1
|
Vilchez AC, Villasuso AL, Wilke N. Biophysical Properties of Lipid Membranes from Barley Roots during Low-Temperature Exposure and Recovery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11664-11674. [PMID: 37561912 DOI: 10.1021/acs.langmuir.3c01244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Glycerolipid remodeling, a dynamic mechanism for plant subsistence under cold stress, has been posited to affect the biophysical properties of cell membranes. In barley roots, remodeling has been observed to take place upon exposure to chilling stress and to be partially reverted during stress relief. In this study, we explored the biophysical characteristics of membranes formed with lipids extracted from barley roots subjected to chilling stress, or during a subsequent short- or long-term recovery. Our aim was to determine to what extent barley roots were able to offset the adverse effects of temperature on their cell membranes. For this purpose, we analyzed the response of the probe Laurdan inserted in bilayers of different extracts, the zeta potential of liposomes, and the behavior of Langmuir monolayers upon compression. We found important changes in the order of water molecules, which is in agreement with the changes in the unsaturation index of lipids due to remodeling. Regarding Langmuir monolayers, we found that films from all the extracts showed a reorganization at a surface pressure that depends on temperature. This reorganization occurred with an increase in entropy for extracts from control plants and without entropy changes for extracts from acclimated plants. In summary, some membrane properties were recovered after the stress, while others were not, suggesting that the membrane biophysical properties play a role in the mechanism of plant acclimation to chilling. These findings contribute to our understanding of the impact of lipid remodeling on biophysical modifications in plant roots.
Collapse
Affiliation(s)
- Ana Carolina Vilchez
- CONICET, Universidad Nacional de Río Cuarto, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, X5804BYA Córdoba, Argentina
- FCEFQyN, Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, X5804BYA Córdoba, Argentina
| | - Ana Laura Villasuso
- CONICET, Universidad Nacional de Río Cuarto, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, X5804BYA Córdoba, Argentina
- FCEFQyN, Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, X5804BYA Córdoba, Argentina
| | - Natalia Wilke
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| |
Collapse
|
2
|
Alvarez AB, Rodríguez PEA, Fidelio GD. Gangliosides smelt nanostructured amyloid Aβ(1-40) fibrils in a membrane lipid environment. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183749. [PMID: 34506795 DOI: 10.1016/j.bbamem.2021.183749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/03/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Gangliosides induced a smelting process in nanostructured amyloid fibril-like films throughout the surface properties contributed by glycosphingolipids when mixed with 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC)/Aβ(1-40) amyloid peptide. We observed a dynamical smelting process when pre-formed amyloid/phospholipid mixture is laterally mixed with gangliosides. This particular environment, gangliosides/phospholipid/Aβ(1-40) peptide mixed interfaces, showed complex miscibility behavior depending on gangliosides content. At 0% of ganglioside covered surface respect to POPC, Aβ(1-40) peptide forms fibril-like structure. In between 5 and 15% of gangliosides, the fibrils dissolve into irregular domains and they disappear when the proportion of gangliosides reach the 20%. The amyloid interfacial dissolving effect of gangliosides is taken place at lateral pressure equivalent to the organization of biological membranes. Domains formed at the interface are clearly evidenced by Brewster Angle Microscopy and Atomic Force Microscopy when the films are transferred onto a mica support. The domains are thioflavin T (ThT) positive when observed by fluorescence microscopy. We postulated that the smelting process of amyloids fibrils-like structure at the membrane surface provoked by gangliosides is a direct result of a new interfacial environment imposed by the complex glycosphingolipids. We add experimental evidence, for the first time, how a change in the lipid environment (increase in ganglioside proportion) induces a rapid loss of the asymmetric structure of amyloid fibrils by a simple modification of the membrane condition (a more physiological situation).
Collapse
Affiliation(s)
- Alain Bolaño Alvarez
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Universidad Nacional de Córdoba, Argentina
| | | | - Gerardo D Fidelio
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Universidad Nacional de Córdoba, Argentina.
| |
Collapse
|
3
|
Mottola M, Caruso B, Perillo MA. Langmuir films at the oil/water interface revisited. Sci Rep 2019; 9:2259. [PMID: 30783164 PMCID: PMC6381208 DOI: 10.1038/s41598-019-38674-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/07/2019] [Indexed: 11/09/2022] Open
Abstract
We studied monomolecular layers at the oil/water interface (O/Wint) in a Langmuir interfacial trough using egg-yolk phosphatidylcholine (EPC) (the model phospholipid) and Vaseline (VAS) as oil phase. The temporal dynamics in the surface pressure (π) evolution depended on the method (spreading/adsorption) used for monolayers preparation and reflected the different distribution of EPC between all the system compartments (bulk phases and interfaces). We distinguished between EPC located either stable at the interface or hopping between the interface and bulk phases. The size order of the apparent mean molecular area, at constant π, of EPC at different interfaces (EPCO/W > EPC/VAS0.02;A/W > EPCA/W), suggested that VAS molecules intercalated between the hydrocarbon chains of EPCO/W, at a molar fraction xVAS > 0.02. However, EPC/VAS0.02;A/W showed the highest compressional free energy. This leaded us to study the EPC/VAS0.02 mixture at A/W by Brewster Angle Microscopy (BAM), finding that upon compression VAS segregated over the monolayer, forming non-coalescent lenses (as predicted by the spreading coefficient S = −13 mN/m) that remained after decompression and whose height changed (increase/decrease) accompanied the compression/decompression cycle. At the O/Wint, while some VAS molecules remained at the interface up to the collapse, others squeezed out towards the VAS bulk phase with an energy requirement lower than towards the air.
Collapse
Affiliation(s)
- Milagro Mottola
- Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Depto. de Química, Cátedra de Química Biológica. Córdoba, Argentina. Av. Vélez Sarsfield 1611, X5016GCA, Córdoba, Argentina.,CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT). Córdoba, Argentina. Av. Vélez Sarsfield 1611, 5016, Córdoba, Argentina
| | - Benjamín Caruso
- Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Depto. de Química, Cátedra de Química Biológica. Córdoba, Argentina. Av. Vélez Sarsfield 1611, X5016GCA, Córdoba, Argentina.,CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT). Córdoba, Argentina. Av. Vélez Sarsfield 1611, 5016, Córdoba, Argentina
| | - Maria A Perillo
- Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Depto. de Química, Cátedra de Química Biológica. Córdoba, Argentina. Av. Vélez Sarsfield 1611, X5016GCA, Córdoba, Argentina. .,CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT). Córdoba, Argentina. Av. Vélez Sarsfield 1611, 5016, Córdoba, Argentina.
