.4) exists in several forms which can be located in the cytosol or on cellular membranes. We review briefly cellular regulatory mechanisms involving covalent modification by protein kinase C and the action of Ca2+, cytokines, G proteins and other cellular proteins. The major focus is the role of phospholipid structure on PLA2 activity, including (1) the mechanism of PLA2 action on synthetic phospholipid bilayers, (2) perturbation of synthetic and cellular membranes with lipophilic agents and membrane-interactive peptides and (3) the ability of these agents to activate endogenous PLA2 activity, with emphasis on the venom and plant toxins melittin, cardiotoxin and Pyrularia thionein.
Collapse
Affiliation(s)
- L P Vernon
- Department of Chemistry, Brigham Young University, Provo, UT 84602
| | | |
Collapse
|
22
|
Lafleur M, Samson I, Pézolet M. Investigation of the interaction between melittin and dipalmitoylphosphatidylglycerol bilayers by vibrational spectroscopy. Chem Phys Lipids 1991; 59:233-44. [PMID: 1804567 DOI: 10.1016/0009-3084(91)90023-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Melittin is shown to affect the structure of the charged phospholipid dipalmitoylphosphatidylglycerol (DPPG). In the gel phase, the presence of melittin leads to (i) an increased lipid interchain vibrational coupling, (ii) a shift of the rectangular to hexagonal lipid packing transition toward low temperatures, (iii) a very small conformational disordering effect, (iv) a decrease of the polarity or hydrogen bonding capability of the lipid ester group surrounding, (v) an important decrease of the water content in the complexes where the remaining water has a more disordered structure than bulk water, and (vi) an interlamellar repeat distance of 79 A. All these observations are rationalized by the following model: adjacent bilayers of DPPG are bridged by tetramers of melittin through electrostatic interactions inducing surface charge neutralization and partial dehydration of the complexes. Melittin also affects the thermotropic behavior of DPPG. When a small amount of the toxin is present, its affinity for charged lipids is such that a phase separation occurs, the domains being stable enough to have their own gel to liquid-crystalline phase transition. In the fluid state, a deeper penetration into the lipid matrix is proposed based on the downshift of the phase transition and the low vibrational interchain coupling. This study brings out general features of cationic species/anionic lipid complexes. The charge neutralization leads to stronger interchain coupling, and electrostatic bridging of adjacent bilayers seems to be common. The hydrophobicity of the peptide is a key factor in the modulation of the gel to liquid-crystalline phase transition and in its insertion in the fluid lipid matrix.
Collapse
Affiliation(s)
- M Lafleur
- Département de Chimie, Université Laval, Cité Universitaire, Québec, Canada
| | | | | |
Collapse
|
23
|
Lakey JH, Massotte D, Heitz F, Dasseux JL, Faucon JF, Parker MW, Pattus F. Membrane insertion of the pore-forming domain of colicin A. A spectroscopic study. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 196:599-607. [PMID: 2013283 DOI: 10.1111/j.1432-1033.1991.tb15855.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In order to gain some insight into the mechanism of insertion into membranes of the pore-forming domain of colicin A and the structure of its membrane-bound form, circular dichroism (in the near and far ultraviolet), fluorescence and ultraviolet spectroscopy experiments were carried out. Because the structure of the water-soluble form of this fragment has been determined by X-ray crystallography, these spectroscopic methods provided valuable information on the secondary structure and the environment of aromatic residues within the two forms of the peptide. These results strongly suggest that the pore-forming domain of colicin A does not undergo drastic unfolding upon insertion into membrane. The conformational change associated with this process is triggered by the negatively charged lipids and probably consists of a reorientation of helix pairs with respect to each other. Exposure of the aromatic residues to the aqueous phase decreases on binding to lipids whilst the exposure of the tryptophans to the membrane phase increases. This cannot occur without a reorientation of helices 3-10. All data from this study support the model presented previously in which the known crystal structure opens like an 'umbrella' inserting the hydrophobic hairpin (helix 8-9) perpendicular to the membrane plane and the helical pair 1-2 and the domain containing the three tryptophans (helices 3-7) lying more or less parallel to the membrane plane. Lipids are bound more tightly to the protein at acidic pH than at neutral pH although a similar lipid protein complex is formed with 1,2-dimyristoyl-sn-glycero(3)-phospho(1)- -sn-glycerol at both pH values.
Collapse
Affiliation(s)
- J H Lakey
- European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Sekharam KM, Bradrick TD, Georghiou S. Kinetics of melittin binding to phospholipid small unilamellar vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1063:171-4. [PMID: 2015256 DOI: 10.1016/0005-2736(91)90367-h] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have used the decrease in the fluorescence intensity of the single tryptophan residue of bee venom melittin at long emission wavelengths that accompanies binding of the peptide to phospholipid small unilamellar vesicles to determine the rate of binding through the use of stopped-flow fluorometry in the millisecond range. We have found the rate to depend on the degree of saturation of the lipid acyl chains as well as on the physical state of the bilayer, the net electric charge of the polar headgroups, and the lipid-to-melittin molar ratio R. For zwitterionic lipids (i) the binding process is found to exhibit negative cooperativity, and (ii) the rate-limiting step appears to be penetration of the protein into the hydrophobic region of the bilayer. For negatively charged lipids the results show that binding is a very fast process that seems to be electrostatic in nature.
