1
|
Na,K-ATPase structure/function relationships probed by the denaturant urea. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1212-23. [PMID: 25687971 DOI: 10.1016/j.bbamem.2015.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/04/2015] [Accepted: 02/08/2015] [Indexed: 12/11/2022]
Abstract
Urea interacts with the Na,K-ATPase, leading to reversible as well as irreversible inhibition of the hydrolytic activity. The enzyme purified from shark rectal glands is more sensitive to urea than Na,K-ATPase purified from pig kidney. An immediate and reversible inhibition under steady-state conditions of hydrolytic activity at 37°C is demonstrated for the three reactions studied: the overall Na,K-ATPase activity, the Na-ATPase activity observed in the absence of K+ as well as the K+-dependent phosphatase reaction (K-pNPPase) seen in the absence of Na+. Half-maximal inhibition is seen with about 1M urea for shark enzyme and about 2M urea for pig enzyme. In the presence of substrates there is also an irreversible inhibition in addition to the reversible process, and we show that ATP protects against the irreversible inhibition for both the Na,K-ATPase and Na-ATPase reaction, whereas the substrate paranitrophenylphosphate leads to a slight increase in the rate of irreversible inhibition of the K-pNPPase. The rate of the irreversible inactivation in the absence of substrates is much more rapid for shark enzyme than for pig enzyme. The larger number of potentially urea-sensitive hydrogen bonds in shark enzyme compared to pig enzyme suggests that interference with the extensive hydrogen bonding network might account for the higher urea sensitivity of shark enzyme. The reversible inactivation is interpreted in terms of domain interactions and domain accessibilities using as templates the available crystal structures of Na,K-ATPase. It is suggested that a few interdomain hydrogen bonds are those mainly affected by urea during reversible inactivation.
Collapse
|
2
|
Garçon DP, Lucena MN, Pinto MR, Fontes CFL, McNamara JC, Leone FA. Synergistic stimulation by potassium and ammonium of K(+)-phosphatase activity in gill microsomes from the crab Callinectes ornatus acclimated to low salinity: novel property of a primordial pump. Arch Biochem Biophys 2012; 530:55-63. [PMID: 23262318 DOI: 10.1016/j.abb.2012.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/28/2012] [Accepted: 12/04/2012] [Indexed: 11/16/2022]
Abstract
We provide an extensive characterization of the modulation by p-nitrophenylphosphate, Mg²⁺, Na⁺, K(+), Rb⁺, NH(4)(+) and pH of gill microsomal K⁺-phosphatase activity in the posterior gills of Callinectes ornatus acclimated to low salinity (21‰). The synergistic stimulation by K⁺ and NH(4)(+) of the K⁺-phosphatase activity is a novel finding, and may constitute a species-specific feature of K(+)/NH(4)(+) interplay that regulates crustacean gill (Na⁺, K⁺)-ATPase activity. p-Nitrophenylphosphate was hydrolyzed at a maximum rate (V) of 69.2 ± 2.8nmolPimin⁻¹mg⁻¹ with K(0.5)=2.3 ± 0.1mmolL(-1), obeying cooperative kinetics (n(H)=1.7). Stimulation by Mg²⁺ (V=70.1 ± 3.0nmolPimin⁻¹mg⁻¹, K(0.5)=0.88 ± 0.04mmolL⁻¹), K⁺ (V=69.6 ± 2.7nmolPimin⁻¹mg⁻¹, K(0.5)=1.60 ± 0.07mmolL⁻¹) and NH(4)(+) (V=90.8 ± 4.0nmolPimin⁻¹mg⁻¹, K(0.5)=9.2 ± 0.3mmol L⁻¹) all displayed site-site interaction kinetics. In the presence of NH(4)(+), enzyme affinity for K⁺ unexpectedly increased by 7-fold, while affinity for NH(4)(+) was 28-fold greater in the presence than absence of K⁺. Ouabain partially inhibited K⁺-phosphatase activity (K(I)=320 ± 14.0μmolL⁻¹), more effectively when NH(4)(+) was present (K(I)=240 ± 12.0μmolL⁻¹). We propose a model for the synergistic stimulation by K⁺ and NH(4)(+) of the K⁺-phosphatase activity of the (Na⁺, K⁺)-ATPase from C. ornatus posterior gill tissue.