| |
Collapse
|
4
|
Fanani ML, Busto JV, Sot J, Abad JL, Fabrías G, Saiz L, Vilar JMG, Goñi FM, Maggio B, Alonso A. Clearly Detectable, Kinetically Restricted Solid-Solid Phase Transition in cis-Ceramide Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11749-11758. [PMID: 30183303 DOI: 10.1021/acs.langmuir.8b02198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sphingosine [(2 S,3 R,4 E)-2-amino-4-octadecene-1,3-diol] is the most common sphingoid base in mammals. Ceramides are N-acyl sphingosines. Numerous small variations on this canonical structure are known, including the 1-deoxy, the 4,5-dihydro, and many others. However, whenever there is a Δ4 double bond, it adopts the trans (or E) configuration. We synthesized a ceramide containing 4 Z-sphingosine and palmitic acid ( cis-pCer) and studied its behavior in the form of monolayers extended on an air-water interface. cis-pCer acted very differently from the trans isomer in that, upon lateral compression of the monolayer, a solid-solid transition was clearly observed at a mean molecular area ≤44 Å2·molecule-1, whose characteristics depended on the rate of compression. The solid-solid transition, as well as states of domain coexistence, could be imaged by atomic force microscopy and by Brewster-angle microscopy. Atomistic molecular dynamics simulations provided results compatible with the experimentally observed differences between the cis and trans isomers. The data can help in the exploration of other solid-solid transitions in lipids, both in vitro and in vivo, that have gone up to now undetected because of their less obvious change in surface properties along the transition, as compared to cis-pCer.
Collapse
Affiliation(s)
| | - Jon V Busto
- Instituto Biofisika (CSIC, UPV/EHU) , B. Sarriena s/n , 48940 Leioa , Spain
- Departamento de Bioquímica , Universidad del País Vasco , B. Sarriena s/n , 48940 Leioa , Spain
| | - Jesús Sot
- Instituto Biofisika (CSIC, UPV/EHU) , B. Sarriena s/n , 48940 Leioa , Spain
| | - José L Abad
- Research Unit on Bioactive Molecules (RUBAM), Departamento de Química Biológica , Instituto de Química Avanzada de Catalunya (IQAC-CSIC) , Barcelona 08034 , Spain
| | - Gemma Fabrías
- Research Unit on Bioactive Molecules (RUBAM), Departamento de Química Biológica , Instituto de Química Avanzada de Catalunya (IQAC-CSIC) , Barcelona 08034 , Spain
- Centro de Investigación Biomédica en Red (CIBERehd) , 28029 Madrid , Spain
| | - Leonor Saiz
- Modeling of Biological Networks and Systems Therapeutics Laboratory, Department of Biomedical Engineering , University of California , 451 East Health Sciences Drive , Davis , California 95616 , United States
- Institute for Medical Engineering & Science , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Jose M G Vilar
- Instituto Biofisika (CSIC, UPV/EHU) , B. Sarriena s/n , 48940 Leioa , Spain
- Departamento de Bioquímica , Universidad del País Vasco , B. Sarriena s/n , 48940 Leioa , Spain
- IKERBASQUE, Basque Foundation for Science , 48011 Bilbao , Spain
| | - Félix M Goñi
- Instituto Biofisika (CSIC, UPV/EHU) , B. Sarriena s/n , 48940 Leioa , Spain
- Departamento de Bioquímica , Universidad del País Vasco , B. Sarriena s/n , 48940 Leioa , Spain
| | | | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU) , B. Sarriena s/n , 48940 Leioa , Spain
- Departamento de Bioquímica , Universidad del País Vasco , B. Sarriena s/n , 48940 Leioa , Spain
| |
Collapse
|
5
|
Fanani ML, Maggio B. The many faces (and phases) of ceramide and sphingomyelin I - single lipids. Biophys Rev 2017; 9:589-600. [PMID: 28815463 DOI: 10.1007/s12551-017-0297-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022] Open
Abstract
Ceramides, the simplest kind of two-chained sphingolipids, contain a single hydroxyl group in position 1 of the sphingoid base. Sphingomyelins further contain a phosphocholine group at the OH of position 1 of ceramide. Ceramides and sphingomyelins show a variety of species depending on the fatty acyl chain length, hydroxylation, and unsaturation. Because of the relatively high transition temperature of sphingomyelin compared to lecithin and, particularly, of ceramides with 16:0-18:0 saturated chains, a widespread idea on their functional importance refers to formation of rather solid domains enriched in sphingomyelin and ceramide. Frequently, and especially in the cell biology field, these are generally (and erroneously) assumed to occur irrespective on the type of N-acyl chain in these lipids. This is because most studies indicating such condensed ordered domains employed sphingolipids with acyl chains with 16 carbons while scarce attention has been focused on the influence of the N-acyl chain on their surface properties. However, abundant evidence has shown that variations of the N-acyl chain length in ceramides and sphingomyelins markedly affect their phase state, interfacial elasticity, surface topography, electrostatics and miscibility and that, even the usually conceived "condensed" sphingolipids and many of their mixtures, may exhibit liquid-like expanded states. This review is a summarized overview of our work and of related others on some facts regarding membranes composed of single molecular species of ceramide and sphingomyelin. A second part is dedicated to discuss the miscibility properties between species of sphingolipids that differ in N-acyl and oligosaccharide chains.
Collapse
Affiliation(s)
- María Laura Fanani
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - Bruno Maggio
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
6
|
Dupuy F, Fernández Bordín S, Maggio B, Oliveira R. Hexagonal phase with ordered acyl chains formed by a short chain asymmetric ceramide. Colloids Surf B Biointerfaces 2017; 149:89-96. [DOI: 10.1016/j.colsurfb.2016.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/11/2016] [Accepted: 10/05/2016] [Indexed: 01/03/2023]
|
7
|
Dupuy FG, Maggio B. N-Acyl Chain in Ceramide and Sphingomyelin Determines Their Mixing Behavior, Phase State, and Surface Topography in Langmuir Films. J Phys Chem B 2014; 118:7475-7487. [PMID: 24949924 DOI: 10.1021/jp501686q] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sphingolipids are membrane lipids composed by a long chain aminediol base, usually sphingosine, with a N-linked fatty acyl chain whose quality depends on the membrane type. The effect of length and unsaturation of the N-acyl chain on the mixing behavior of different sphingolipids has scarcely been studied, and in this work this issue is addressed employing Langmuir monolayers at the air-water interface, in order to assess the surface mixing in binary mixtures of different species of sphingomyelins and ceramides. The dependence on the monolayer composition of the mean molecular area, perpendicular dipole moment, domain segregation, and surface topography, as well as the film elasticity and optical thickness were studied. The results indicate that composition-dependent favorable interactions among sphingomyelin and ceramide occur as a consequence of complementary lateral packing and increased acyl chain ordering; the phase state of the components appears as a major factor determining miscibility among sphingomyelins and ceramides even in cases where the lipids have a considerable hydrocarbon chain length mismatch.