Collapse
Affiliation(s)
- K M Sekharam
- Department of Physics, University of Tennessee, Knoxville 37996-1200
| | | | | |
Collapse
|
25
|
Abstract
In liotropic lipid systems phase transitions can be induced isothermally by changing the solvent concentration or composition; alternatively, lipid composition can be modified by (bio)chemical means. The probability for isothermal phase transitions increases with the decreasing transition entropy; it is proportional to the magnitude of the transition temperature shift caused by transformation-inducing system variation. Manipulations causing large thermodynamic effects, such as lipid (de)hydration, binding of protons or divalent ions and macromolecular adsorption, but also close bilayer approach are, therefore, likely to cause structural lipid change(s) at a constant temperature. Net lipid charges enhance the membrane susceptibility to salt-induced isothermal phase transitions; a large proportion of this effect is due to the bilayer dehydration, however, rather than being a consequence of the decreased Coulombic electrostatic interactions. Membrane propensity for isothermal phase transitions, consequently, always increases with the hydrophilicity of the lipid heads, as well as with the desaturation and shortening of the lipid chains. Upon a phase change at a constant temperature, some of the interfacially bound solutes (e.g. protons or calcium) are released in the solution. Membrane permeability and fusogenicity simultaneously increase. In mixed systems, isothermal phase transitions, moreover, may result in lateral phase separation. All this opens up ways for the involvement of isothermal phase transitions in the regulation of biological processes.
Collapse
Affiliation(s)
- G Cevc
- Medizinische Biophysik-Forschungslaboratorien, Urologische Klinik und Poliklinik, Technischen Universität München, F.R.G
| |
Collapse
|
26
|
Katsu T, Kuroko M, Morikawa T, Sanchika K, Yamanaka H, Shinoda S, Fujita Y. Interaction of wasp venom mastoparan with biomembranes. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1027:185-90. [PMID: 2204429 DOI: 10.1016/0005-2736(90)90083-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mastoparan-induced changes in the K+ permeability of rat peritoneal mast cells, human erythrocytes, Staphylococcus aureus and Escherichia coli were examined. Mastoparan did not efficiently increase the K+ permeability of cells except for S. aureus. The release of membrane phospholipids was also observed from S. aureus cells in the concentration range of the permeability enhancement. Mastoparan stimulated histamine release from mast cells, independently of a small efflux of K+. Mastoparan became markedly effective to E. coli cells whose outer membrane structure was chemically disrupted beforehand, showing that the peptide can enhance the permeability of the cytoplasmic membranes of both Gram-positive and -negative bacteria. In experiments using liposomes, mastoparan increased the permeability of the liposomes composed of egg phosphatidylethanolamine and egg phosphatidylglycerol, which are the lipid constituents of the cytoplasmic membrane of E. coli cells, while it showed a weak activity to the liposomes composed of egg phosphatidylcholine and cholesterol. The latter result related closely to the fact that this peptide acted weakly on erythrocytes and mast cells in which acidic lipids constitute a minor portion. Mastoparan decreased the phase transition temperature of dipalmitoylphosphatidylglycerol liposomes, but it did not affect that of dipalmitoylphosphatidylcholine liposomes. These results indicate that mastoparan penetrated into membranes mainly containing acidic phospholipids and disrupted the membrane structure to increase the permeability. The action of the wasp venom mastoparan was compared with that of a bee venom melittin.
Collapse
Affiliation(s)
- T Katsu
- Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The molecular mechanisms underlying the various effects of melittin on membranes have not been completely defined and much of the evidence described indicates that different molecular mechanisms may underlie different actions of the peptide. Ideas about the formation of transbilayer aggregates of melittin under the influence of a transbilayer potential, and for bilayer structural perturbation arising from the location of the peptide helix within the head group region of the membrane have been made based on the crystal structure of the peptide, the kinetics and concentration dependence of melittins membrane actions, together with simple ideas about the conformational properties of amphipathic helical peptides and their interactions with membranes. Physical studies of the interaction of melittin with model membranes have been useful in determining the potential of the peptide to adopt different locations, orientations and association states within membranes under different conditions, but the relationship of the results obtained to the actions of melittin in cell membranes or under the influence of a membrane potential are unclear. Experimental definition of the interaction of melittin with more complex membranes, including the erythrocyte membrane or in bilayers under the influence of a transmembrane potential, will require direct study in these membranes. Experiments employing labeled melittins for ESR, NMR or fluorescence experiments are promising both for their sensitivity (ESR and fluorescence) and the ability to focus on the peptide within the background of endogenous proteins within cell membranes. The study of melittin in model membranes has been useful for the development of methodology for determination of membrane protein structures. Despite the structural complexity of integral membrane proteins, it is interesting that in some respects their study be more straightforward, lacking as they do the elusive properties of melittin (and other structurally labile membrane peptides) which limit the possibility of defining their interaction with membranes in terms of a single conformation, location, orientation and association state within the membrane.