Collapse
Affiliation(s)
- Daniela P Garçon
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Brazil
| | | | | | | | | | | |
Collapse
|
3
|
Gatto C, Helms JB, Prasse MC, Arnett KL, Milanick MA. Kinetic characterization of tetrapropylammonium inhibition reveals how ATP and Pi alter access to the Na+-K+-ATPase transport site. Am J Physiol Cell Physiol 2005; 289:C302-11. [PMID: 15788490 DOI: 10.1152/ajpcell.00043.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Current models of the Na(+)-K(+)-ATPase reaction cycle have ATP binding with low affinity to the K(+)-occluded form and accelerating K(+) deocclusion, presumably by opening the inside gate. Implicit in this situation is that ATP binds after closing the extracellular gate and thus predicts that ATP binding and extracellular cation binding to be mutually exclusive. We tested this hypothesis. Accordingly, we needed a cation that binds outside and not inside, and we determined that tetrapropylammonium (TPA) behaves as such. TPA competed with K(+) (and not Na(+)) for ATPase, TPA was unable to prevent phosphoenzyme (EP) formation even at low Na(+), and TPA decreased the rate of EP hydrolysis in a K(+)-competitive manner. Having established that TPA binding is a measurement of extracellular access, we next determined that TPA and inorganic phosphate (P(i)) were not mutually exclusive inhibitors of para-nitrophenylphosphatase (pNPPase) activity, implying that when P(i) is bound, the transport site has extracellular access. Surprisingly, we found that ATP and TPA also were not mutually exclusive inhibitors of pNPPase activity, implying that when the cation transport site has extracellular access, ATP can still bind. This is consistent with a model in which ATP speeds up the conformational changes that lead to intracellular or extracellular access, but that ATP binding is not, by itself, the trigger that causes opening of the cation site to the cytoplasm.
Collapse
Affiliation(s)
- Craig Gatto
- Division of Biomedical Sciences, Cell Biology & Physiology Section, Department of Biological Sciences, Illinois State University, 210 Julian Hall, Campus Box 4120, Normal, IL 61790-4120, USA.
| | | | | | | | | |
Collapse
|
4
|
Tosteson MT, Thomas J, Arnadottir J, Tosteson DC. Effects of palytoxin on cation occlusion and phosphorylation of the (Na+,K+)-ATPase. J Membr Biol 2003; 192:181-9. [PMID: 12820663 DOI: 10.1007/s00232-002-1074-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Palytoxin (PTX) inhibits the (Na(+) + K+)-driven pump and simultaneously opens channels that are equally permeable to Na+ and K+ in red cells and other cell membranes. In an effort to understand the mechanism by which PTX induces these fluxes, we have studied the effects of PTX on: 1) K+ and Na+ occlusion by the pump protein; 2) phosphorylation and dephosphorylation of the enzyme when a phosphoenzyme is formed from ATP and from P(i); and 3) p-nitro phenyl phosphatase (p-NPPase) activity associated with the (Na+, K+)-ATPase. We have found that palytoxin 1) increases the rate of deocclusion of K+(Rb+) in a time- and concentration-dependent manner, whereas Na+ occluded in the presence of oligomycin is unaffected by the toxin; 2) makes phosphorylation from P(i) insensitive to K+, and 3) stimulates the p-NPPase activity. The results are consistent with the notion that PTX produces a conformation of the Na+, K(+)-pump that resembles the one observed when ATP is bound to its low-affinity binding site. Further, they suggest that the channels that are formed by PTX might arise as a consequence of a perturbation in the ATPase structure, leading to the loss of control of the outside "gate" of the enzyme and hence to an uncoupling of the ion transport from the catalytic function of the ATPase.
Collapse
Affiliation(s)
- M T Tosteson
- Laboratory for Membrane Transport, Department of Cell Biology, Harvard Medical School, One Kendall Square, Building 600 Third Floor, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
5
|
Soler F, Fortea MI, Lax A, Fernández-Belda F. Dissecting the hydrolytic activities of sarcoplasmic reticulum ATPase in the presence of acetyl phosphate. J Biol Chem 2002; 277:38127-32. [PMID: 12130639 DOI: 10.1074/jbc.m203966200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sarcoplasmic reticulum vesicles and purified Ca(2+)-ATPase hydrolyze acetyl phosphate both in the presence and absence of Ca(2+). The Ca(2+)-independent activity was fully sensitive to vanadate, insensitive to thapsigargin, and proceeded without accumulation of phosphorylated enzyme. Acetyl phosphate hydrolysis in the absence of Ca(2+) was activated by dimethyl sulfoxide. The Ca(2+)-dependent activity was partially sensitive to vanadate, fully sensitive to thapsigargin, and associated with steady phosphoenzyme accumulation. The Ca(2+)/P(i) coupling ratio at neutral pH sustained by 10 mm acetyl phosphate was 0.57. Addition of 30% dimethyl sulfoxide completely blocked Ca(2+) transport and partially inhibited the hydrolysis rate. Uncoupling induced by dimethyl sulfoxide included the accumulation of vanadate-insensitive phosphorylated enzyme. When acetyl phosphate was the substrate, the hydrolytic pathway was dependent on experimental conditions that might or might not allow net Ca(2+) transport. The interdependence of both Ca(2+)-dependent and Ca(2+)-independent hydrolytic activities was demonstrated.