Collapse
Affiliation(s)
- Fernando G Dupuy
- Centro de Investigaciones en Química Biológica de Córdoba CIQUIBIC-CONICET/UNC, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba . Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Bruno Maggio
- Centro de Investigaciones en Química Biológica de Córdoba CIQUIBIC-CONICET/UNC, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba . Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| |
Collapse
|
8
|
Peñalva DA, Wilke N, Maggio B, Aveldaño MI, Fanani ML. Surface behavior of sphingomyelins with very long chain polyunsaturated fatty acids and effects of their conversion to ceramides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4385-4395. [PMID: 24678907 DOI: 10.1021/la500485x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Molecular species of sphingomyelin (SM) with nonhydroxy (n) and 2-hydroxy (h) very long chain polyunsaturated fatty acids (n- and h-28:4, 30:5, and 32:5) abound in rat spermatogenic cells and spermatozoa. These SMs are located on the sperm head, where they are converted to the corresponding ceramides (Cer) after the completion of the acrosomal reaction, as induced in vitro. The aim of this study was to look into the surface properties of these unique SM species and how these properties change by the SM → Cer conversion. After isolation by HPLC, these SMs were organized in Langmuir films and studied alone, in combination with different proportions of Cer, and during their conversion to Cer by sphingomyelinase. Compression isotherms for all six SMs under study were compatible with a liquid-expanded (LE) state and showed large molecular areas. Only the longest SMs (n-32:5 and h-32:5 SM) underwent a phase transition upon cooling. Interestingly, the abundant h-28:4 Cer exhibited a highly compressible liquid-condensed (LC) phase compatible with a high conformational freedom of Cer molecules but with the characteristic low diffusional properties of the LC phase. In mixed films of h-28:4 SM/h-28:4 Cer, the components showed favorable mixing in the LE phase. The monolayer exhibited h-28:4 Cer-rich domains both in premixed films and when formed by the action of sphingomyelinase on pure h-28:4 SM films. Whereas the SMs from sperm behaved in a way similar to that of shorter acylated SMs, the corresponding Cers showed atypical rheological properties that may be relevant to the membrane structural rearrangements that take place on the sperm head after the completion of the acrosomal reaction.
Collapse
Affiliation(s)
- Daniel A Peñalva
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , 8000 Bahía Blanca, Argentina
| | | | | | | | | |
Collapse
|
9
|
WÖrner M, Greiner G, Rau H, Rahmann H, Probst W. Adsorptions- und Grenzflächenverhalten von Gangliosiden an der Phasengrenze Quecksilber/Elektrolyt. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/bbpc.198800140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Peñalva DA, Oresti GM, Dupuy F, Antollini SS, Maggio B, Aveldaño MI, Fanani ML. Atypical surface behavior of ceramides with nonhydroxy and 2-hydroxy very long-chain (C28–C32) PUFAs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:731-8. [DOI: 10.1016/j.bbamem.2013.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/07/2013] [Accepted: 11/26/2013] [Indexed: 01/13/2023]
|
11
|
Conde MM, Conde O, Trillo JM, Miñones J. Interactions between Polymers and Lipid Monolayers at the Air/Water Interface: Surface Behavior of Poly(methyl methacrylate)−Cholesterol Mixed Films. J Phys Chem B 2010; 114:10774-81. [DOI: 10.1021/jp103422g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Miñones Conde
- Department of Physical Chemistry, Faculty of Pharmacy, and Department of Optometry, School of Optics and Optometry, University of Santiago de Compostela, Campus Sur, 15706-Santiago de Compostela, Spain
| | - O. Conde
- Department of Physical Chemistry, Faculty of Pharmacy, and Department of Optometry, School of Optics and Optometry, University of Santiago de Compostela, Campus Sur, 15706-Santiago de Compostela, Spain
| | - J. M. Trillo
- Department of Physical Chemistry, Faculty of Pharmacy, and Department of Optometry, School of Optics and Optometry, University of Santiago de Compostela, Campus Sur, 15706-Santiago de Compostela, Spain
| | - J. Miñones
- Department of Physical Chemistry, Faculty of Pharmacy, and Department of Optometry, School of Optics and Optometry, University of Santiago de Compostela, Campus Sur, 15706-Santiago de Compostela, Spain
| |
Collapse
|
12
|
Fanani ML, Maggio B. Phase state and surface topography of palmitoyl-ceramide monolayers. Chem Phys Lipids 2010; 163:594-600. [PMID: 20433820 DOI: 10.1016/j.chemphyslip.2010.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 11/16/2022]
Abstract
In cell biology (and in many biophysical) studies there is a natural tendency to consider ceramide as a highly condensed, solid-type lipid conferring rigidity and close packing to biomembranes. In the present work we advanced the understanding of the phase behavior of palmitoyl-ceramide restricted to a planar interface using Langmuir monolayers under strictly controlled and known surface packing conditions. Surface pressure-molecular area isotherms were complemented with molecular area-temperature isobars and with observations of the surface topography by Brewster Angle Microscopy. The results described herein indicate that palmitoyl-ceramide can exhibit expanded, as well as condensed phase states. Formation of three phases was found, depending on the surface pressure and temperature: a solid (1.80nm thick), a liquid-condensed (1.73nm thick, likely tilted) and a liquid-expanded (1.54nm thick) phase over the temperature range 5-62 degrees C. A large hysteretic behavior is observed for the S phase monolayer that may indicate high resistance to domain boundary deformation. A second (or higher) order S-->LC phase transition is observed at about room temperature while a first order LC-->LE transition occurs in a range of temperature encompassing the physiological one (observed above 30 degrees C at low surface pressure). This phase behavior broadens the view of ceramide as a type of lipid not-always-rigid but able to exhibit polymorphic properties.
Collapse
Affiliation(s)
- Maria Laura Fanani
- Departamento de Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Facultad de Ciencias Químicas, CONICET, Univ. Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | | |
Collapse
|
13
|
Arnulphi C, Martin CA, Fidelio GD. Mixed lipid aggregates containing gangliosides impose different2H-NMR dynamical parameters on water environment depending on their lipid composition. Mol Membr Biol 2009; 20:319-27. [PMID: 14578047 DOI: 10.1080/0968768031000122539] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Water dynamics in samples of ceramide tetrasaccharide (Gg4Cer) vesicles and GM1 ganglioside micelles at 300:1 water/lipid mole ratio were studied by using deuterium nuclear magnetic resonance (2H-NMR). GM1 imposes a different restriction on water dynamics that is insensitive to temperatures either above or below its phase transition temperature or below the freezing point of water. The calculated correlation times are in the range of 10(-10) s, typical of water molecules near to the polar groups. Pure GM1 micelles have two distinct water microenvironments dynamically characterized. Their dynamic parameters remain constant with temperature ranging from -18 to 32 degrees C, but the amount of strongly associated water is modified. By contrast, a mixture of single soluble carbohydrates corresponding to GM1 polar head group does not preserve the dynamic parameters of water hydration when the temperature is varied. Incorporation of cholesterol or lysophosphatidylcholine into GM1 micelles substantially increases the mobility of water molecules compared with that found in pure GM1 micelles. The overall results indicate that both the supramolecular organization and the local surface quality (lipid-lipid interaction) strongly influence the interfacial water mobility and the extent of hydration layers in glycosphingolipid aggregates.