Collapse
Affiliation(s)
- C E Dempsey
- Biochemistry Department, Oxford University, U.K
| |
Collapse
|
28
|
Ohki K. A region-matched hydrophobic interaction between melittin and dimyristoylphosphatidylcholine in a ternary mixture of phosphatidylcholines. Biochem Biophys Res Commun 1989; 164:850-6. [PMID: 2818591 DOI: 10.1016/0006-291x(89)91536-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Interaction of melittin with phosphatidylcholine molecules in pure vesicles, binary mixtures and a ternary mixture of dimyristoylphosphatidylcholine IDMPC), dipalmitoylphosphatidylcholine (DPPC) and distearoylphosphatidylcholine (DSPC) was investigated by differential scanning calorimetry. Melittin binds preferentially with DMPC, and results in segregation of DMPC in binary mixtures of DMPC/DPPC and DMPC/DSPC and in a ternary mixture of DMPC/DPPC/DSPC. The results indicate that the hydrophobic part of peptide interacts preferentially with the phospholipid which has the same size of hydrophobic region or fatty acyl chains.
Collapse
Affiliation(s)
- K Ohki
- Department of Applied Physics, School of Engineering, Nagoya University, Japan
| |
Collapse
|
29
|
Kini RM, Evans HJ. A common cytolytic region in myotoxins, hemolysins, cardiotoxins and antibacterial peptides. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1989; 34:277-86. [PMID: 2599766 DOI: 10.1111/j.1399-3011.1989.tb01575.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Several proteins and polypeptides of reptilian, amphibian, insect, and microbial origin share a common cytolytic property. However, these cytolysins fulfill different objectives. They provide offensive armament in the case of toxins, but defensive systems in the case of antibacterial peptides. The sequences of several nonenzymatic cytolysins and their analogues were compared to identify the structural requirements for cytolytic activity. These cytolysins, although isolated from phylogenetically unrelated organisms, possess the common sequence features of a cationic site flanked by a hydrophobic surface. The presence of such a region apparently confers the cytolytic activity of various cytolysins. The concept of a cytolytic region is strongly supported by the existence of several natural and synthetic analogues of cytolysins and by chemical modification studies of these cytolysins. This prediction provides a new focus for cytolysin research. The understanding of this structure-function relationship should facilitate the design, synthesis, and development of better antibacterial and anticancer peptides.
Collapse
Affiliation(s)
- R M Kini
- Department of Biochemistry, Medical College of Virginia, Virginia Commonwealth University, Richmond
| | | |
Collapse
|
30
|
Bradrick TD, Freire E, Georghiou S. A high-sensitivity differential scanning calorimetric study of the interaction of melittin with dipalmitoylphosphatidylcholine fused unilamellar vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 982:94-102. [PMID: 2472839 DOI: 10.1016/0005-2736(89)90179-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
High-sensitivity differential scanning calorimetry has been used to examine the interaction of bee venom melittin with dipalmitoylphosphatidylcholine fused unilamellar vesicles. Experiments were performed under conditions for which melittin in solution is either monomeric (in low salt) or tetrameric (in high salt). It was found that under both sets of conditions melittin abolishes the pretransition at a relatively high lipid-to-protein molar incubation ratio, Ri (about 200) and that at intermediate values of Ri it broadens the main transition profile and reduces the transition enthalpy. This provides evidence which suggests that melittin is at least partially inserted into the apolar region of the bilayer. Evident at low values of Ri are two peaks in the lipid thermal transition profiles, which may arise from a heterogeneous population of lipid vesicles formed through fusion induced by melittin, or by lipid phase separation. For those profiles which exhibited only one peak, transition enthalpies, normalized to those of the lipid in the absence of the protein, are plotted vs. the bound protein-to-lipid molar ratios for the experiments performed under the conditions which give monomeric and tetrameric melittin in solution. These plots yield straight lines, the slopes of which give the number of lipid molecules each protein molecule excludes from participating in the phase transition. These were found to be 9.9 +/- 0.7 and 4.1 +/- 0.5 for monomeric and tetrameric melittin, respectively. The results are discussed in terms of possible models for the binding of melittin to phospholipid vesicles. For simple hexagonal packing of lipid molecules, incorporation as an aggregate is favored when melittin is tetrameric in solution, whereas incorporation as a monomer is favored when melittin is monomeric in solution. For low-salt solutions, evidence is obtained for the contribution of free melittin to lipid fusion, perhaps by the formation of protein bridges between apposed vesicles.
