1
|
Neundlinger I, Puntheeranurak T, Wildling L, Rankl C, Wang LX, Gruber HJ, Kinne RKH, Hinterdorfer P. Forces and dynamics of glucose and inhibitor binding to sodium glucose co-transporter SGLT1 studied by single molecule force spectroscopy. J Biol Chem 2014; 289:21673-83. [PMID: 24962566 DOI: 10.1074/jbc.m113.529875] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Single molecule force spectroscopy was employed to investigate the dynamics of the sodium glucose co-transporter (SGLT1) upon substrate and inhibitor binding on the single molecule level. CHO cells stably expressing rbSGLT1 were probed by using atomic force microscopy tips carrying either thioglucose, 2'-aminoethyl β-d-glucopyranoside, or aminophlorizin. Poly(ethylene glycol) (PEG) chains of different length and varying end groups were used as tether. Experiments were performed at 10, 25 and 37 °C to address different conformational states of SGLT1. Unbinding forces between ligands and SGLT1 were recorded at different loading rates by changing the retraction velocity, yielding binding probability, width of energy barrier of the binding pocket, and the kinetic off rate constant of the binding reaction. With increasing temperature, width of energy barrier and average life time increased for the interaction of SGLT1 with thioglucose (coupled via acrylamide to a long PEG) but decreased for aminophlorizin binding. The former indicates that in the membrane-bound SGLT1 the pathway to sugar translocation involves several steps with different temperature sensitivity. The latter suggests that also the aglucon binding sites for transport inhibitors have specific, temperature-sensitive conformations.
Collapse
Affiliation(s)
- Isabel Neundlinger
- From the Institute for Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Theeraporn Puntheeranurak
- From the Institute for Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, Department of Biology, Faculty of Science, Mahidol University and Nanotec-MU Center of Excellence on Intelligent Materials and Systems, 272 Rama VI, Ratchathewi, Bangkok 10400, Thailand
| | - Linda Wildling
- From the Institute for Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | | | - Lai-Xi Wang
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| | - Hermann J Gruber
- From the Institute for Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Rolf K H Kinne
- Max Planck Institute of Molecular Physiology, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
| | - Peter Hinterdorfer
- From the Institute for Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria,
| |
Collapse
|
2
|
Constantino L, Mehta RT, Cruz ME, Lopez-berestein G. Formulation and Toxicity of Liposomes Containing Rifampicin. J Liposome Res 2008. [DOI: 10.3109/08982109309148215] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
3
|
Literature Alerts. J Microencapsul 2008. [DOI: 10.3109/02652048409038521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Kumar A, Tyagi NK, Kinne RKH. Ligand-mediated conformational changes and positioning of tryptophans in reconstituted human sodium/d-glucose cotransporter1 (hSGLT1) probed by tryptophan fluorescence. Biophys Chem 2007; 127:69-77. [PMID: 17222499 DOI: 10.1016/j.bpc.2006.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Revised: 11/23/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
Recombinant purified human sodium/D-glucose cotransporter1 (hSGLT1) was reconstituted in a functional form into phospholipid vesicles and its conformational states in the absence and presence of ligands and inhibitors were probed by intrinsic tryptophan fluorescence. In the presence of sodium, sugars increase intrinsic fluorescence (maximum 17%) in a saturable manner in the following order alpha-MDG >D-Glu approximately D-Gal >> D-Man >D-All, with no effect of L-Glu. Apparent affinities ranging from 0.65 to 10.4 mM were observed. In addition, D-Glu increased the accessibility of the Trps to hydrophilic collisional quenchers. On the contrary, the transport inhibitor phlorizin decreased Trps fluorescence in a sodium-dependent manner by 50% with a red shift of 4-6 nm and decreased quencher accessibility, these effects were saturable with a high affinity of 5 microM. Furthermore, the positioning of the tryptophans in the reconstituted transporter was investigated. hSGLT1 Trps fluorescence was reduced by N-bromosuccinimide treatment maximally 25% in membranes and 65% in solution. The fluorescence was also significantly but differently quenched by the lipid-soluble spin labeled probes 5-Doxyl-phosphatidylcholine (40%) and 12-Doxyl-phosphatidylcholine (26%). Depth-calculation using the parallax method suggested a location of Trps at an average depth of 10 angstrom from the center of the bilayer. These studies demonstrate the existence of different conformational states of the membrane-embedded transporter in its glucose-free form, as sodium-glucose-carrier complex and as sodium-phlorizin-carrier complex. They further indicate that most of the Trp residues in hSGLT1 are located in hydrophobic regions of the protein or in contact with the lipid bilayer of the membrane. There, they are located close to the membrane-water interface contributing to the vectorial nature of the transporter.