Collapse
Affiliation(s)
- Fernando Soler
- Departamento de Bioquimica y Biologia Molecular A, Edificio de Veterinaria, Universidad de Murcia, Campus de Espinardo, 30071 Murcia, Spain
| | | | | | | |
Collapse
|
6
|
Klodos I, Fedosova NU, Plesner L. Influence of intramembrane electric charge on Na,K-ATPase. J Biol Chem 1995; 270:4244-54. [PMID: 7876184 DOI: 10.1074/jbc.270.9.4244] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Effects of lipophilic ions, tetraphenylphosphonium (TPP+) and tetraphenylboron (TPB-), on interactions of Na+ and K+ with Na,K-ATPase were studied with membrane-bound enzyme from bovine brain, pig kidney, and shark rectal gland. Na+ and K+ interactions with the inward-facing binding sites, monitored by eosin fluorescence and phosphorylation, were not influenced by lipophilic ions. Phosphoenzyme interactions with extracellular cations were evaluated through K(+)-, ADP-, and Na(+)-dependent dephosphorylation. TPP+ decreased: 1) the rate of transition of ADP-insensitive to ADP-sensitive phosphoenzyme, 2) the K+ affinity and the rate coefficient for dephosphorylation of the K-sensitive phosphoenzyme, 3) the Na+ affinity and the rate coefficient for Na(+)-dependent dephosphorylation. Pre-steady state phosphorylation experiments indicate that the subsequent occlusion of extracellular cations was prevented by TPP+. TPB- had opposite effects. Effects of lipophilic ions on the transition between phosphoenzymes were significantly diminished when Na+ was replaced by N-methyl-D-glucamine or Tris+, but were unaffected by the replacement of Cl- by other anions. Lipophilic ions affected Na-ATPase, Na,K-ATPase, and p-nitrophenylphosphatase activities in accordance with their effects on the partial reactions. Effects of lipophilic ions appear to be due to their charge indicating that Na+ and K+ access to their extracellular binding sites is modified by the intramembrane electric field.
Collapse
Affiliation(s)
- I Klodos
- Institute of Biophysics, University of Aarhus, Denmark
| | | | | |
Collapse
|
7
|
Guerra Marichal M, Rodríguez del Castillo A, Martín Vasallo P, Battaner Arias E. Characterization of K(+)-dependent and K(+)-independent p-nitrophenylphosphatase activity of synaptosomes. Neurochem Res 1993; 18:751-8. [PMID: 8396213 DOI: 10.1007/bf00966769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
These experiments examined effects of several ligands on the K+ p-nitrophenylphosphatase activity of the (Na+,K+)-ATPase in membranes of a rat brain cortex synaptosomal preparation. K(+)-independent hydrolysis of this substrate by the synaptosomal preparation was studied in parallel; the rate of hydrolysis in the absence of K+ was approximately 75% less than that observed when K+ was included in the incubation medium. The response to the H+ concentrations was different: K(+)-independent activity showed a pH optimum around 6.5-7.0, while the K(+)-dependent activity was relatively low at this pH range. Ouabain (0.1 mM) inhibited K(+)-dependent activity 50%; a concentration 10 times higher did not produce any appreciable effect on the K(+)-independent activity. Na+ did not affect K(+)-independent activity at all, while the same ligand concentration inhibited sharply the K(+)-dependent activity; this inhibition was not competitive with the substrate, p-nitrophenyl phosphate. K(+)-dependent activity was stimulated by Mg2+ with low affinity (millimolar range), and 3 mM Mg2+ produced a slight stimulation of the activity in absence of K+, which could be interpreted as Mg2+ occupying the K+ sites. Ca2+ had no appreciable effect on the activity in the absence of K+. However, in the presence of K+ a sharp inhibition was found with all Ca2+ concentrations studied. ATP (0.5 mM) did not affect the K(+)-independent activity, but this nucleotide behaved as a competitive inhibitor to p-nitrophenylphosphate. Pi inhibited activity in the presence of K+, competitively to the substrate, so it could be considered as the second product of the reaction sequence.