Collapse
Affiliation(s)
- T D Bradrick
- Department of Physics, University of Tennessee, Knoxville 37996-1200
| | | | | |
Collapse
|
31
|
Lafleur M, Faucon JF, Dufourcq J, Pézolet M. Perturbation of binary phospholipid mixtures by melittin: a fluorescence and raman spectroscopy study. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 980:85-92. [PMID: 2923902 DOI: 10.1016/0005-2736(89)90203-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effect of melittin on different binary mixtures of phospholipids has been studied by polarization of DPH fluorescence in order to determine if melittin can induce phase separation. Since the interaction between lipids and melittin is sensitive to both electrostatic and hydrophobic forces, we have studied the effect of the acyl chain length and of the polar head group of the lipids. In spite of the difference of the chain length between dipalmitoylphosphatidylcholine (DPPC) and distearoylphosphatidylcholine (DSPC), no phase separation occurs in an equimolar mixture of these lipids in presence of melittin. However, when the charged lipid dipalmitoylphosphatidylglycerol (DPPG) is mixed with either DPPC or DSPC, the addition of melittin leads to phase separation. The DSPC/DPPG/melittin system, which shows a very complex thermotropism, has also been studied by Raman spectroscopy using DPPG with deuteriated chains in order to monitor each lipid independently. The results suggest that the higher affinity of melittin for DPPG leads to a partial phase separation. We propose the formation of DPPG-rich domains perturbed by melittin and peptide-free regions enriched in DSPC triggered by the head group charge and chain-length differences.
Collapse
Affiliation(s)
- M Lafleur
- Département de chimie, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
32
|
Batenburg AM, Hibbeln JC, Verkleij AJ, de Kruijff B. Melittin induces HII phase formation in cardiolipin model membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 903:142-54. [PMID: 3651449 DOI: 10.1016/0005-2736(87)90164-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The interaction of melittin with bovine heart cardiolipin model membranes was investigated via binding assays, 31P-NMR, freeze-fracture electron microscopy, small angle X-ray diffraction and fluorescence based fusion assays. A strong binding (Kd less than 10(-7) M) appeared to be accompanied by the formation of large structures, resulting from a fusion process of extremely fast initial rate. As the melittin content is increased, bilayer structure is gradually lost and from a cardiolipin to melittin ratio of about 6 the lipid starts to organize itself in an hexagonal HII phase. At lower temperatures (T less than 40 degrees C) the coexistence of another structure is observed, characterized by a broad isotropic 31P-NMR signal and giving rise to sharp X-ray reflections, most probably a cubic phase, as suggested also be freeze-fracture images, showing orderly stacked particles. The results are discussed in relation to contrasting observations on the structural changes induced by melittin in the zwitterionic phospholipid system of dipalmitoylphosphatidylcholine (Dufourcq. J. et al. (1986) Biochim. Biophys. Acta 859, 33-48). The biological relevance of the observations with respect to the process of protein insertion into membranes is indicated.
Collapse
Affiliation(s)
- A M Batenburg
- Department of Biochemistry, State University of Utrecht, The Netherlands
| | | | | | | |
Collapse
|
33
|
Bradrick TD, Dasseux JL, Abdalla M, Aminzadeh A, Georghiou S. Effects of bee venom melittin on the order and dynamics of dimyristoylphosphatidylcholine unilamellar and multilamellar vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 900:17-26. [PMID: 3593710 DOI: 10.1016/0005-2736(87)90273-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The effects of bee venom melittin on the order and dynamics of dimyristoylphosphatidylcholine unilamellar and multilamellar vesicles at a protein-to-lipid molar ratio of 1:60 have been investigated by employing the techniques of nanosecond emission anisotropy with 1,6-diphenyl-1,3,5-hexatriene as the fluorescent probe, enhancement by polar groups of the weakly allowed 0-0 vibronic transition in the fluorescence spectrum of pyrene, and Raman spectroscopy. The emission anisotropy results, which are found to be consistent with the wobble-in-cone model, show that the protein induces an increase in the order parameter, S, of the acyl chains of unilamellar vesicles below, at, and above their phase transition temperature, Tt, and it decreases strongly the diffusion rate, Dw, only below Tt. On the other hand, for multilamellar vesicles, the protein induces a decrease in S only at Tt and does not affect Dw. These effects are consistent with the observed changes in the degree of enhancement of the 0-0 vibronic transition of pyrene. Moreover, the protein broadens the thermal transition profile of multilamellar vesicles but sharpens dramatically that of unilamellar vesicles and fuses them without changing significantly the Tt in either case. On the other hand, the Raman data detect a decrease in the inter- and intramolecular order of the acyl chains of multilamellar vesicles below Tt and a decrease of only the former Tt. This disparity between the Raman and the nanosecond emission anisotropy data is discussed in terms of differences in the time scales of the two techniques and in the state of aggregation of the lipid-bound melittin. The data for the enhancement of the 0-0 vibronic transition of pyrene suggest that, for a melittin-to-lipid ratio of 1:60, the size or structure of channels formed in the bilayer by melittin does not allow the penetration of a neutral molecule the size of pyrene deeply into the bilayer.