Collapse
Affiliation(s)
- Azad Kumar
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str 11, Dortmund, 44227, Germany
| | | | | |
Collapse
|
5
|
Koepsell H. Methodological aspects of purification and reconstitution of transport proteins from mammalian plasma membranes. Rev Physiol Biochem Pharmacol 2006; 104:65-137. [PMID: 2940665 DOI: 10.1007/bfb0031013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Wang S, Yoshimoto M, Fukunaga K, Nakao K. Optimal covalent immobilization of glucose oxidase-containing liposomes for highly stable biocatalyst in bioreactor. Biotechnol Bioeng 2003; 83:444-53. [PMID: 12800138 DOI: 10.1002/bit.10684] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The glucose oxidase-containing liposomes (GOL) were prepared by entrapping glucose oxidase (GO) in the liposomes composed of phosphatidylcholine (PC), dimyristoyl L-alpha-phosphatidylethanolamine (DMPE), and cholesterol (Chol) and then covalently immobilized in the glutaraldehyde-activated chitosan gel beads. The immobilized GOL gel beads (IGOL) were characterized to obtain a highly stable biocatalyst applicable to bioreactor. At first, the glutaraldehyde concentration used in the gel beads activation as well as the immobilizing temperature and time were optimized to enhance the immobilization yield of the GOL to the highest extent. The liposome membrane composition and liposome size were then optimized to obtain the greatest possible immobilization yield of the GOL, the highest possible activity efficiency of the IGOL, and the lowest possible leakage of the entrapped GO during the GOL immobilization. As a result, the optimal immobilization conditions were found to be as follows: the liposome composition, PC/DMPE/Chol = 65/5/30 (molar percentage); the liposome size, 100 nm; the glutaraldehyde concentration, 2% (w/v); the immobilizing temperature, 4 degrees C; and the immobilizing time, 10 h. Furthermore, the optimal IGOL prepared were characterized by its rapidly increasing effective GO activity to the externally added substrate (glucose) with increasing temperature from 20 to 40 degrees C, and also by its high stability at 40 degrees C against not only the thermal denaturation in a long-term (7 days) incubation but also the bubbling stress in a bubble column. Finally, compared to the conventionally immobilized glucose oxidase (IGO), the higher operational stability of the optimal IGOL was verified by using it either repeatedly (4 times) or for a long time (7 days) to catalyze the glucose oxidation in a small-scale airlift bioreactor.