Collapse
Affiliation(s)
- M Guerra Marichal
- Dpto. de Bioquímica y B. Molecular, Facultad Biología, Universidad La Laguna, Canary Islands, Spain
| | | | | | | |
Collapse
|
8
|
Robinson JD, Pratap PR. Indicators of conformational changes in the Na+/K(+)-ATPase and their interpretation. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1154:83-104. [PMID: 8389590 DOI: 10.1016/0304-4157(93)90018-j] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- J D Robinson
- Department of Pharmacology State University of New York Health Science Center, Syracuse 13210
| | | |
Collapse
|
9
|
Berberián G, Beaugé L. Phosphatase activity and potassium transport in liposomes with Na+,K(+)-ATPase incorporated. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1103:85-93. [PMID: 1309662 DOI: 10.1016/0005-2736(92)90060-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have used liposomes with incorporated pig kidney Na+,K(+)-ATPase to study vanadate sensitive K(+)-K+ exchange and net K+ uptake under conditions of acetyl- and p-nitrophenyl phosphatase activities. The experiments were performed at 20 degrees C. Cytoplasmic phosphate contamination was minimized with a phosphate trapping system based on glycogen, phosphorylase a and glucose-6-phosphate dehydrogenase. In the absence of Mg2+ (no phosphatase activity) 5-10 mM p-nitrophenyl phosphate slightly stimulated K(+)-K+ exchange whereas 5-10 mM acetyl phosphate did not. In the presence of 3 mM MgCl2 (high rate of phosphatase activity) acetyl phosphate did not affect K(+)-K+ exchange whereas p-nitrophenyl phosphate induced a greater stimulation than in the absence of Mg2+; a further addition of 1 mM ADP resulted in a 35-65% inhibition of phosphatase activity with an increase in K(+)-K+ exchange, which sometimes reached the levels seen with 5 mM phosphate and 1 mM ADP. The net K+ uptake in the presence of 3 mM MgCl2 was not affected by acetyl phosphate or p-nitrophenyl phosphate, whereas it was inhibited by 5 mM phosphate (with and without 1 mM ADP). The results of this work suggest that the phosphatase reaction is not by itself associated to K+ translocation. The ADP-dependent stimulation of K(+)-K+ exchange in the presence of phosphatase activity could be explained by the overlapping of one or more step/s of the reversible phosphorylation from phosphate with the phosphatase cycle.
Collapse
Affiliation(s)
- G Berberián
- División de Biofísica, Instituto de Investigación Médica Mercedes y Martín Ferreyra, Córdoba, Argentina
| | | |
Collapse
|
10
|
Berberián G, Beaugé L. Phosphorylation of Na,K-ATPase by acetyl phosphate and inorganic phosphate. Sidedness of Na+, K+ and nucleotide interactions and related enzyme conformations. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1063:217-25. [PMID: 1849429 DOI: 10.1016/0005-2736(91)90374-h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effects of K+, Na+ and nucleotides (ATP or ADP) on the steady-state phosphorylation from [32P]Pi (0.5 and 1 mM) and acetyl [32P]phosphate (AcP) (5 mM) were studied in membrane fragments and in proteoliposomes with partially purified pig kidney Na,K-ATPase incorporated. The experiments were carried out at 20 degrees C and pH 7.0. In broken membranes, the Pi-induced phosphoenzyme levels were reduced to 40% by 10 mM K+ and to 20% by 10 mM K+ plus 1 mM ADP (or ATP); in the presence of 50 mM Na+, no E-P formation was detected. On the other hand, with AcP, the E-P formation was reduced by 10 mM K+ but was 30% increased by 50 mM Na+. In proteoliposomes E-P formation from Pi was (i) not influenced by 5-10 mM K+cyt or 100 mM Na+ext, (ii) about 50% reduced by 5, 10 or 100 mM K+ext and (iii) completely prevented by 50 mM Na+cyt. Enzyme phosphorylation from AcP was 30% increased by 10 mM K+cyt or 50 mM Na+cyt; these E-P were 50% reduced by 10-100 mM K+ext. However, E-P formed from AcP without K+cyt or Na+cyt was not affected by extracellular K+. Fluorescence changes of fluorescein isothiocyanate labelled membrane fragments, indicated that E-P from AcP corresponded to an E2 state in the presence of 10 mM Na+ or 2 mM K+ but to an E1 state in the absence of both cations. With pNPP, the data indicated an E1 state in the absence of Na+ and K+ and also in the presence of 20 mM Na+, and an E2 form in the presence of 5 mM K+. These results suggest that, although with some similarities, the reversible Pi phosphorylation and the phosphatase activity of the Na,K-ATPase do not share the whole reaction pathway.
