1
|
Dürr KL, Tavraz NN, Friedrich T. Control of gastric H,K-ATPase activity by cations, voltage and intracellular pH analyzed by voltage clamp fluorometry in Xenopus oocytes. PLoS One 2012; 7:e33645. [PMID: 22448261 PMCID: PMC3308979 DOI: 10.1371/journal.pone.0033645] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/14/2012] [Indexed: 11/24/2022] Open
Abstract
Whereas electrogenic partial reactions of the Na,K-ATPase have been studied in depth, much less is known about the influence of the membrane potential on the electroneutrally operating gastric H,K-ATPase. In this work, we investigated site-specifically fluorescence-labeled H,K-ATPase expressed in Xenopus oocytes by voltage clamp fluorometry to monitor the voltage-dependent distribution between E1P and E2P states and measured Rb+ uptake under various ionic and pH conditions. The steady-state E1P/E2P distribution, as indicated by the voltage-dependent fluorescence amplitudes and the Rb+ uptake activity were highly sensitive to small changes in intracellular pH, whereas even large extracellular pH changes affected neither the E1P/E2P distribution nor transport activity. Notably, intracellular acidification by approximately 0.5 pH units shifted V0.5, the voltage, at which the E1P/E2P ratio is 50∶50, by −100 mV. This was paralleled by an approximately two-fold acceleration of the forward rate constant of the E1P→E2P transition and a similar increase in the rate of steady-state cation transport. The temperature dependence of Rb+ uptake yielded an activation energy of ∼90 kJ/mol, suggesting that ion transport is rate-limited by a major conformational transition. The pronounced sensitivity towards intracellular pH suggests that proton uptake from the cytoplasmic side controls the level of phosphoenzyme entering the E1P→E2P conformational transition, thus limiting ion transport of the gastric H,K-ATPase. These findings highlight the significance of cellular mechanisms contributing to increased proton availability in the cytoplasm of gastric parietal cells. Furthermore, we show that extracellular Na+ profoundly alters the voltage-dependent E1P/E2P distribution indicating that Na+ ions can act as surrogates for protons regarding the E2P→E1P transition. The complexity of the intra- and extracellular cation effects can be rationalized by a kinetic model suggesting that cations reach the binding sites through a rather high-field intra- and a rather low-field extracellular access channel, with fractional electrical distances of ∼0.5 and ∼0.2, respectively.
Collapse
Affiliation(s)
| | | | - Thomas Friedrich
- Institute of Chemistry, Technical University of Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
2
|
Dürr KL, Seuffert I, Friedrich T. Deceleration of the E1P-E2P transition and ion transport by mutation of potentially salt bridge-forming residues Lys-791 and Glu-820 in gastric H+/K+-ATPase. J Biol Chem 2010; 285:39366-79. [PMID: 20921224 DOI: 10.1074/jbc.m110.133470] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A lysine residue within the highly conserved center of the fifth transmembrane segment in P(IIC)-type ATPase α-subunits is uniquely found in H,K-ATPases instead of a serine in all Na,K-ATPase isoforms. Because previous studies suggested a prominent role of this residue in determining the electrogenicity of non-gastric H,K-ATPase and in pK(a) modulation of the proton-translocating residues in the gastric H,K-ATPases as well, we investigated its functional significance for ion transport by expressing several Lys-791 variants of the gastric H,K-ATPase in Xenopus oocytes. Although the mutant proteins were all detected at the cell surface, none of the investigated mutants displayed any measurable K(+)-induced stationary currents. In Rb(+) uptake measurements, replacement of Lys-791 by Arg, Ala, Ser, and Glu substantially impaired transport activity and reduced the sensitivity toward the E(2)-specific inhibitor SCH28080. Furthermore, voltage clamp fluorometry using a reporter site in the TM5/TM6 loop for labeling with tetra-methylrhodamine-6-maleimide revealed markedly changed fluorescence signals. All four investigated mutants exhibited a strong shift toward the E(1)P state, in agreement with their reduced SCH28080 sensitivity, and an about 5-10-fold decreased forward rate constant of the E(1)P ↔ E(2)P conformational transition, thus explaining the E(1)P shift and the reduced Rb(+) transport activity. When Glu-820 in TM6 adjacent to Lys-791 was replaced by non-charged or positively charged amino acids, severe effects on fluorescence signals and Rb(+) transport were also observed, whereas substitution by aspartate was less disturbing. These results suggest that formation of an E(2)P-stabilizing interhelical salt bridge is essential to prevent futile proton exchange cycles of H(+) pumping P-type ATPases.