Collapse
|
34
|
Faucon JF, Lakowicz JR. Anisotropy decay of diphenylhexatriene in melittin-phospholipid complexes by multifrequency phase-modulation fluorometry. Arch Biochem Biophys 1987; 252:245-58. [PMID: 3813536 DOI: 10.1016/0003-9861(87)90029-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Frequency-domain fluorometry was used to investigate the intensity and anisotropy decays of diphenylhexatriene (DPH) in melittin-lipid complexes. Simulated and experimental data indicate that correlation times ranging from 0.3 to 500 ns can be determined using data from 1 to 200 MHz. For the melittin-lipid complexes the hindered rotator model was not adequate to account for the anisotropy decays, especially at temperatures above the transition temperatures. At high protein-to-lipid ratios the data revealed the formation of small particles (100 A) of melittin and dipalmitoylphosphatidylcholine and the disruption of membrane order in bilayers of dipalmitoylphosphatidic acid.
Collapse
|
35
|
Dufourc EJ, Smith IC, Dufourcq J. Molecular details of melittin-induced lysis of phospholipid membranes as revealed by deuterium and phosphorus NMR. Biochemistry 1986; 25:6448-55. [PMID: 3790532 DOI: 10.1021/bi00369a016] [Citation(s) in RCA: 112] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Solid-state deuterium and phosphorus-31 nuclear magnetic resonance (2H and 31P NMR) studies of deuterium-enriched phosphatidylcholine [( 3',3'-2H2]DPPC, [sn-2-2H31]DPPC) and ditetradecylphosphatidylglycerol (DMPG-diether), as water dispersions, were undertaken to investigate the action of melittin on zwitterionic and negatively charged membrane phospholipids. When the lipid-to-protein ratio (Ri) is greater than or equal to 20, the 2H and 31P NMR spectral features indicate that the system is constituted by large bilayer structures of several thousand angstrom curvature radius, at T greater than Tc (Tc, temperature of "gel-to-liquid crystal" phase transition of pure lipid dispersions). At T approximately Tc, a detailed analysis of the lipid chain ordering shows that melittin induces a slight disordering of the "plateau" positions concomitantly with a substantial ordering of positions near the bilayer center. At T much greater than Tc, an apparent general chain disordering is observed. These findings suggest that melittin is in contact with the acyl chain segments and that its position within the bilayer may depend on the temperature. On a cooling down below Tc, for Ri greater than 20, two-phase spectra are observed, i.e., narrow single resonances superimposed on gel-type phosphorus and deuterium powder patterns. These narrow resonances are characteristic of small structures (vesicles, micelles, ... of a few hundred angstrom curvature radius) undergoing fast isotropic reorientation, which averages to zero both the quadrupolar and chemical shift anisotropy interactions. On an increase of the temperature above Tc, the NMR spectra indicate that the system returns reversibly to large bilayer structures.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
36
|
Dufourcq J, Faucon JF, Fourche G, Dasseux JL, Le Maire M, Gulik-Krzywicki T. Morphological changes of phosphatidylcholine bilayers induced by melittin: vesicularization, fusion, discoidal particles. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 859:33-48. [PMID: 3718985 DOI: 10.1016/0005-2736(86)90315-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Morphological changes induced by the melittin tetramer on bilayers of egg phosphatidylcholine and dipalmitoylphosphatidylcholine have been studied by quasi-elastic light scattering, gel filtration and freeze-fracture electron microscopy. It is concluded that melittin similarly binds and changes the morphology of both single and multilamellar vesicles, provided that their hydrocarbon chains have a disordered conformation, i.e., at temperatures higher than that of the transition, Tm. When the hydrocarbon chains are ordered (gel phase), only small unilamellar vesicles are morphologically affected by melittin. However after incubation at T greater than Tm, major structural changes are detected in the gel phase, regardless of the initial morphology of the lipids. Results from all techniques agree on the following points. At low melittin content, phospholipid-to-peptide molar ratios, Ri greater than 30, heterogeneous systems are observed, the new structures coexisting with the original ones. For lipids in the fluid phase and Ri greater than 12, the complexes formed are large unilamellar vesicles of about 1300 +/- 300 A diameter and showing on freeze-fracture images rough fracture surfaces. For lipids in the gel phase, T less than Tm after passage above Tm, and for 5 less than Ri less than 50, disc-like complexes are observed and isolated. They have a diameter of 235 +/- 23 A and are about one bilayer thick; their composition corresponds to one melittin for about 20 +/- 2 lipid molecules. It is proposed that the discs are constituted by about 1500 lipid molecules arranged in a bilayer and surrounded by a belt of melittin in which the mellitin rods are perpendicular to the bilayer. For high amounts of melittin, Ri less than 2, much smaller and more spherical objects are observed. They are interpreted as corresponding to lipid-peptide co-micelles in which probably no more bilayer structure is left. It is concluded that melittin induces a reorganization of lipid assemblies which can involve different processes, depending on experimental conditions: vesicularization of multibilayers; fusion of small lipid vesicles; fragmentation into discs and micelles. Such processes are discussed in connexion with the mechanism of action of melittin: the lysis of biological membranes and the synergism between melittin and phospholipases.