Collapse
Affiliation(s)
- G Berberián
- División de Biofisica, Instituto de Investigación Médica Mercedes y Martín Ferreyra, Córdoba, Argentina
| | | |
Collapse
|
11
|
Robinson JD, Pratap PR. Na+/K(+)-ATPase: modes of inhibition by Mg2+. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1061:267-78. [PMID: 1847828 DOI: 10.1016/0005-2736(91)90292-g] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Adding 15 mM free Mg2+ decreased Vmax of the Na+/K(+)-ATPase reaction. Mg2+ also decreased the K0.5 for K+ activation, as a mixed inhibitor, but the increased inhibition at higher K+ concentrations diminished as the Na+ concentration was raised. Inhibition was greater with Rb+ but less with Li+ when these cations substituted for K+ at pH 7.5, while at pH 8.5 inhibition was generally less and essentially the same with all three cations: implying an association between inhibition and ion occlusion. On the other hand, Mg2+ increased the K0.5 for Na(+)-activation of the Na+/K(+)-ATPase and Na(+)-ATPase reactions, as a mixed inhibitor. Changing incubation pH or temperature, or adding dimethylsulfoxide affected inhibition by Mg2+ and K0.5 for Na+ diversely. Presteady-state kinetic studies on enzyme phosphorylation, however, showed competition between Mg2+ and Na+. In the K(+)-phosphatase reaction catalyzed by this enzyme Mg2+ was a (near) competitor toward K+. Adding Na+ with K+ inhibited phosphatase activity, but under these conditions 15 mM Mg2+ stimulated rather than inhibited; still higher Mg2+ concentrations then inhibited with K+ plus Na+. Similar stimulation and inhibition occurred when Mn2+ was substituted for Mg2+, although the concentrations required were an order of magnitude less. In all these experiments no ionic substitutions were made to maintain ionic strength, since alternative cations, such as choline, produced various specific effects themselves. Kinetic analyses, in terms of product inhibition by Mg2+, require Mg2+ release at multiple steps. The data are accommodated by a scheme for the Na+/K(+)-ATPase with three alternative points for release: before MgATP binding, before K+ release and before Na+ binding. The latter alternatives necessitate two Mg2+ ions bound simultaneously to the enzyme, presumably to divalent cation-sites associated with the phosphate and the nucleotide domains of the active site.
Collapse
Affiliation(s)
- J D Robinson
- Department of Pharmacology, State University of New York, Syracuse 13210
| | | |
Collapse
|
12
|
Barrabin H, Fontes CF, Scofano HM, Nørby JG. Phosphorylation of Na+, K(+)-ATPase by ATP in the presence of K+ and dimethylsulfoxide but in the absence of Na+. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1023:266-73. [PMID: 2158351 DOI: 10.1016/0005-2736(90)90422-k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purified Na+, K(+)-ATPase was phosphorylated by [gamma-32P]ATP in a medium containing dimethylsulfoxide and 5 mM Mg2+ in the absence of Na+ and K+. Addition of K+ increased the phosphorylation levels from 0.4 nmol phosphoenzyme/mg of protein in the absence of K+ to 1.0 nmol phosphoenzyme/mg of protein in the presence of 0.5 mM K+. Higher velocities of enzyme phosphorylation were observed in the presence of 0.5 mM K+. Increasing K+ concentrations up to 100 mM lead to a progressive decrease in the phosphoenzyme (EP) levels. Control experiments, that were performed to determine the contribution to EP formation from the Pi inevitably present in the assays, showed that this contribution was of minor importance except at high (20-100 mM) KCl concentrations. The pattern of EP formation and its KCl dependence is thus characteristic for the phosphorylation of the enzyme by ATP. In the absence of Na+ and with 0.5 mM K+, optimal levels (1.0 nmol EP/mg of protein) were observed at 20-40% dimethylsulfoxide and pH 6.0 to 7.5. Addition of Na+ up to 5 mM has no effect on the phosphoenzyme level under these conditions. At 100 mM Na+ or higher the full capacity of enzyme phosphorylation (2.2 nmol EP/mg of protein) was reached. Phosphoenzyme formed from ATP in the absence of Na+ is an acylphosphate-type compound as shown by its hydroxylamine sensitivity. The phosphate radioactivity was incorporated into the alpha-subunit of the Na+, K(+)-ATPase as demonstrated by acid polyacrylamide gel electrophoresis followed by autoradiography.