Collapse
Affiliation(s)
- Katharina L Dürr
- Technical University of Berlin, Institute of Chemistry, Secr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany.
| | | | | |
Collapse
|
3
|
Witzke A, Lindner K, Munson K, Apell HJ. Inhibition of the Gastric H,K-ATPase by Clotrimazole. Biochemistry 2010; 49:4524-32. [DOI: 10.1021/bi1004014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Annabell Witzke
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Kathrin Lindner
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Keith Munson
- Department of Physiology, School of Medicine, University of California, Los Angeles, and Veterans Administration, Los Angeles, California 90073
| | - Hans-Jürgen Apell
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
4
|
Abe K, Tani K, Fujiyoshi Y. Structural and functional characterization of H+,K+-ATPase with bound fluorinated phosphate analogs. J Struct Biol 2010; 170:60-8. [DOI: 10.1016/j.jsb.2009.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 12/02/2009] [Accepted: 12/08/2009] [Indexed: 11/26/2022]
|
5
|
Abe K, Tani K, Nishizawa T, Fujiyoshi Y. [Novel ratchet mechanism of gastric H(+), K(+)-ATPase revealed by electron crystallography of two-dimensional crystals]. YAKUGAKU ZASSHI 2010; 130:205-10. [PMID: 20118644 DOI: 10.1248/yakushi.130.205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acid secretion by the stomach results in a pH of about 1. This highly acidic environment is essential for digestion and also acts as a first barrier against bacterial and viral infections. Conversely, too much acid secretion causes gastric ulcer. The mechanism by which this massive proton gradient is generated is of considerable biomedical interest. In this review, we introduce the first molecular model for this remarkable biological phenomenon. The structure of H(+),K(+)-ATPase at 6.5 A resolution was determined by electron crystallography of two-dimensional crystals. The structure shows the catalytic alpha-subunit and the non-catalytic beta-subunit in a pseudo-E(2)P conformation. Different from Na(+),K(+)-ATPase, the N-terminal tail of the beta-subunit is in direct contact with the phosphorylation domain of the alpha-subunit. This interaction may hold the phosphorylation domain in place, thus stabilizing the enzyme conformation and preventing the reverse reaction of the transport cycle. Indeed, truncation of the beta-subunit N-terminus allowed the reverse reaction to occur. These results suggest that the N-terminal tail of the beta-subunit functions as a "ratchet", preventing inefficient transport and reverse-flow of protons. We can thus provide a mechanistic explanation for how the H(+),K(+)-ATPase can generate a million-fold proton gradient across the gastric parietal cell membrane, the highest cation gradient known in any mammalian tissue.
Collapse
Affiliation(s)
- Kazuhiro Abe
- Department of Biophysics, Faculty of Science, Kyoto University, Kyoto, Japan.
| | | | | | | |
Collapse
|
6
|
|
7
|
Abe K, Tani K, Nishizawa T, Fujiyoshi Y. Inter-subunit interaction of gastric H+,K+-ATPase prevents reverse reaction of the transport cycle. EMBO J 2009; 28:1637-43. [PMID: 19387495 DOI: 10.1038/emboj.2009.102] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 03/10/2009] [Indexed: 11/09/2022] Open
Abstract
The gastric H(+),K(+)-ATPase is an ATP-driven proton pump responsible for generating a million-fold proton gradient across the gastric membrane. We present the structure of gastric H(+),K(+)-ATPase at 6.5 A resolution as determined by electron crystallography of two-dimensional crystals. The structure shows the catalytic alpha-subunit and the non-catalytic beta-subunit in a pseudo-E(2)P conformation. Different from Na(+),K(+)-ATPase, the N-terminal tail of the beta-subunit is in direct contact with the phosphorylation domain of the alpha-subunit. This interaction may hold the phosphorylation domain in place, thus stabilizing the enzyme conformation and preventing the reverse reaction of the transport cycle. Indeed, truncation of the beta-subunit N-terminus allowed the reverse reaction to occur. These results suggest that the beta-subunit N-terminus prevents the reverse reaction from E(2)P to E(1)P, which is likely to be relevant for the generation of a large H(+) gradient in vivo situation.