Collapse
|
37
|
Analysis of the interaction of membrane-active peptides with membranes: The case of melittin in surfactant assemblies. Biopolymers 1986. [DOI: 10.1002/bip.360250707] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Surewicz WK, Epand RM. Phospholipid structure determines the effects of peptides on membranes. Differential scanning calorimetry studies with pentagastrin-related peptides. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 856:290-300. [PMID: 3955044 DOI: 10.1016/0005-2736(86)90039-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effect of phospholipid structure on the interaction between small peptides and phospholipid membranes has been studied by high-sensitivity differential scanning calorimetry. The peptides used, N-Boc-beta-Ala-Trp-Met-Arg-Phe-NH2 and N-Boc-beta-Ala-Trp-Met-Lys-Phe-NH2, are basic analogs of the hormone pentagastrin. These peptides split the gel-to-liquid crystalline phase transition of synthetic phosphatidylcholines into two components. For dimyristoyl (DMPC), dipalmitoyl (DPPC) and 1-stearoyl-2-oleoyl (SOPC) phosphatidylcholines, one component remains at the temperature corresponding to that of pure lipid and the other one is shifted towards higher temperatures. With increasing peptide concentration there is a gradual increase in the enthalpy of the high-temperature component at the expense of the low-temperature one, and there is also an increase in the total enthalpy of the transition. A mixture of the peptide with distearoylphosphatidylcholine (DSPC) behaves differently, with the transition occurring at a temperature below that of the pure lipid increasing with peptide concentration. The susceptibility of various phosphatidylcholines to perturbation by the peptides increases in the order DMPC greater than SOPC greater than DPPC greater than DSPC. The effect of these peptides on the phase transitions of acidic phosphatidylglycerols is generally greater than with the corresponding phosphatidylcholines, but the dependence on the length of lipid hydrocarbon chains is similar. Perturbation of the thermotropic phase transition is strongest for dimyristoylphosphatidylglycerol, followed by the dipalmitoyl and the distearoyl analogs. The effect of the peptides on the phase transition of dimyristoylphosphatidylserine is significantly smaller compared to that observed with dimyristoylphosphatidylglycerol and it is further reduced for dimyristoylphosphatidic acid. The phase transition of this latter lipid remains virtually unchanged, even in the presence of high concentrations of the peptide. Similar resistance to the perturbation of the phase transitions by the peptides is observed for synthetic phosphatidylethanolamine. The different susceptibility of various phospholipids to perturbation by the peptides is suggested to be related to different degrees of intermolecular interaction between phospholipid molecules, and particularly to different abilities of phospholipids to form intermolecular hydrogen bonding.
Collapse
|
39
|
Boggs JM, Chia LS, Rangaraj G, Moscarello MA. Interaction of myelin basic protein with different ionization states of phosphatidic acid and phosphatidylserine. Chem Phys Lipids 1986; 39:165-84. [PMID: 2418997 DOI: 10.1016/0009-3084(86)90110-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Myelin basic protein (BP) has a perturbing effect on some lipids, causing, among other effects, a decrease in the temperature and enthalpy of the phase transition. This is believed to be a result of penetration of some hydrophobic residues of the protein partway into the lipid bilayer. Variations in the perturbing effect of BP on different acidic lipids has been attributed to the ability of the lipids to participate in intermolecular hydrogen bonding which inhibits penetration of the protein. Participation in intermolecular hydrogen bonding depends on the ionization state of the lipid as well as the type of lipid. In order to further test the dependence of the degree of penetration of BP on the intermolecular hydrogen bonding properties of lipids, the effect of BP on the phase transition of lipids in different ionization states was studied using differential scanning calorimetry. Dipalmitoylphosphatidic acid (DPPA) and dimyristoylphosphatidylserine (DMPS) were studied at different pH-values from 4 to 9.5. The results were compared to data obtained earlier with phosphatidylglycerol (PG), which is in the same ionization state at pH-values above 4, in order to distinguish the effects of pH on the protein from effects on the lipids. The perturbing effect of BP on PG increases with increase in pH. This is probably a result of the increasing hydrophobicity of the protein as the histidines become deprotonated, which allows greater penetration of the protein into the bilayer. In contrast, the effect on DPPA was greatest at low pH, where the state of ionization of the lipid is less than 1 and protein binding utilizes all of the hydrogen bond accepting sites (P-O-) on the lipid. BP had no perturbing effect on DPPA at higher pH where the state of ionization is between 1 and 1.5, and hydrogen bond accepting and donating sites (P-OH) are still available even after binding of the protein. Thus hydrogen bonding occurs at high pH and penetration of hydrophobic residues of the protein into DPPA is inhibited. BP had a large perturbing effect on DMPS at all pH values above 4 suggesting that lipid intermolecular hydrogen bonding does not occur in the presence of the protein and its hydrophobic residues consequently can penetrate into the bilayer. The protein may inhibit hydrogen bonding by binding electrostatically to the anionic hydrogen bond accepting group of PS.