Collapse
Affiliation(s)
- H Barrabin
- Departamento de Bioquímica, ICB, CCS, Universidade Federal do Rio de Janeiro, Brasil
| | | | | | | |
Collapse
|
13
|
Guerra M, Robinson JD, Steinberg M. Differential effects of substrates on three transport modes of the Na+/K(+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1023:73-80. [PMID: 2156564 DOI: 10.1016/0005-2736(90)90011-c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
With a purified Na+/K(+)-ATPase preparation reconstituted into phospholipid vesicles, Na+/K+, Na+/Na+, and uncoupled Na+ transport were studied using three nucleotides and five substrates of the K(+)-phosphatase reaction that this enzyme also catalyzes. For Na+/K+ exchange, CTP was half as effective as ATP and GTP one-twentieth; of the phosphatase substrates only carbamyl phosphate and 3-O-methylfluorescein phosphate produced significant transport and at merely 1% of the rate with ATP. For Na+/Na+ exchange, comparable rates of transport were produced by ATP, CTP, carbamyl phosphate and acetyl phosphate, although the actual rate of transport with ATP was only 2.4% of that for Na+/K+ exchange; slower rates occurred with GTP (69%), 3-O-methylfluorescein phosphate (51%), and nitrophenyl phosphate (33%). Only umbelliferone phosphate was ineffective. For uncoupled Na+ transport results similar to those for Na+/Na+ exchange were obtained, but the actual rate of transport was still slower, 1.4% of that for Na+/K+ exchange. Thus, not only nucleotides but a variety of phosphatase substrates (which are phosphoric acid mixed anhydrides) can phosphorylate the enzyme at the high-affinity substrate site to form the E1P intermediate of the reaction sequence. Oligomycin inhibited Na+/K+ exchange with ATP by half, but with carbamyl phosphate not at all; with CTP the inhibition was intermediate, one-fourth. By contrast, oligomycin inhibited Na+/Na+ exchange by one-fifth with all three substrates. A quantitative, steady-state kinetic model accounts for the relative magnitudes of Na+/K+ and Na+/Na+ exchanges with ATP, CTP, and carbamyl phosphate as substrates, as well as the extents of inhibition by oligomycin. The model requires that even when Na+ substitutes for K+ a slow step in the reaction sequence is the E2 to E1 conformational transition.
Collapse
Affiliation(s)
- M Guerra
- Department of Pharmacology, SUNY Health Science Center, Syracuse 13210
| | | | | |
Collapse
|
14
|
Robinson JD. Solvent effects on substrate and phosphate interactions with the (Na+ + K+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 994:95-103. [PMID: 2535941 DOI: 10.1016/0167-4838(89)90148-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
(Na+ + K+)-ATPase activity of a dog kidney enzyme preparation was markedly inhibited by 10-30% (v/v) dimethyl sulfoxide (Me2SO) and ethylene glycol (Et(OH)2); moreover, Me2SO produced a pattern of uncompetitive inhibition toward ATP. However, K+-nitrophenylphosphatase activity was stimulated by 10-20% Me2SO and Et(OH)2 but was inhibited by 30-50%. Me2SO decreased the Km for this substrate but had little effect on the Vmax below 30% (at which concentration Vmax was then reduced). Me2SO also reduced the Ki for Pi and acetyl phosphate as competitors toward nitrophenyl phosphate but increased the Ki for ATP, CTP and 2-O-methylfluorescein phosphate as competitors. Me2SO inhibited K+-acetylphosphatase activity, although it also reduced the Km for that substrate. Finally, Me2SO increased the rate of enzyme inactivation by fluoride and beryllium. These observations are interpreted in terms of the E1P to E2P transition of the reaction sequence being associated with an increased hydrophobicity of the active site, and of Me2SO mimicking such effects by decreasing water activity: (i) primarily to stabilize the covalent E2P intermediate, through differential solvation of reactants and products, and thereby inhibiting the (Na+ + K+)-ATPase reaction and acting as a dead-end inhibitor to produce the pattern of uncompetitive inhibition; inhibiting the K+-acetylphosphatase reaction that also passes through an E2P intermediate; but not inhibiting (at lower Me2SO concentrations) the K+-nitrophenylphosphatase reaction that does not pass through such an intermediate; and (ii) secondarily to favor partitioning of Pi and non-nucleotide phosphates into the hydrophobic active site, thereby decreasing the Km for nitrophenyl phosphate and acetyl phosphate, the Ki for Pi and acetyl phosphate in the K+-nitrophenylphosphatase reaction, accelerating inactivation by fluoride and beryllium acting as phosphate analogs, and, at higher concentrations, inhibiting the K+-nitrophenylphosphatase reaction by stabilizing the non-covalent E2.P intermediate of that reaction. In addition, Me2SO may decrease binding at the adenine pocket of the low-affinity substrate site, represented as an increased Ki for ATP, CTP and 3-O-methylfluorescein phosphate.