Collapse
Affiliation(s)
- Kazuhiro Abe
- Department of Biophysics, Faculty of Science, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
8
|
Abstract
The fluorescent styryl dye RH421 was used to identify and investigate electrogenic reaction steps of the H,K-ATPase pump cycle. Equilibrium titration experiments were performed with membrane vesicles isolated from hog gastric mucosa, and cytoplasmic and luminal binding of K(+) and H(+) ions was studied. It was found that the binding and release steps of both ion species in both principal conformations of the ion pump, E(1) and P-E(2), are electrogenic, whereas the conformation transitions do not contribute significantly to a charge movement within the membrane dielectric. This behavior is in agreement with the transport mechanism found for the Na,K-ATPase and the sarcoplasmic reticulum Ca-ATPase. The data were analyzed on the basis of the Post-Albers reaction cycle. For proton binding, two pK values were found in both conformations: 6.7 and </=4.5 in the E(1) conformation; 6.7 and </=2 in the P-E(2) conformation. The equilibrium dissociation constants for K(+) binding on the cytoplasmic side were 11 and 16 mM. The respective equilibrium dissociation constants on the luminal side were obtained via K(+) concentration dependence of the enzyme activity and determined to be 0.11 mM for both luminal binding sites.
Collapse
Affiliation(s)
- Anna Diller
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
9
|
Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 2004; 22:6267-76. [PMID: 14633986 PMCID: PMC291840 DOI: 10.1093/emboj/cdg599] [Citation(s) in RCA: 801] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is an unmet medical need for anabolic treatments to restore lost bone. Human genetic bone disorders provide insight into bone regulatory processes. Sclerosteosis is a disease typified by high bone mass due to the loss of SOST expression. Sclerostin, the SOST gene protein product, competed with the type I and type II bone morphogenetic protein (BMP) receptors for binding to BMPs, decreased BMP signaling and suppressed mineralization of osteoblastic cells. SOST expression was detected in cultured osteoblasts and in mineralizing areas of the skeleton, but not in osteoclasts. Strong expression in osteocytes suggested that sclerostin expressed by these central regulatory cells mediates bone homeostasis. Transgenic mice overexpressing SOST exhibited low bone mass and decreased bone strength as the result of a significant reduction in osteoblast activity and subsequently, bone formation. Modulation of this osteocyte-derived negative signal is therapeutically relevant for disorders associated with bone loss.
Collapse
Affiliation(s)
- David G Winkler
- Department of Gene Function and Target Validation, Celltech R&D, Inc., Bothell, WA 98021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Shin JM, Goldshleger R, Munson KB, Sachs G, Karlish SJ. Selective Fe2+-catalyzed oxidative cleavage of gastric H+,K+-ATPase: implications for the energy transduction mechanism of P-type cation pumps. J Biol Chem 2001; 276:48440-50. [PMID: 11585827 DOI: 10.1074/jbc.m106864200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the presence of ascorbate/H(2)O(2), Fe(2+) ions or the ATP-Fe(2+) complex catalyze selective cleavage of the alpha subunit of gastric H(+),K(+)-ATPase. The electrophoretic mobilities of the fragments and dependence of the cleavage patterns on E(1) and E(2) conformational states are essentially identical to those described previously for renal Na(+),K(+)-ATPase. The cleavage pattern of H(+),K(+)-ATPase by Fe(2+) ions is consistent with the existence of two Fe(2+) sites: site 1 within highly conserved sequences in the P and A domains, and site 2 at the cytoplasmic entrance to trans-membrane segments M3 and M1. The change in the pattern of cleavage catalyzed by Fe(2+) or the ATP-Fe(2+) complex induced by different ligands provides evidence for large conformational movements of the N, P, and A cytoplasmic domains of the enzyme. The results are consistent with the Ca(2+)-ATPase crystal structure (Protein Data Bank identification code; Toyoshima, C., Nakasako, M., Nomura, H., and Ogawa, H. (2000) Nature 405, 647-655), an E(1)Ca(2+) conformation, and a theoretical model of Ca(2+)-ATPase in an E(2) conformation (Protein Data Bank identification code ). Thus, it can be presumed that the movements of N, P, and A cytoplasmic domains, associated with the E(1) <--> E(2) transitions, are similar in all P-type ATPases. Fe(2+)-catalyzed cleavage patterns also reveal sequences involved in phosphate, Mg(2+), and ATP binding, which have not yet been shown in crystal structures, as well as changes which occur in E(1) <--> E(2) transitions, and subconformations induced by H(+),K(+)-ATPase-specific ligands such as SCH28080.