Collapse
Affiliation(s)
- Shaoqing Wang
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | | | | | | |
Collapse
|
7
|
Gaspar MM, Martins MB, Corvo ML, Cruz MEM. Design and characterization of enzymosomes with surface-exposed superoxide dismutase. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1609:211-7. [PMID: 12543383 DOI: 10.1016/s0005-2736(02)00702-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Superoxide dismutase (SOD) was chemically modified by covalent linkage of fatty acid chains to the accessible epsilon-amino groups of the enzyme. This acylation method gave rise to a different enzyme entity (Ac-SOD) as evidenced by different physicochemical properties such as octanol/water partition coefficient and isoelectric point (pI) as compared to SOD. Ac-SOD was incorporated in conventional and long-circulating liposomes (LCL) and characterized in terms of incorporation efficiency, protein to lipid ratio (Prot/Lip), enzymatic activity retention and zeta potential. The observation that Ac-SOD liposomes present enzymatic activity on their external surface indicates that these formulations can act independent of rate and extent of enzyme release as required in case of SOD liposomes. The decrease of superficial charge of liposomal formulations containing Ac-SOD, as compared to SOD liposomes, may be related to the negatively charged enzyme molecules localized on the liposome surface. The comparative characterization of Ac-SOD and SOD liposomal formulations evidenced that the two enzyme forms differ substantially regarding their intraliposomal location: SOD tends to be localized in the internal aqueous spaces, whereas Ac-SOD is expected to be localized in the lipid bilayers of the liposomes, partially buried into the outer surface and exposed to the external medium. These liposomal structures with surface-exposed SOD were designated as Ac-SOD enzymosomes. The properties of these enzymosomes may influence the therapeutic effect, as the release of the enzyme from extravasated vesicles is no longer a necessary requirement for achieving dismutating activity within the inflamed target site.
Collapse
Affiliation(s)
- M M Gaspar
- Departamento de Biotecnologia, Unidade Novas Formas de Agentes Bioactivos, Instituto Nacional de Engenharia e Tecnologia Industrial, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal
| | | | | | | |
Collapse
|
8
|
Kumar R, Prasad R. Functional characterization of purified zinc transporter from renal brush border membrane of rat. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1509:429-39. [PMID: 11118552 DOI: 10.1016/s0005-2736(00)00325-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Major zinc binding protein purified from renal brush border membrane (BBM) (R. Kumar, R. Prasad, Biochim. Biophys. Acta 1419 (1999) 23) was reconstituted into liposomes and its functional characteristics were investigated. Physical incorporation of the major zinc binding protein into the proteoliposomes was checked by SDS-PAGE, which showed a single band on silver staining. The structural integrity of the proteoliposomes was assessed by phase contrast microscopy, which revealed the proteoliposomes as globular structures and intact boundaries. Further structural integrity/leakiness of the proteoliposomes was checked by monitoring efflux of Zn(2+) from the pre-loaded proteoliposomes in the presence of either 2 mM Ca(2+) or Cd(2+) or Zn(2+). It was observed that even after 2 h of the initiation of efflux, 85-95% of Zn(2+) was retained in the proteoliposomes, thereby indicating that proteoliposomes were not leaky and maintained structural integrity during the uptake study. Zinc uptake into the proteoliposomes followed Michaelis-Menten kinetics with affinity constant (K(m)) of 1.03 mM and maximal velocity (V(max)) of 1333 nmol/mg protein per min. The uptake process followed first-order kinetics with a rate constant (k) of 1. 09x10(-3) s(-1). The specificity of zinc transport system was determined by studying the interaction of divalent cations viz. Ca(2+) and Cd(2+) with the zinc uptake. It was observed that Cd(2+) competitively inhibited the zinc uptake process with inhibitory concentration (K(i)) of 2.9 mM. Kinetic analysis of inhibitory effect of Cd(2+) on zinc uptake revealed an increase in K(m) to 1.74 mM without influencing V(max). Zn(2+) uptake into the proteoliposomes was found to be temperature sensitive and Arrhenius plot showed a breakpoint at 27 degrees C. The apparent energies of activation (E(a)) were found to be 7.09 and 2.74 kcal/mol below and above the breakpoint, respectively. The initial velocity of Zn(2+) uptake increased with the increase in outwardly directed proton gradient ([H](i) greater than [H](o)). The Zn(2+) uptake was inhibited by DCCD, thereby suggesting the involvement of -COOH groups in the translocation of Zn(2+) across the lipid bilayer. The ratio of acidic to basic amino acids (1.26) strongly indicates that it is an acidic protein. The cysteine content in this protein was insignificant, which further corroborates the possibility that the acidic amino acids might be prominent candidates for binding to zinc. The findings of the present study confirms that 40 kDa major zinc binding glycoprotein purified from renal BBM is a zinc transporter involved in the influx of Zn(2+) into the epithelial cells of the renal tubular system.