Collapse
Affiliation(s)
- J D Robinson
- Department of Pharmacology, SUNY Health Science Center, Syracuse 13210
| |
Collapse
|
15
|
Davis RL, Robinson JD. Characteristics of 3-O-methylfluorescein phosphate hydrolysis by the (Na+ + K+)-ATPase. J Bioenerg Biomembr 1988; 20:571-84. [PMID: 2851008 DOI: 10.1007/bf00768920] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
With 3-O-methylfluorescein phosphate (3-OMFP) as substrate for the phosphatase reaction catalyzed by the (Na+ + K+)-ATPase, a number of properties of that reaction differ from those with the common substrate p-nitrophenyl phosphate (NPP): the Km is 2 orders of magnitude less and the Vmax is two times greater, and dimethyl sulfoxide (Me2SO) inhibits rather than stimulates. In addition, reducing the incubation pH decreases both the Km and Vmax for K+-activated 3-OMFP hydrolysis as well as the K0.5 for K+ activation. However, reducing the incubation pH increases inhibition by Pi and the Vmax for 3-OMFP hydrolysis in the absence of K+. When choline chloride is varied reciprocally with NaCl to maintain the ionic strength constant, NaCl inhibits K+-activated 3-OMFP hydrolysis modestly with 10 mM KCl, but stimulates (in the range 5-30 mM NaCl) with suboptimal (0.35 mM) KCl. In the absence of K+, however, NaCl stimulates increasingly over the range 5-100 mM when the ionic strength is held constant. These observations are interpreted in terms of (a) differential effects of the ligands on enzyme conformations; (b) alternative reaction pathways in the absence of Na+, with a faster, phosphorylating pathway more readily available to 3-OMFP than to NPP; and (c) a (Na+ + K+)-phosphatase pathway, most apparent at suboptimal K+ concentrations, that is also more readily available to 3-OMFP.
Collapse
Affiliation(s)
- R L Davis
- Department of Pharmacology, SUNY Health Science Center, Syracuse 13210
| | | |
Collapse
|
16
|
|
17
|
Campos M, Berberián G, Beaugé L. Phosphatase activity of Na+/K+-ATPase. Enzyme conformations from ligands interactions and Rb occlusion experiments. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 940:43-50. [PMID: 2835101 DOI: 10.1016/0005-2736(88)90006-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The present work compares the effects of several ligands (phosphatase substrates, MgCl2, RbCl and inorganic phosphate) and temperature on the phosphatase activity and the E2(Rb) occluded conformation of Na+/K+-ATPase. Cooling from 37 degrees C to 20 degrees C and 0 degrees C (hydrolysis experiments) or from 20 degrees C to 0 degrees C (occlusion experiments) had the following consequences: (i) dramatically reduced the Vmax for p-nitrophenyl phosphate and acetyl phosphate hydrolysis but it produced little or no changes in the Km for the substrates; (ii) led to a 5-fold drop in the Km for the inorganic phosphate-induced di-occlusion of E2(Rb); (iii) reduced the K0.5 and curve sigmoidicity of the Rb-stimulated hydrolysis of p-nitrophenyl phosphate and acetyl phosphate and the Rb-promoted E2(Rb) formation. At 20 degrees C, in the presence of 1 mM RbCl and no Mg2+, acetyl phosphate did not affect E2(Rb); with 3 mM MgCl2, acetyl phosphate stimulated a release of Rb from E2(Rb) both in the presence and absence of RbCl in the incubation mixture. As a function of acetyl phosphate concentration the Km for iRb release was indistinguishable from the Km found for stimulation of hydrolysis and enzyme phosphorylation under identical experimental conditions; in addition, the extrapolated di-occluded fraction corresponding to maximal hydrolysis was not different from 100%. These results indicate that although E2(K) might be an intermediary in the phosphatase reaction, the most abundant enzyme conformation during phosphatase turnover is E2 which has no K+ occluded in it. The ligand interactions associated to phosphatase activity do not support an equivalence of this reaction with the dephosphorylation step in the Na+ + K+-dependent ATP hydrolysis; on the other hand, there are similarities with the reversible binding of inorganic phosphate in the presence of Mg2+ and K+ ions.