Collapse
Affiliation(s)
- J M Shin
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
11
|
Swarts HG, Hermsen HP, Koenderink JB, Schuurmans Stekhoven FM, De Pont JJ. Constitutive activation of gastric H+,K+-ATPase by a single mutation. EMBO J 1998; 17:3029-35. [PMID: 9606185 PMCID: PMC1170642 DOI: 10.1093/emboj/17.11.3029] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the reaction cycle of P-type ATPases, an acid-stable phosphorylated intermediate is formed which is present in an intracellularly located domain of the membrane-bound enzymes. In some of these ATPases, such as Na+,K+-ATPase and gastric H+, K+-ATPase, extracellular K+ ions stimulate the rate of dephosphorylation of this phosphorylated intermediate and so stimulate the ATPase activity. The mechanism by which extracellular K+ ions stimulate the dephosphorylation process is unresolved. Here we show that three mutants of gastric H+,K+-ATPase lacking a negative charge on residue 820, located in transmembrane segment six of the alpha-subunit, have a high SCH 28080-sensitive, but K+-insensitive ATPase activity. This high activity is caused by an increased 'spontaneous' rate of dephosphorylation of the phosphorylated intermediate. A mutant with an aspartic acid instead of a glutamic acid residue in position 820 showed hardly any ATPase activity in the absence of K+, but K+ ions stimulated ATPase activity and the dephosphorylation process. These findings indicate that the negative charge normally present on residue 820 inhibits the dephosphorylation process. K+ ions do not stimulate dephosphorylation of the phosphorylated intermediate directly, but act by neutralizing the inhibitory effect of a negative charge in the membrane.
Collapse
Affiliation(s)
- H G Swarts
- Department of Biochemistry, Institute of Cellular Signalling, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Hermsen HP, Swarts HG, Koenderink JB, De Pont JJ. The negative charge of glutamic acid-820 in the gastric H+,K+-ATPase alpha-subunit is essential for K+ activation of the enzyme activity. Biochem J 1998; 331 ( Pt 2):465-72. [PMID: 9531486 PMCID: PMC1219377 DOI: 10.1042/bj3310465] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To investigate the role of Glu820, located in transmembrane domain M6 of the alpha-subunit of gastric H+,K+-ATPase, a number of mutants was prepared and expressed in Sf9 cells using a baculovirus encoding for both H+,K+-ATPase subunits. The wild-type enzyme and the E820D (Glu820-->Asp) mutant showed a similar biphasic activation by K+ on the ATPase activity (maximum at 1 mM). The mutant E820A had a markedly decreased K+ affinity (maximum at 40-100 mM). The other mutants, E820Q, E820N, E820L and E820K, showed no K+-activated ATPase activity at all, whereas all mutants formed a phosphorylated intermediate. After preincubation with K+ before phosphorylation mutant E820D showed a similar K+-sensitivity as the wild-type enzyme. The mutants E820N and E820Q had a 10-20 times lower sensitivity, whereas the other three mutants were hardly sensitive towards K+. Upon preincubation with 3-(cyanomethyl)-2-methyl-8-(phenylmethoxy) imidazo [1,2a]-pyridine (SCH28080), all mutants showed similar sensitivity for this drug as the wild-type enzyme, except mutant E820Q, which could only partly be inhibited, and mutant E820K, which was completely insensitive towards SCH28080. These experiments suggest that, with a relatively large residue at position 820, the binding of SCH28080 is obstructed. The various mutants showed a behaviour in K+-stimulated-dephosphorylation experiments similar to that for K+-activated-ATPase-activity measurements. These results indicate that K+ binding, and indirectly the transition to the E2 form, is only fully possible when a negatively charged residue is present at position 820 in the alpha-subunit.