Collapse
|
40
|
Carrier D, Dufourcq J, Faucon JF, Pézolet M. A fluorescence investigation of the effects of polylysine on dipalmitoylphosphatidylglycerol bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1985. [DOI: 10.1016/0005-2736(85)90224-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Surewicz WK, Epand RM. Role of peptide structure in lipid-peptide interactions: high-sensitivity differential scanning calorimetry and electron spin resonance studies of the structural properties of dimyristoylphosphatidylcholine membranes interacting with pentagastrin-related pentapeptides. Biochemistry 1985; 24:3135-44. [PMID: 2992577 DOI: 10.1021/bi00334a010] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effects of amino acid substitutions in the pentapeptide pentagastrin on the nature of its interactions with dimyristoylphosphatidylcholine (DMPC) are assessed by differential scanning calorimetry and electron spin resonance. In two peptide analogues, the Asp at position 4 in pentagastrin (N-t-Boc-beta-Ala-Trp-Met-Asp-Phe-NH2) is replaced by Gly or Phe. These uncharged, more hydrophobic peptides have little effect on the transition temperature of DMPC, but they broaden the transition and lower the transition enthalpy as do integral membrane proteins. These peptides also mimic the behavior of integral membrane proteins in decreasing the order of a 5-doxylstearic acid spin probe below the transition temperature and in exhibiting a second immobilized lipid component using a 16-doxylstearic acid spin probe in DMPC. Three charged peptides were studied: pentagastrin, an analogue with positions 4 and 5 reversed (i.e., ending in Phe-Asp-NH2), and one with Asp replaced by Arg at position 4. All three of these charged peptides altered the phase transition behavior of DMPC to give two components, one above and one below the transition temperature of the pure lipid. With increasing peptide concentration, the higher melting transition became more prominent. The arginine-containing peptide produced the largest shifts in melting temperature followed by pentagastrin and then the "reversed" peptide. The arginine-containing peptide also increased the enthalpy of the transition. These peptides also increased the ordering of DMPC below the phase transition as measured with both 5- and 16-doxylstearic acid. The ordering effect was most pronounced with the arginine-containing peptide using the 5-doxylstearic acid probe. The results demonstrate that even the zwitterionic DMPC can interact more strongly with positively charged peptides than with negatively charged ones. In addition, peptide sequence as well as composition is important in determining the nature of peptide-lipid interactions. The markedly different effects of these pentagastrin peptides on the phase transition and motional properties of DMPC occur despite the similar depth of burial of these peptides with DMPC.
Collapse
|
42
|
Devaux PF, Seigneuret M. Specificity of lipid-protein interactions as determined by spectroscopic techniques. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 822:63-125. [PMID: 2988624 DOI: 10.1016/0304-4157(85)90004-8] [Citation(s) in RCA: 202] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Nakagaki M, Okamura E. Calorimetric Studies of the Interaction between the Lecithin and Copolymers of L-Lysine and L-Leucine. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1985. [DOI: 10.1246/bcsj.58.546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
|
45
|
Dasseux JL, Faucon JF, Lafleur M, Pezolet M, Dufourcq J. A restatement of melittin-induced effects on the thermotropism of zwitterionic phospholipids. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 775:37-50. [PMID: 6466659 DOI: 10.1016/0005-2736(84)90232-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Perturbations induced by melittin on the thermotropism of dimyristoyl-, dipalmitoyl-, distearoylphosphatidylcholine and natural sphingomyelin are investigated and rationalized from data obtained by fluorescence polarization, differential scanning calorimetry and Raman spectroscopy. Depending on the technique and/or experimental conditions used, the observed effects differ at the same lipid to protein molar ratio, due to partial binding of melittin. The binding is more efficient for tetrameric than for monomeric melittin, but in both cases its affinity is weaker for phosphatidylcholine dispersions in the gel phase than for sonicated vesicles. For temperatures T greater than or equal to Tm efficient binding occurs whatever the initial state of the lipids is. One can summarize the effects induced by melittin on the transition temperature as follows: No upward shift is observed on synthetic phosphatidylcholines when lipid degradation is avoided. This is achieved by using highly purified melittin, phospholipase inhibitors, and/or non-hydrolysable lipids. Melittin monomer does not change Tm. When melittin tetramer is stabilized, it decreases Tm by 10-15 deg. C. The transition broadens, and is finally abolished for Ri less than or equal to 2. Very similar results are found for natural sphingomyelin. Fluorescence polarization indicates similar changes in order and dynamics of the acyl chains for all lipid studied. For T less than or equal to Tm, fluorescence and Raman show that melittin decreases the amount of CH2 groups in 'trans' conformation and the intermolecular order of the chains. According to fluorescence data, there is an increase of the rigid-body orientational order at T greater than or equal to Tm, while from Raman the positional intermolecular order decreases without significant change in the CH2 groups 'trans'/'gauche' ratio.