Collapse
Affiliation(s)
- M Campos
- Divisíon de Biofisica, Instituto M. y M. Ferreyra, Córdoba, Argentina
| | | | | |
Collapse
|
18
|
Davis RL, Robinson JD. Substrate sites of the (Na+ + K+)-ATPase: pertinence of the adenine and fluorescein binding sites. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 953:26-36. [PMID: 2829969 DOI: 10.1016/0167-4838(88)90006-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The (Na+ + K+)-activated ATPase catalyzes the K+-activated hydrolysis of 3-O-methylfluorescein phosphate (3OMFP) with a Km of 50 microM, nearly two orders of magnitude lower than the Km for nitrophenyl phosphate, 3 mM. Both ATP and nitrophenyl phosphate are competitors toward 3OMFP with Ki values corresponding to their Km values (for ATP that at the low-affinity sites of the E2 conformation). Enzyme treated with fluorescein isothiocyanate (FITC) such that 60% of the (Na+ + K+)-ATPase activity is lost still hydrolyzes both 3OMFP and nitrophenyl phosphate: the apparent Km values are increased less than 2-fold and the Vmax is unaffected. ATP still inhibits these K+-phosphatase reactions of the FITC-treated enzyme, and this inhibition can exceed the 40% of residual (Na+ + K+)-ATPase activity. Evaluation of a kinetic model indicates that the Ki for ATP is increased about an order of magnitude by FITC-binding. Similar results obtain with trinitrophenyl-ATP (TNP-ATP) as inhibitor, in this case with Ki values in the micromolar range. Finally, FITC treatment increases K+-activated ADPase activity. These observations are interpreted as the fluorescein ring of 3OMFP binding to the adenine pocket of the substrate site, thereby conferring high affinity, just as the fluorescein ring of FITC binding to the adenine pocket in the E1 conformation permits specific linkage of the isothiocyanate chain to a particular lysine, Lys-501. Then, coincident with the transition to the E2 conformation, which bears the low-affinity site for ATP and which catalyzes the K+-phosphatase reaction, the FITC molecule tethered to Lys-501 is pulled from the adenine pocket: allowing 3OMFP and ADP to bind as substrates and ATP and TNP-ATP as inhibitors, albeit in altered conformation. The E1 to E2 transition thus involves not only a change from high to low affinity for ATP, but also a distortion of the adenine pocket and the orientation between Lys-501 and Asp-369, the residue associated with catalysis.
Collapse
Affiliation(s)
- R L Davis
- Department of Pharmacology, State University of New York, Health Science Center, Syracuse 12310
| | | |
Collapse
|
19
|
|
20
|
Robinson JD, Leach CA, Davis RL, Robinson LJ. Reaction sequences for (Na+ + K+)-dependent ATPase hydrolytic activities: new quantitative kinetic models. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 872:294-304. [PMID: 3015217 DOI: 10.1016/0167-4838(86)90283-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To delineate better the reaction sequence of the (Na+ + K+)-ATPase and illuminate properties of the active site, kinetic data were fitted to specific quantitative models. For the (Na+ + K+)-ATPase reaction, double-reciprocal plots of velocity against ATP (in the millimolar range), with a series of fixed KCl concentrations, are nearly parallel, in accord with the ping pong kinetics of ATP binding at the low-affinity sites only after Pi release. However, contrary to requirements of usual formulations, Pi is not a competitor toward ATP. A new steady-state kinetic model accommodates these data quantitatively, requiring that under usual assay conditions most of the enzyme activity follows a sequence in which ATP adds after Pi release, but also requiring a minor alternative pathway with ATP adding after K+ binds but before Pi release. The fit to the data also reveals that Pi binds nearly as rapidly to E2 X K X ATP as to E2 X K, whereas ATP binds quite slowly to E2 X P X K: the site resembles a cul-de-sac with distal ATP and proximal Pi sites. For the K+-nitrophenyl phosphatase reaction also catalyzed by this enzyme, the apparent affinities for both substrate and Pi (as inhibitor) decrease with higher KCl concentrations, and both Pi and TNP-ATP appear to be competitive inhibitors toward substrate with 10 mM KCl but noncompetitive inhibitors with 1 mM KCl. These data are accommodated quantitatively by a steady-state model allowing cyclic hydrolytic activity without obligatory release of K+, and with exclusive binding of substrate vs. either Pi or TNP-ATP. The greater sensitivity of the phosphatase reaction to both Pi and arsenate is attributable to the weaker binding by the occluded-K+ enzyme form occurring in the (Na+ + K+)-ATPase reaction sequence. The steady-state models are consistent with cyclical interconversion of high- and low-affinity substrate sites accompanying E1/E2 transitions, with distortion to low-affinity sites altering not only affinity and route of access but also separating the adenine- and phosphate-binding regions, the latter serving in the E2 conformation as the active site for the phosphatase reaction.
Collapse
|