Collapse
Affiliation(s)
- H P Hermsen
- Department of Biochemistry, Institute of Cellular Signalling, University of Nijmegen, P.O. Box 9101, 6500HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
13
|
Swarts HG, Klaassen CH, de Boer M, Fransen JA, De Pont JJ. Role of negatively charged residues in the fifth and sixth transmembrane domains of the catalytic subunit of gastric H+,K+-ATPase. J Biol Chem 1996; 271:29764-72. [PMID: 8939913 DOI: 10.1074/jbc.271.47.29764] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The role of six negatively charged residues located in or around the fifth and sixth transmembrane domain of the catalytic subunit of gastric H+,K+-ATPase, which are conserved in P-type ATPases, was investigated by site-directed mutagenesis of each of these residues. The acid residues were converted into their corresponding acid amides. Sf9 cells were used as the expression system using a baculovirus with coding sequences for the alpha- and beta-subunits of H+,K+-ATPase behind two different promoters. Both subunits of all mutants were expressed like the wild type enzyme in intracellular membranes of Sf9 cells as indicated by Western blotting experiments, an enzyme-linked immunosorbent assay, and confocal laser scan microscopy studies. The mutants D824N, E834Q, E837Q, and D839N showed no 3-(cyanomethyl)-2-methyl-8(phenylmethoxy)-imidazo[1, 2a]pyridine (SCH 28080)-sensitive ATP dependent phosphorylation capacity. Mutants E795Q and E820Q formed a phosphorylated intermediate, which, like the wild type enzyme, was hydroxylamine-sensitive, indicating that an acylphosphate was formed. Formation of the phosphorylated intermediate from the E795Q mutant was similarly inhibited by K+ (I50 = 0.4 mM) and SCH 28080 (I50 = 10 nM) as the wild type enzyme, when the membranes were preincubated with these ligands before phosphorylation. The dephosphorylation reaction was K+-sensitive, whereas ADP had hardly any effect. Formation of the phosphorylated intermediate of mutant E820Q was much less sensitive toward K+ (I50 = 4.5 mM) and SCH 28080 (I50 = 1.7 microM) than the wild type enzyme. The dephosphorylation reaction of this intermediate was not stimulated by either K+ or ADP. In contrast to the wild type enzyme and mutant E795Q, mutant E820Q did not show any K+-stimulated ATPase activity. These findings indicate that residue Glu820 might be involved in K+ binding and transition to the E2 form of gastric H+,K+-ATPase.
Collapse
Affiliation(s)
- H G Swarts
- Department of Biochemistry, Institute of Cellular Signalling, University of Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
14
|
Rabon E, Smillie K, Seru V, Rabon R. Rubidium occlusion within tryptic peptides of the H,K-ATPase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53057-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Stengelin M, Fendler K, Bamberg E. Kinetics of transient pump currents generated by the (H,K)-ATPase after an ATP concentration jump. J Membr Biol 1993; 132:211-27. [PMID: 8388059 DOI: 10.1007/bf00235739] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
(H,K)-ATPase containing membranes from hog stomach were attached to black lipid membranes. Currents induced by an ATP concentration jump were recorded and analyzed. A sum of three exponentials (tau 1(-1) approximately 400 sec-1, tau 2(-1) approximately 100 sec-1, tau 3(-1) approximately 10 sec-1; T = 300 K, pH 6, MgCl2 3 mM, no K+) was fitted to the transient signal. The dependence of the resulting time constants and the peak current on electrolyte composition, ATP conversion rate, temperature, and membrane conductivity was recorded. The results are consistent with a reaction scheme similar to that proposed by Albers and Post for the NaK-ATPase. Based on this model the following assignments were made: tau 2 corresponds to ATP binding and exchange with caged ATP. tau 1 describes the phosphorylation reaction E1 x ATP-->E1P. The third, slowest time constant tau 3 is tentatively assigned to the E1P-->E2P transition. This is the first electrogenic step and is accelerated at high pH and by ATP via a low affinity binding site. The second electrogenic step is the transition from E2K to E1H. The E2K<==>E1H equilibrium is influenced by potassium with an apparent K0.5 of 3 mM and by the pH. Low pH and low potassium concentration stabilize the E1 conformation.