Collapse
Affiliation(s)
- C Arnulphi
- NMR Laboratory, Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad Universitaria,5000--Córdoba, Argentina
| | | | | |
Collapse
|
14
|
Maggio B, Borioli GA, Del Boca M, De Tullio L, Fanani ML, Oliveira RG, Rosetti CM, Wilke N. Composition-driven surface domain structuring mediated by sphingolipids and membrane-active proteins. Above the nano- but under the micro-scale: mesoscopic biochemical/structural cross-talk in biomembranes. Cell Biochem Biophys 2007; 50:79-109. [PMID: 17968678 DOI: 10.1007/s12013-007-9004-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2007] [Indexed: 10/22/2022]
Abstract
Biomembranes contain a wide variety of lipids and proteins within an essentially two-dimensional structure. The coexistence of such a large number of molecular species causes local tensions that frequently relax into a phase or compositional immiscibility along the lateral and transverse planes of the interface. As a consequence, a substantial microheterogeneity of the surface topography develops and that depends not only on the lipid-protein composition, but also on the lateral and transverse tensions generated as a consequence of molecular interactions. The presence of proteins, and immiscibility among lipids, constitute major perturbing factors for the membrane sculpturing both in terms of its surface topography and dynamics. In this work, we will summarize some recent evidences for the involvement of membrane-associated, both extrinsic and amphitropic, proteins as well as membrane-active phosphohydrolytic enzymes and sphingolipids in driving lateral segregation of phase domains thus determining long-range surface topography.
Collapse
Affiliation(s)
- Bruno Maggio
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba, Universidad Nacional de Córdoba - CONICET, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Preetha A, Huilgol N, Banerjee R. Effect of Fluidizing Agents on Paclitaxel Penetration in Cervical Cancerous Monolayer Membranes. J Membr Biol 2007; 219:83-91. [PMID: 17712507 DOI: 10.1007/s00232-007-9064-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 06/26/2007] [Indexed: 10/22/2022]
Abstract
The aim of this study was to compare modulation of paclitaxel penetration in cancerous and normal cervical monolayers by four fluidizing agents: PCPG (9:1 DPPC:PG), PCPE (9:1 DPPC:DOPE), ALEC (7:3 DPPC:PG) and Exosurf (13.5:1.5:1.0 DPPC:hexadecanol:tyloxapol). Presence of the fluidizing agents improved drug penetration significantly. PCPG and PCPE were promising penetration enhancers. PCPG 0.1% caused 3.8- and 1.7-fold higher maximum increments in surface pressure due to drug penetration, (Delta pi)(max), than the control in cancerous and normal monolayers, respectively, at 20 mN/m. In cancerous monolayer at 20 mN/m, presence of 0.1%, 0.5%, 1%, 5% and 10% PCPE produced 3.4-, 5.7-, 7.4-, 9.6- and 9.8-fold higher drug penetration compared to the control monolayer without PCPE, respectively. In cancerous monolayer at 20 mN/m, PCPG and PCPE liposomes having 1 mg lipid gave 2.1 and 3.6 times higher (Delta pi)(max )compared to the control, respectively. Further, the liposomal drug penetration was found to be directly proportional to the liposomal lipid content. The effect of the fluidizing agents was confirmed by increased calcein release from model cervical cancer liposomes. These results may have implications in using the above biocompatible lipids and surfactants as penetration enhancers along with anticancer drugs or as carriers for liposomal formulations of anticancer drugs for improved membrane penetration.
Collapse
Affiliation(s)
- A Preetha
- School of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, 400076, India
| | | | | |
Collapse
|
16
|
Jayalakshmi V, Nair GG, Prasad SK. Kinetics of the thermal back relaxation time of the photoinduced nematic-isotropic transition. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:031710. [PMID: 17500714 DOI: 10.1103/physreve.75.031710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Indexed: 05/15/2023]
Abstract
We report on the temperature dependence of the response time for the photochemical and thermal back relaxation processes observed in a material exhibiting a photostimulated, isothermal nematic-isotropic phase transition. It is found that the time required for the system to achieve the photostationary state as well as to recover the original state after photoirradiation with a uv beam is a smooth function of the absolute temperature of the sample, except in the vicinity of the transition. The duration of the recovery can be split into two parts: delay time and response time. Using a simple description based on the Maier-Saupe model, we show that the temperature dependence of the response time can be understood in terms of the order parameter excess between the equilibrium and photostimulated states.
Collapse
Affiliation(s)
- V Jayalakshmi
- Centre for Liquid Crystal Research, Jalahalli, Bangalore 560013, India
| | | | | |
Collapse
|
17
|
Maggio B, Fanani ML, Rosetti CM, Wilke N. Biophysics of sphingolipids II. Glycosphingolipids: An assortment of multiple structural information transducers at the membrane surface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1922-44. [PMID: 16780791 DOI: 10.1016/j.bbamem.2006.04.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 04/11/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
Glycosphingolipids are ubiquitous components of animal cell membranes. They are constituted by the basic structure of ceramide with its hydroxyl group linked to single carbohydrates or oligosaccharide chains of different complexity. The combination of the properties of their hydrocarbon moiety with those derived from the variety and complexity of their hydrophilic polar head groups confers to these lipids an extraordinary capacity for molecular-to-supramolecular transduction across the lateral/transverse planes in biomembranes and beyond. In our opinion, most of the advances made over the last decade on the biophysical behavior of glycosphingolipids can be organized into three related aspects of increasing structural complexity: (1) intrinsic codes: local molecular interactions of glycosphingolipids translated into structural self-organization. (2) Surface topography: projection of molecular shape and miscibility of glycosphingolipids into formation of coexisting membrane domains. (3) Beyond the membrane interface: glycosphingolipid as modulators of structural topology, bilayer recombination and surface biocatalysis.