Collapse
|
46
|
Ikeda T, Yamaguchi H, Tazuke S. New polymeric biocides: synthesis and antibacterial activities of polycations with pendant biguanide groups. Antimicrob Agents Chemother 1984; 26:139-44. [PMID: 6385836 PMCID: PMC284107 DOI: 10.1128/aac.26.2.139] [Citation(s) in RCA: 167] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Acrylate monomers with pendant biguanide groups were successfully synthesized, and their homopolymers and copolymers were prepared with acrylamide. These cationic disinfectants of polymeric forms exhibited high antibacterial activity against gram-positive bacteria, whereas they were less active against gram-negative bacteria. It was found that the activity of the polymeric disinfectants was much higher than that of the monomeric species, and the difference in activity between the polymers and the monomers was discussed on the basis of their contributions to each elementary process of the lethal action.
Collapse
|
47
|
Semin BK, Saraste M, Wikström M. Calorimetric studies of cytochrome oxidase-phospholipid interactions. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 769:15-22. [PMID: 6318820 DOI: 10.1016/0005-2736(84)90004-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Thermotropic phase transitions in phospholipid vesicles reconstituted with mitochondrial cytochrome oxidase (EC 1.9.3.1) were studied using differential scanning calorimetry. Both dimyristoylphosphatidylcholine (DMPC) and mixtures of DMPC and cardiolipin were used at different lipid-to-protein ratios. The incorporated protein reduces the energy absorbed during phase transitions of DMPC vesicles, and causes a small decrease in the transition temperature (tm). delta H depends on the amount of protein in the vesicles. This dependence indicates that about 72 DMPC molecules are influenced per cytochrome alpha alpha 3 monomer. The transition parameters remain unaffected by changes in ionic strength or by reduction of the enzyme. Incorporation of cytochrome oxidase depleted of subunit III into DMPC liposomes resulted in a larger decrease of tm, but the amount of perturbed phospholipids remains similar to that in the case of the intact enzyme. Incorporation of cytochrome oxidase into DMPC/cardiolipin vesicles counteracts the effect of cardiolipin in decreasing the enthalpy of the DMPC transition. Thus cytochrome oxidase segregates the phospholipids by attracting cardiolipin from the bulk lipid. Cytochrome c does not significantly affect this apparent cardiolipin 'shell' around membranous cytochrome oxidase.
Collapse
|
48
|
Ikeda T, Tazuke S, Watanabe M. Interaction of biologically active molecules with phospholipid membranes. I. Fluorescence depolarization studies on the effect of polymeric biocide bearing biguanide groups in the main chain. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 735:380-6. [PMID: 6639946 DOI: 10.1016/0005-2736(83)90152-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Interaction of poly(hexamethylene biguanide hydrochloride) (PHMB), which is a polymeric biocide bearing biguanide groups in its main chain, with phospholipid bilayers was studied by the fluorescence depolarization method. A strong interaction of PHMB with negatively charged bilayers composed of phosphatidylglycerol(PG) alone or of PG and phosphatidylcholine (PC) was observed, whereas neutral PC bilayers were not affected. On adding PHMB, the fluorescence polarization of diphenylhexatriene embedded in the negatively charged bilayers was reduced to a great extent, especially in the gel phase. This was interpreted in terms of PHMB-induced expansion and fluidization of the bilayer, which enables the probe molecule to undergo less-hindered torsional motion. Similarity between PHMB and polymyxin B in the structure, the mode of action against bacteria and the interaction with lipid membranes is discussed.
Collapse
|
49
|
Theretz A, Ranck JL, Tocanne JF. Polymyxin B-induced phase separation and acyl chain interdigitation in phosphatidylcholine/phosphatidylglycerol mixtures. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 732:499-508. [PMID: 6307373 DOI: 10.1016/0005-2736(83)90226-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Monolayers, fluorescence polarization, differential scanning calorimetry and X-ray diffraction experiments have been carried out to examine the effect of the polypeptide antibiotic polymyxin B on the phase behaviour of dipalmitoylphosphatidylglycerol (DPPG) either pure or mixed with dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC). It is shown that in both phosphatidylglycerol alone and phosphatidylglycerol/phosphatidylcholine mixtures, polymyxin B can induce either phase separation between lipid domains of various compositions or interdigitation of the acyl chains in the solid state, without segregation of the two lipids. Phase separation was observed by fluorescence and differential scanning calorimetry after addition of the antibiotic to vesicles composed of mixtures of DMPC and DPPG in conditions where polymyxin B did not saturate phosphatidylglycerol (DPPG to polymyxin B molar ratio, Ri, higher than 15). Phase separation was also observed in mixed monolayers of DPPC and of the 5:1 DPPG/polymyxin B complex, at high surface pressure. Acyl chain interdigitation was observed by X-ray diffraction in both 5:1 DPPG/polymyxin B mixtures and preformed 5:5:1 DMPC/DPPG/polymyxin B mixture, in which the antibiotic saturates phosphatidylglycerol (Ri 5). In both cases, raising the temperature gave rise to a complex double-peaked phase transition by differential scanning calorimetry, from the interdigitating phase to a normal L alpha lamellar phase. As it is known that polymyxin B does not interact with phosphatidylcholine, the data presented show that, when phosphatidylcholine and phosphatidylglycerol are mixed together, a phase perturbation such as acyl chain interdigitation, which normally affects only phosphatidylglycerol, is also felt by phosphatidylcholine.
Collapse
|