Collapse
Affiliation(s)
- M Stengelin
- Max-Planck-Institut für Biophysik, Frankfurt am Main, FRG
| | | | | |
Collapse
|
16
|
Chapter 2 Structure and function of gastric H,K-ATPase. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60064-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
17
|
Van Uem TJ, Peters WH, De Pont JJ. A monoclonal antibody against pig gastric H+/K(+)-ATPase, which binds to the cytosolic E1.K+ form. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1023:56-62. [PMID: 2156563 DOI: 10.1016/0005-2736(90)90009-d] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Monoclonal antibodies were raised against a purified membrane fraction from hog gastric mucosa containing H+/K(+)-ATPase. The properties of one of these monoclonal antibodies (5B6) were further evaluated. On immunoblot it recognized the 95 kDa peptide of the H+/K(+)-ATPase-rich membrane fraction. The K(+)-ATPase activity was inhibited by 65% under standard assay conditions (pH 7.0). At pH 6.0 and 8.0 this enzyme activity was inhibited by 40% and 100%, respectively. The maximal inhibition in inside-out vesicles was also 65% at pH 7.0. The inhibition was uncompetitive with respect to K+ and noncompetitive with respect to ATP. Mg2(+)-ATPase activity and K(+)-dependent p-nitrophenylphosphatase activity were not influenced. The monoclonal antibody lowered the steady-state phosphorylation level at pH 6.0, 7.0 and 8.0 by 30%, 40% and 60% respectively. The rate of the K(+)-stimulated dephosphorylation step was not inhibited. These findings demonstrate that 5-B6 recognizes the E1.K+ dephosphoenzyme at the cytosolic side.
Collapse
Affiliation(s)
- T J Van Uem
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
18
|
Sachs G, Kaunitz J, Mendlein J, Wallmark B. Biochemistry of Gastric Acid Secretion: H
+
‐K
+
‐
ATP
ase. Compr Physiol 1989. [DOI: 10.1002/cphy.cp060312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Siebers A, Altendorf K. Characterization of the Phosphorylated Intermediate of the K+-translocating Kdp-ATPase from Escherichia coli. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83625-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
20
|
Lorentzon P, Sachs G, Wallmark B. Inhibitory effects of cations on the gastric H+, K+ -ATPase. A potential-sensitive step in the K+ limb of the pump cycle. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)38028-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
21
|
Helmich-de Jong ML, van Emst-de Vries SE, de Pont JJ. Conformational states of (K+ + H+)-ATPase studied using tryptic digestion as a tool. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 905:358-70. [PMID: 2825783 DOI: 10.1016/0005-2736(87)90464-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The (K+ + H+)-ATPase from gastric mucosa has been treated by limited proteolytic digestion with trypsin to study the conformational states of the enzyme. The existence of a K+- and an ATP-form of the enzyme follows from the kinetics of inactivation and from the specific cleavage products. In the presence of K+ the 95 kDa chain is cleaved into two fragments of 56 and 42 kDa, whereas in the presence of ATP fragments of 67 and 35 kDa are formed. When Mg2+ is present during tryptic digestion cleavage products which are specific for both the ATP- and the K+-form of the enzyme are yielded. In analogy to ATP, Mg2+ is able to convert the enzyme from a K+-conformation to a more protected form. Moreover Mg2+ supports the protecting effect of ATP against tryptic inactivation. The K0.5 for ATP is lowered from 1.6 mM (no Mg2+) to 0.2 mM in the presence of 10 mM Mg2+. Mg2+, which in previous studies has been shown to induce a specific conformation, apparently induces a conformation different from the K+-form of the enzyme and has ATP-like effects on the enzyme. In addition it has been found that in the initial rapid phase of the digestion process the K+-ATPase activity is interrupted at a step which is very likely the interconversion of the phosphoenzyme forms E1P and E2P, since neither the K+-stimulated p-nitrophenylphosphatase activity nor the phosphorylation of the enzyme are inhibited in this phase. During the tryptic digestion in the presence of K+ there is a good correlation between the residual ATPase activity and the amount of the catalytic subunit left, suggesting that the latter is homogeneous. After tryptic digestion in the presence of K+, phosphorylation only occurs in the 42 kDa and not in the 56 kDa band. The same experiments in the presence of ATP yield only phosphorylation in the 67 kDa band and not in the 35 kDa band. A provisional model for the structure of the catalytic subunit is given.