Collapse
Affiliation(s)
- Bruno Maggio
- Departamento de Química Biológica - CIQUIBIC, Universidad Nacional de Córdoba - CONICET, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| | | | | | | |
Collapse
|
18
|
Grauby-Heywang C, Turlet JM. Behavior of GM3 ganglioside in lipid monolayers mimicking rafts or fluid phase in membranes. Chem Phys Lipids 2006; 139:68-76. [PMID: 16310758 DOI: 10.1016/j.chemphyslip.2005.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 10/11/2005] [Accepted: 10/25/2005] [Indexed: 10/25/2022]
Abstract
We studied the interaction of GM3 ganglioside with sphingomyelin (SM) and palmitoyl-oleoyl-phosphatidylcholine (POPC) in Langmuir monolayers mimicking, respectively, raft and fluid phase of a cellular membrane, by surface pressure measurements and fluorescence microscopy. No difference was observed in the behavior of SM-GM3 and POPC-GM3 monolayers. In both cases, a GM3 threshold concentration has been underlined between 20 and 40 mol%. Below this threshold, SM-GM3 and POPC-GM3 monolayers behave ideally, suggesting that GM3 and host lipid would form separated domains. On the contrary, above the threshold, a condensation of monolayers is observed. This could be due to a partial solubilisation of GM3 in host lipid, leading to a change in orientation of GM3 molecules at the air-water interface.
Collapse
Affiliation(s)
- Christine Grauby-Heywang
- Centre de Physique Moléculaire Optique et Hertzienne (CPMOH), UMR 5798 du CNRS, Université Bordeaux 1, 351 Cours de la Libération, 33405 Talence Cedex, France.
| | | |
Collapse
|
19
|
Le Bihan T, Pelletier D, Tancrède P, Heppell B, Chauvet JP, Gicquaud CR. Effect of the polar headgroup of phospholipids on their interaction with actin. J Colloid Interface Sci 2005; 288:88-96. [PMID: 15927566 DOI: 10.1016/j.jcis.2005.02.090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 02/23/2005] [Accepted: 02/26/2005] [Indexed: 10/25/2022]
Abstract
It is generally admitted that actin filaments are anchored to a membrane by membranar actin-binding-proteins. However, we found that actin may also interact directly with membrane phospholipids. The actin-phospholipid complex has been investigated at the air-water interface using a film balance technique. In order to probe the effect of the phospholipid headgroup on the actin-phospholipid interaction, we focus mainly on phospholipids that have the same acyl chain length but different headgroups. For all the phospholipids, the apparent area per molecule (the total surface divided by the number of lipid molecules) increases after the injection of the protein into the subphase, which suggests an intercalation of actin between the phospholipid molecules. This effect seems to be more important for DMPE and DMPS than for DMPG, suggesting that the headgroup plays an important role in this intercalation. The critical surface pressure associated to the liquid expanded-liquid condensed (LE-LC) phospholipid transition increases with the concentration of G-actin and thus suggests that G-actin acts as an impurity, simply competing as a surfactant at the air-water interface. On the other hand, F-actin affects the LE to LC transition of phospholipids differently. In this case, the LE to LC transition is broader and F-actin slightly decreases the critical surface pressure, which suggests that electrostatic interactions are involved.
Collapse
Affiliation(s)
- T Le Bihan
- MDS-Proteomics, 251 Attwell Drive, Toronto, Ontario, Canada M9W 7H4
| | | | | | | | | | | |
Collapse
|
20
|
Del Boca M, Caputto BL, Maggio B, Borioli GA. c-Jun interacts with phospholipids and c-Fos at the interface. J Colloid Interface Sci 2005; 287:80-4. [PMID: 15914151 DOI: 10.1016/j.jcis.2005.01.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2004] [Revised: 12/28/2004] [Accepted: 01/24/2005] [Indexed: 12/01/2022]
Abstract
We describe c-Jun, a widely studied transcription factor that participates in cell proliferation, differentiation, and tumorigenesis, as amphitropic. We show that c-Jun forms stable monolayers and interacts favorably, although in a nonselective manner, with phospholipids at the interface. The surface activity of c-Jun, together with that of c-Fos, its common partner in AP-1 transcription heterodimers, drives interfacial complex formation. We show that AP-1 is very stable at the air-water interface and suggest that AP-1 may not be substantially formed in solution as a stable equimolar association of both proteins.
Collapse
Affiliation(s)
- Maximiliano Del Boca
- CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ciudad Universitaria, 5000 Córdoba, Argentina
| | | | | | | |
Collapse
|
21
|
Gómez-Serranillos IR, Miñones J, Dynarowicz-Łatka P, Iribarnegaray E, Casas M. Interactions between the ganglioside GM1 and hexadecylphosphocholine (miltefosine) in monolayers at the air/water interface. Colloids Surf B Biointerfaces 2005; 41:63-72. [PMID: 15698758 DOI: 10.1016/j.colsurfb.2004.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2004] [Indexed: 11/15/2022]
Abstract
The ganglioside, GM1, was studied as Langmuir monolayers at the air/water interface with surface pressure-area measurements in addition to Brewster angle microscopy. A characteristic plateau transition, observed on aqueous subphases of pH 2 and 6, 20 degrees C, at the surface pressure of ca. 20 mN/m, was attributed to the reorientation of GM1 polar group upon film compression. This transition was found to disappear at alkaline subphases (pH 10) due to the hydration of fully ionized polar group, hindering its reorientation. The interactions between GM1 and hexadecylphosphocholine (miltefosine) were investigated in mixed monolayers and analyzed with the mean molecular areas, excess areas of mixing and the excess free energy of mixing versus film composition plots. The monolayers stability, quantified by the collapse pressure values, as well as the strength of interaction was found to diminish in the following order: pH 6>pH 2>pH 10. The strongest interaction occurs for mixed films of miltefosine molar fraction, XM=0.7-0.8, especially at low pressure region, and are explained as being due to the surface complex formation of 3:1 or 4:1 (miltefosine:ganglioside) stoichiometry (XM=0.75 or 0.8, respectively).
Collapse
|
22
|
Li XM, Momsen MM, Brockman HL, Brown RE. Lactosylceramide: effect of acyl chain structure on phase behavior and molecular packing. Biophys J 2002; 83:1535-46. [PMID: 12202378 PMCID: PMC1302251 DOI: 10.1016/s0006-3495(02)73923-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Lactosylceramide (LacCer) is a pivotal intermediate in the metabolism of higher gangliosides, localizes to sphingolipid-sterol "rafts," and has been implicated in cellular signaling. To provide a fundamental characterization of LacCer phase behavior and intermolecular packing, LacCer containing different saturated (16:0, 18:0, 24:0) or monounsaturated (18:1(Delta9), 24:1(Delta15)) acyl chains were synthesized and studied by differential scanning calorimetry and Langmuir film balance approaches. Compared to related sphingoid- and glycerol-based lipids, LacCers containing saturated acyl chains display relatively high thermotropic and pressure-induced transitions. LacCer monolayer films are less elastic in an in-plane sense than sphingomyelin films, but are somewhat more elastic than galactosylceramide films. Together, these findings indicate that the disaccharide headgroup only marginally disrupts gel phase packing and orients more perpendicular than parallel to the interface. This contrasts the reported behavior of digalactosyldiglycerides with saturated acyl chains. Introducing single cis double bonds into the LacCer acyl chains dramatically lowers the high thermotropic and pressure-induced transitions. Greater reductions occur when cis double bonds are located near the middle of the acyl chains. The results are discussed in terms of how an extended disaccharide headgroup can enhance interactions among naturally abundant LacCers with saturated acyl chains.