Collapse
Affiliation(s)
- R Kumar
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, 160 012, Chandigarh, India
| | | |
Collapse
|
9
|
Kinne R, Kinne‐Saffran E. Renal Plasma Membranes: Isolation, General Properties, and Biochemical Components. Compr Physiol 1992. [DOI: 10.1002/cphy.cp080245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Le Grimellec C, Friedlander G, el Yandouzi EH, Zlatkine P, Giocondi MC. Membrane fluidity and transport properties in epithelia. Kidney Int 1992; 42:825-36. [PMID: 1333546 DOI: 10.1038/ki.1992.357] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Völkl H, Geibel J, Greger R, Lang F. Effects of ouabain and temperature on cell membrane potentials in isolated perfused straight proximal tubules of the mouse kidney. Pflugers Arch 1986; 407:252-7. [PMID: 3763371 DOI: 10.1007/bf00585299] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In isolated perfused segments of the mouse proximal tubule, the potential difference across the basolateral cell membrane (PDbl) was determined with conventional microelectrodes. Under control conditions with symmetrical solutions it amounted to -62 +/- 1 mV (n = 118). The potential difference across the epithelium (PDte) was -1.7 +/- 0.1 mV (n = 45). Transepithelial resistance amounted to 1.82 +/- 0.09 k omega cm (n = 28), corresponding to 11.4 +/- 0.6 omega cm2. Increasing bath potassium concentration from 5 to 20 mmol/l depolarized PDbl by +24 +/- 1 mV (n = 103), and PDte by +1.6 +/- 0.1 mV (n = 19). Thus, the basolateral cell membrane is preferably conductive to potassium. Rapid cooling of the bath perfusate from 38 degrees C to 10 degrees C led to a transient hyperpolarization of PDbl from -60 +/- 1 to -65 +/- 1 mV (n = 21) within 40 s followed by gradual depolarization by +18 +/- 1% (n = 14) within 5 min. The transepithelial resistance increased significantly from 1.78 +/- 0.11 k omega cm to 2.20 +/- 0.21 k omega cm (n = 15). Rapid rewarming of the bath to 38 degrees C caused a depolarization from -61 +/- 2 mV (n = 17) to -43 +/- 2 mV (n = 16) within 15 s followed by a repolarization to -59 +/- 2 mV (n = 10) within 40 s. Ouabain invariably depolarized PDbl. During both, sustained cooling or application of ouabain, the sensitivity of PDbl to bath potassium concentration decreased in parallel to PDbl pointing to a gradual decrease of potassium conductance.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
12
|
Murer H, Gmaj P. Transport studies in plasma membrane vesicles isolated from renal cortex. Kidney Int 1986; 30:171-86. [PMID: 3531673 DOI: 10.1038/ki.1986.169] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Carrière B, Le Grimellec C. Effects of benzyl alcohol on enzyme activities and D-glucose transport in kidney brush-border membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 857:131-8. [PMID: 2871865 DOI: 10.1016/0005-2736(86)90340-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Addition of increasing amounts of benzyl alcohol progressively reduced the steady-state anisotropies of diphenylhexatriene and trimethylammoniumdiphenylhexatriene in brush-border membranes from rat kidney. The decrease in order of membrane lipids, equivalent for 50 mM benzyl alcohol to that produced by a rise in temperature of approx. 6 degrees C, had no effect on the activities of alkaline phosphatase or gamma-glutamyltranspeptidase. On the other hand, benzyl alcohol markedly inhibited the D-glucose uptakes measured in the presence of a 100 mM sodium gradient. For concentrations less than 30 mM, benzyl alcohol reduced the Jmax without significant effects on Km, 22Na+ uptake or the vesicular volume of brush-border preparations. Comparable results were obtained substituting octanol for benzyl alcohol. Our data strongly suggest that, at constant temperature, the D-glucose carrier present in renal brush-border membranes is extremely sensitive to variations in membrane physical state.