Collapse
|
22
|
Saccomani G, Mukidjam E. Papain fragmentation of the gastric (H+ + K+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 912:63-73. [PMID: 3030430 DOI: 10.1016/0167-4838(87)90248-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Membrane-bound (H+ + K+)-ATPase purified from hog gastric mucosa was exposed to limited papain digestion. Such treatment resulted in a rapid inhibition of the K+-stimulated adenosine triphosphatase and p-nitrophenyl phosphatase activities, with about 90% of these activities lost after 3 min incubation at 37 degrees C with 0.1 units of papain per mg of enzyme protein. Parallel to the inhibition of the enzyme activities, there was a production of a 77 kDa membrane-bound fragment containing the aspartyl phosphate residue of the phospho-intermediate. This fragment accounted for about 45% of the total enzyme protein after the 3 min papain treatment. The digestion barely affected the steady-state level of phosphorylation, allowed the aspartyl phosphate of the 77 kDa fragment to undergo the transition to the E2P form, and did not significantly alter the fraction of ADP-sensitive phosphoenzyme. The presence of KCl, however, depressed the steady-state level of phosphoenzyme formed from [gamma-32P]ATP considerably less than that of the control enzyme. With further exposure to papain the 77 kDa peptide became fragmented into a 28 kDa soluble peptide that retained the phosphorylating site. Binding of fluorescein 5'-isothiocyanate (FITC) to the native enzyme did not affect the sites of papain hydrolysis because the same peptide fragments were obtained. The FITC reaction site was also in the 28 kDa soluble peptide fragment.
Collapse
|
23
|
Helmich-de Jong ML, van Emst-de Vries SE, Swarts HG, Schuurmans Stekhoven FM, de Pont JJ. Presence of a low-affinity nucleotide binding site on the (K+ + H+)-ATPase phosphoenzyme. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 860:641-9. [PMID: 3017426 DOI: 10.1016/0005-2736(86)90564-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effects of Mg2+ and nucleotides on the dephosphorylation process of the (K+ + H+)-ATPase phosphoenzyme have been studied. Phosphorylation with [gamma-32P]ATP is stopped either by addition of non-radioactive ATP or by complexing of Mg2+ with EDTA. The dephosphorylation process is slow and monoexponential when dephosphorylation is initiated with ATP. When phosphorylation is stopped by complexing of Mg2+ the dephosphorylation process is fast and biexponential. The discrepancy could be explained by a nucleotide mediated inhibition of the dephosphorylation process. The I0.5 for ATP for this inhibition is 0.1 mM and that for ADP is 0.7 mM, suggesting that a low-affinity binding site is involved. When Mg2+ is present in millimolar concentrations in addition to the nucleotides the dephosphorylation process is enhanced. Evidence has been obtained that Mg2+ acts through lowering the affinity for ATP. In contrast to K+, Mg2+ does not stimulate dephosphorylation in the absence of nucleotides. Mg2+ and nucleotides show the same interaction in the dephosphorylation process of a phosphoenzyme generated from inorganic phosphate. These findings suggest the presence of a low-affinity nucleotide binding site on the phosphoenzyme, as is found in the (Na+ + K+)-ATPase phosphoenzyme. This low-affinity binding site may function as a feed-back mechanism in proton transport.
Collapse
|