Collapse
Affiliation(s)
- Xin-Min Li
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912 USA
| | | | | | | |
Collapse
|
23
|
Carrer DC, Maggio B. Transduction to self-assembly of molecular geometry and local interactions in mixtures of ceramides and ganglioside GM1. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1514:87-99. [PMID: 11513807 DOI: 10.1016/s0005-2736(01)00366-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In mixed monolayers with ganglioside GM1, ceramide induces a non-ideal increase of the monolayer collapse pressure, a reduction of the mean molecular area and a decrease of the surface potential per molecule at all surface pressures. The critical packing parameter and van der Waals interaction energy calculated from monolayer data predict the transduction of changes from the molecular to the supramolecular level, such as formation of bilayers and possible subsequent facilitation of non-bilayer structures as the ceramide concentration increases, along with a greater thermal stability of the lipid structures. In agreement with the expectations from monolayer data, calorimetry, dynamic light scattering and electron microscopy data reveal the actual presence of phases with high phase-transition temperatures; at about 5 mol% ceramide in the mixture, the aggregates change their topology from micelles to multilamellar vesicles of increasing size and finally to long, thin tubules as the amount of ceramide in the system increases.
Collapse
Affiliation(s)
- D C Carrer
- Departamento de Química Biológica--CIQUIBIC, Facultad de Ciencias Químicas--CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | | |
Collapse
|
24
|
Carrer DC, Maggio B. Phase behavior and molecular interactions in mixtures of ceramide with dipalmitoylphosphatidylcholine. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)32421-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
Bordi F, De Luca F, Cametti C, Naglieri A, Misasi R, Sorice M. Interactions of mono- and di-sialogangliosides with phospholipids in mixed monolayers at air-water interface. Colloids Surf B Biointerfaces 1999. [DOI: 10.1016/s0927-7765(99)00009-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Bagatolli LA, Gratton E, Fidelio GD. Water dynamics in glycosphingolipid aggregates studied by LAURDAN fluorescence. Biophys J 1998; 75:331-41. [PMID: 9649390 PMCID: PMC1299702 DOI: 10.1016/s0006-3495(98)77517-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We have characterized the fluorescence properties of 6-dodecanoyl-2-dimethylamine-naphthalene (LAURDAN) in pure interfaces formed by sphingomyelin and 10 chemically related glycosphingolipids (GSLs).1 The GSLs contain neutral and anionic carbohydrate residues in their oligosaccharide chain. These systems were studied at temperatures below, at, or above the main phase transition temperature of the pure lipid aggregates. The extent of solvent dipolar relaxation around the excited fluorescence probe in the GSLs series increases with the magnitude of the glycosphingolipid polar headgroup below the transition temperature. This conclusion is based on LAURDAN's excitation generalized polarization (GPex) and fluorescence lifetime values found in the different interfaces. A linear dependence between the LAURDAN GPex and the intermolecular spacing among the lipid molecules was found for both neutral and anionic lipids in the GSLs series. This relationship was also followed by phospholipids. We conclude that LAURDAN in these lipid aggregates resides in sites containing different amounts of water. The dimension of these sites increases with the size of the GSLs polar headgroup. The GP function reports on the concentration and dynamics of water molecules in these sites. Upon addition of cholesterol to Gg4Cer, the fluorescence behavior of LAURDAN was similar to that of pure cerebrosides and sphingomyelin vesicles. This observation was attributed to a change in the interfacial hydration as well as changes in the shape and size of the Gg4Cer aggregates in the presence of cholesterol. After the addition of cholesterol to gangliosides, the changes in the LAURDAN's spectral parameters decrease progressively as the polar headgroup of these lipids becomes more complex. This finding suggests that the dehydration effect of cholesterol depends strongly on the curvature radius and the extent of hydration of these lipid aggregates. In the gel phase of phrenosine, GalCer, Gg3Cer, sulfatide, and sphingomyelin, the excitation red band (410 nm) of LAURDAN was reduced with respect to that of LAURDAN in the gel phase of pure phospholipids. This observation indicates a local environment that interacts differently with the ground state of LAURDAN in GSLs when compared with LAURDAN in phospholipids.
Collapse
Affiliation(s)
- L A Bagatolli
- Departamento de Química Biológica-CIQUIBIC, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina.
| | | | | |
Collapse
|
27
|
|
28
|
Bagatolli LA, Maggio B, Aguilar F, Sotomayor CP, Fidelio GD. Laurdan properties in glycosphingolipid-phospholipid mixtures: a comparative fluorescence and calorimetric study. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1325:80-90. [PMID: 9106485 DOI: 10.1016/s0005-2736(96)00246-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Laurdan (6-dodecanoyl-2-dimethylamine-naphthalene) is a fluorescent membrane probe of recent characterization. It was shown that this probe discriminates between phase transitions, phase fluctuations and the coexistence of phase domains in phospholipid multilamellar aggregates. We measured the excitation and emission generalized polarization (GP(ex) and GP(em)) of Laurdan in aggregates of complex glycosphingolipids in their pure form and in mixtures with dipalmitoylphosphatidylcholine (DPPC). Our results show that Laurdan detects the broad main phase transition temperature of the neutral ceramide-tetrasaccharide Gg(4)Cer (asialo-G(M1)) and shows a value of GP(ex) in between that of DPPC and that of ganglioside G(M1). In contrast, Laurdan was unable to detect the thermotropic phase transition of G(M1). The probe also appears to be unable to detect phase coexistence in both types of pure glycolipid aggregates. Deconvolution of the excess heat capacity vs. temperature curves of pure Gg(4)Cer and DPPC/Gg(4)Cer mixtures indicates that the thermograms are composed by different transition components. For these cases, Laurdan detects only the high cooperativity component of the transition of the mixture. The peculiar behaviour of Laurdan in aggregates containing complex glycosphingolipids may result from the inherent topological features of the interface that are conferred by the bulky and highly hydrated polar head group of these lipids.