Collapse
|
14
|
Boudouard M, Giudicelli J, Vannier C, Sudaka P. Reconstitution of brush border membrane proteins in phosphatidylcholine vesicles. Biochemical and functional characterization. Biochem J 1986; 235:111-6. [PMID: 3741373 PMCID: PMC1146656 DOI: 10.1042/bj2350111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Horse kidney brush border membrane proteins were incorporated into phosphatidylcholine vesicles. Structural analysis of proteoliposomes prepared with various lipid:protein ratios showed that: (a) only a few of the proteins present in the crude brush border extract are integrated, (b) all known membrane hydrolases are integrated, and (c) these proteoliposomes are homogeneous vesicles. Papain solubilization of brush border membrane hydrolases, i.e. aminopeptidase M, neutral alpha-glucosidase, gamma-glutamyltransferase and alkaline phosphatase, performed in parallel on native membrane vesicles and proteoliposomes, revealed similar kinetics. Analysis of membrane vesicles and proteoliposomes on sucrose density gradients either without any treatment, or after papain treatment showed that: (a) in proteoliposomes, neutral alpha-glucosidase is associated with radiolabelled phosphatidylcholine, and (b) papain-treated vesicles and proteoliposomes released enzyme activity in the same way. These results suggest that the integration mechanism of brush border membrane proteins may be similar in proteoliposomes and native membrane vesicles. Transport experiments under equilibrium exchange conditions showed that the uptake properties of proteoliposomes are similar to those of brush border membrane vesicles.
Collapse
|
15
|
Schäli C, Fanestil DD. Solubilization and reconstitution of the renal phosphate transporter. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 819:66-74. [PMID: 4041452 DOI: 10.1016/0005-2736(85)90196-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Proteins from brush-border membrane vesicles of rabbit kidney cortex were solubilized with 1% octylglucoside (protein to detergent ratio, 1:4 (w/w). The solubilized proteins (80.2 +/- 2.3% of the original brush-border proteins, n = 10, mean +/- S.E.) were reconstituted into artificial lipid vesicles or liposomes prepared from purified egg yolk phosphatidylcholine (80%) and cholesterol (20%). Transport of Pi into the proteoliposomes was measured by rapid filtration in the presence of a Na+ or a K+ gradient (out greater than in). In the presence of a Na+ gradient, the uptake of Pi was significantly faster than in the presence of a K+ gradient. Na+ dependency of Pi uptake was not observed when the liposomes were reconstituted with proteins extracted from brush-border membrane vesicles which had been previously treated with papain, a procedure that destroys Pi transport activity. Measurement of Pi uptake in media containing increasing amounts of sucrose indicated that Pi was transported into an intravesicular (osmotically sensitive) space, although about 70% of the Pi uptake appeared to be the result of adsorption or binding of Pi. However, this binding of Pi was not dependent upon the presence of Na+. Both Na+-dependent transport and the Na+-independent binding of Pi were inhibited by arsenate. The initial Na+-dependent Pi transport rate in control liposomes of 0.354 nmol Pi/mg protein per min was reduced to 0.108 and 0 nmol Pi/mg protein per min in the presence of 1 and 10 mM arsenate, respectively. Future studies on reconstitution of Pi transport systems must analyze and correct for the binding of Pi by the lipids used in the formation of the proteoliposomes.
Collapse
|
16
|
Chapter 14 Sodium-D-Glucose Cotransport System: Biochemical Analysis of Active Sites. ACTA ACUST UNITED AC 1984. [DOI: 10.1016/s0070-2161(08)60881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|