Collapse
Affiliation(s)
- L A Bagatolli
- Departamento de Química Biológica-CIQUIBIC, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | | | | | | | | |
Collapse
|
29
|
Thermodynamics of the compression of poly(isobutyl cyanoacrylate) monolayers at acid, neutral and basic pH. Colloid Polym Sci 1995. [DOI: 10.1007/bf00655674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Calderon RO, Maggio B, Neuberger TJ, De Vries GH. Surface behavior of axolemma monolayers: physico-chemical characterization and use as supported planar membranes for cultured Schwann cells. J Neurosci Res 1993; 34:206-18. [PMID: 8450564 DOI: 10.1002/jnr.490340208] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The axolemma membrane forms a stable and reproducible monomolecular layer at the air-aqueous interface. The major lipids and proteins are present in this monolayer in molar ratios similar to the original membrane. Acetylcholinesterase and Na-K-ATPase activities are preserved in the monolayer to levels of 64% and 25%, respectively. The total lipid fraction forms a homogeneously mixed phase. The presence of proteins in the monolayer introduces surface inhomogeneties. Among other features, this is revealed by the presence of two values of lateral pressure at which the monolayer shows partial or total collapse: a broad partial collapse at surface pressures between 13 to 30 mN/m and a sharp collapse point at 46 mN/m. The average molecular areas, the broad collapse point, and the variation of the surface potential per molecule suggest the relocation of protein components at surface pressures between 13 to 30 mN/m. The behavior is consistent with the extrusion and exposure of proteins toward the aqueous medium that depends on the lateral pressure. Schwann cells grown on coverslips coated with axolemma monolayers at 13 mN/m (beginning of the broad collapse) and 34 mN/m (above the broad collapse) recognize the difference in the surface organization of axolemma caused by the lateral pressure which affects their proliferation, morphology, and spatial pattern of organization. Our results show for the first time that response of Schwann cells depends on the intermolecular organization of the axolemma surface with which they interact. These results suggest that the local expression of putative surface molecules of axolemma that may mediate membrane recognition and the signalling of morphological and proliferative changes can be modulated by long range supramolecular properties.
Collapse
Affiliation(s)
- R O Calderon
- Department of Biochemistry and Molecular Biophysics, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0614
| | | | | | | |
Collapse
|
31
|
Influence of fluorescent lipid probes on the packing of their environment. A monolayer study. Chem Phys Lipids 1992. [DOI: 10.1016/0009-3084(92)90066-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
|
33
|
|
34
|
Beitinger H, Vogel V, Möbius D, Rahmann H. Surface potentials and electric dipole moments of ganglioside and phospholipid bilayers: contribution of the polar headgroup at the water/lipid interface. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 984:293-300. [PMID: 2775779 DOI: 10.1016/0005-2736(89)90296-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- H Beitinger
- Institut für Zoologie, Universität Stuttgart-Hohenheim, FRG
| | | | | | | |
Collapse
|
35
|
Bianco ID, Maggio B. Interactions of neutral and anionic glycosphingolipids with dilauroylphosphatidylcholine and dilauroylphosphatidic acid in mixed monolayers. ACTA ACUST UNITED AC 1989. [DOI: 10.1016/0166-6622(89)80023-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Maggio B, Albert J, Yu RK. Thermodynamic-geometric correlations for the morphology of self-assembled structures of glycosphingolipids and their mixtures with dipalmitoylphosphatidylcholine. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 945:145-60. [PMID: 3191118 DOI: 10.1016/0005-2736(88)90477-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The morphology of aqueous dispersions of five neutral glycosphingolipids (GalCer, GlcCer, LacCer, asialo-GM2, asialo-GM1), sulfatide, and five gangliosides (GM3, GM2, GM1, GD1a and GT1b) and their mixtures with dipalmitoylphosphatidylcholine was studied by negative staining electron microscopy. The morphological features are interpreted on the basis of thermodynamic and geometric constraints previously studied in these systems (Maggio, B (1985) Biochim. Biophys. Acta 815, 245-258). The correlation between the theoretical predictions and the experimental findings are in reasonable agreement. Small changes in the molecular parameters of the individual glycosphingolipids or in their proportion in mixtures with dipalmitoylphosphatidylcholine bring about remarkable variations on the type of structure formed, its radius of curvature and thermodynamic stability.
Collapse
Affiliation(s)
- B Maggio
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | | | | |
Collapse
|
37
|
Schifferer F, Beitinger H, Rahmann H, Möbius D. Effect of calcium and temperature on mixed lipid-valinomycin monolayers. A comparison of glycosphingolipids (ganglioside GT1b, sulphatides) and phosphatidylcholine. FEBS Lett 1988; 233:158-62. [PMID: 3384088 DOI: 10.1016/0014-5793(88)81375-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The influence of calcium and temperature on pure lipid (bovine brain PC, sulphatides, ganglioside GT1b), valinomycin and mixed lipid-valinomycin monolayers at the air/water interface was studied. In mixed films, evidence was found that the two components were miscible. On the other hand, at higher surface pressures, phase separation occurs in the cases of PC and sulphatides. Measuring the area requirement and the collapse pressure the stability of both lipid and the peptide was increased in particular due to ganglioside-valinomycin interaction. The addition of 10(-5) M calcium into the subphase at 20 and 37 degrees C and surface pressures of 10 and 20 mN/m led to a condensing effect in ganglioside mixtures, with formation of aggregates as indicated also by the nearly ideal behaviour of two component monolayers.
Collapse
Affiliation(s)
- F Schifferer
- Zoological Institute, University of Stuttgart-Hohenheim, FRG
| | | | | | | |
Collapse
|
38
|
Bianco ID, Fidelio GD, Maggio B. Effect of glycerol on the molecular properties of cerebrosides, sulphatides and gangliosides in monolayers. Biochem J 1988; 251:613-6. [PMID: 3401219 PMCID: PMC1149045 DOI: 10.1042/bj2510613] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The presence of glycerol, free from surface-active impurities, modifies the molecular area, surface potential/molecule and thermodynamic parameters of compression of monolayers of galactosylceramide, sulphatide and gangliosides GM1, GD1a and GT1b. This may be due to changes of the composition and structural properties of the glycosphingolipid solvation shell with an influence on the intermolecular organization.
Collapse
Affiliation(s)
- I D Bianco
- Departamento de Quimica Biologica-CIQUIBIC, Facultad de Ciencias Quimicas-CONICET, Cordoba, Argentina
| | | | | |
Collapse
|
39
|
Singh BN, Costello CE, Levery SB, Walenga RW, Beach DH, Mueller JF, Holz GG. Tegument galactosylceramides of the cestode Spirometra mansonoides. Mol Biochem Parasitol 1987; 26:99-111. [PMID: 3431569 DOI: 10.1016/0166-6851(87)90134-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The brush border-like surface of the tegument of the adult and the plerocercoid larva of a pseudophyllidean cestode, Spirometra mansonoides, has been shown to contain hydroxylated galactosylceramides. D-Galactosyl-N-(2-D-hydroxyoctadecanoyl)-D-phytosphingosine, D-galactosyl-N-(2-D-hydroxyoctadecanoyl)-D-dihydrosphingosine and D-galactosyl-N-(octadecanoyl)-D-phytosphingosine were identified as major glycosphingolipids in a tegumental plasma membrane fraction with associated microtriches, by combinations of chromatography (column, high performance thin-layer, gas-liquid), mass spectrometry (electron impact, field desorption, fast atom bombardment, collisionally induced decomposition) and proton nuclear magnetic resonance spectrometry. Galactosylceramides with hydroxylated long chain bases and fatty acids are known to occur in some eukaryotic microbes and in cells of vertebrate tissues exposed to plasma membrane destabilizing environments. This has led to a proposal that the capacity of hydroxylated ceramide moieties for intermolecular hydrogen bonding among themselves and with phosphoglycerides acts to stabilize the plasma membrane. Saturated fatty acyl groups in the ceramides would enhance stabilization by their orderly packing in the lipid bilayer. Consequently, the presence of such hydroxylated galactosylceramides in the tegument surface of S. mansonoides may contribute to the maintenance of its normal barrier properties in the face of the varied environmental insults encountered by the cestode in its life-cycle.
Collapse
Affiliation(s)
- B N Singh
- Department of Microbiology & Immunology, S.U.N.Y. Health Science Center, Syracuse 13210
| | | | | | | | | | | | | |
Collapse
|
40
|
Maggio B, Sturtevant JM, Yu RK. Effect of calcium ions on the thermotropic behaviour of neutral and anionic glycosphingolipids. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 901:173-82. [PMID: 3607044 DOI: 10.1016/0005-2736(87)90113-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the concentration range of 10(-5) to 10(-1) M Ca2+ modulates the thermotropic properties of several neutral and anionic glycosphingolipids (galactosylceramide, asialo-GM1, sulfatide, GM1, GD1a, GT1b) and of their mixtures with dipalmitoylphosphatidylcholine. The transition temperature of gangliosides is not appreciably changed while the transition enthalpy increases by 20% in the presence of Ca2+. The more marked effect of Ca2+ is on the thermotropic behavior of systems containing sulfatide. Increasing concentrations of Ca2+ between 10(-5) and 10(-3) M (up to a molar ratio of Ca2+/sulfatide 1:2) induce a progressive increase of both the transition temperature and enthalpy. Further increases up to 10(-1) M Ca2+ induce a new phase transition at a lower temperature. No evidence is found for induction of phase separation of pure glycosphingolipid-Ca2+ domains in mixtures of any of the glycosphingolipids with dipalmitoylphosphatidylcholine. The modification of the phase behavior of anionic glycosphingolipids by Ca2+ does not involve detectable variations of the intermolecular packing but is accompanied by marked modifications of the dipolar properties of the polar head group region.
Collapse
|
41
|
Effect of myelin basic protein on the thermotropic behavior of aqueous dispersions of neutral and anionic glycosphingolipids and their mixtures with dipalmitoylphosphatidylcholine. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61556-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
42
|
Roberts MF, Gabriel N. Short-chain lecithins: How to form unilamellar vesicles from micelles and phospholipid multibilayers. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/0166-6622(87)80205-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Maggio B, Fidelio GD, Cumar FA, Yu RK. Molecular interactions and thermotropic behavior of glycosphingolipids in model membrane systems. Chem Phys Lipids 1986; 42:49-63. [PMID: 3549020 DOI: 10.1016/0009-3084(86)90042-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The oligosaccharide chain of glycosphingolipids (GSLs) has a marked influence on their thermotropic behavior, intermolecular packing and surface electrical potential. The transition temperature and enthalpy of GSLs decrease proportionally to the complexity of the polar head group and show a linear dependence with the intermolecular spacings. Interactions occurring among GSLs and phospholipids induce changes of the molecular area and surface potential that depend on the type of GSLs. Increasing proportions of phospholipids perturb the thermodynamic properties of the GSLs up to a point where phase separated phospholipid domains separate out but no phase separation of pure GSLs occurs. Heterogeneous equilibria among different structures occur for some systems. Large changes of the molecular free energy, eccentricity, asymmetry ratio and phase state of the GSLs-containing structure can be triggered by small changes of the molecular parameters, lipid composition and lateral surface pressure. The thermotropic behavior of GSLs is considerably perturbed by myelin basic protein. Phase separation occurs depending on the amount of protein and type of GSLs. The protein induces a decrease of the lipid molecular area, the more so the more complex the oligosaccharide chain in the GSLs. These membrane systems can not be described only on the basis of the individual properties of the molecules involved in a simple causal manner. Still scarcely explored long range thermodynamic, geometric and field effects that belong simultaneously to the intervening molecules, to the morphological properties of the structure involved and to the aqueous environment, are important determinants of their behavior.
Collapse
|
44
|
Fidelio GD, Maggio B, Cumar FA. Interaction of melittin with glycosphingolipids and phospholipids in mixed monolayers at different temperatures. Effect of the lipid physical state. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1986. [DOI: 10.1016/0005-2736(86)90467-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Fidelio GD, Austen BM, Chapman D, Lucy JA. Properties of signal-sequence peptides at an air-water interface. Biochem J 1986; 238:301-4. [PMID: 3800938 PMCID: PMC1147130 DOI: 10.1042/bj2380301] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The surface behaviour of three signal-sequence polypeptides (the pretrypsinogen 2 signal sequence, a synthetic consensus signal sequence and the putative signal sequence of ovalbumin) were studied at an air-water interface. It was found that the surface stabilities of the spread polypeptide films were higher than those of polypeptides and proteins previously investigated (including melittin and membrane proteins), and that the signal peptides had a much lower affinity for the interface than had other peptides and proteins. The observed molecular areas of the signal-sequence peptides indicated that the molecules have a considerable degree of secondary structure at the surface interface.
Collapse
|
46
|
Abstract
The forces that hold cell membrane components together are non-covalent and thermodynamically favoured in aqueous media. Hence virtually any glycolipid or membrane glycoprotein might be expected to be incorporable into lipid bilayer membranes and this expectation has been borne out. In addition methods have been developed for linking lipid fragments to species that would not otherwise be expected to associate with bilayers. Techniques that have been successfully used to generate bilayer structures bearing glycolipids and glycoproteins include hydration of films dried down from non-aqueous solutions of the components, detergent removal from aqueous component solutions, exogenous addition to preformed membranes, and various organic solvent injection or reverse phase approaches. Bilayer association of glycolipids and membrane glycoproteins, with preservation of specific receptor function, seem easy to achieve--in fact difficult not to achieve. Optimization of receptor function to accurately mimic that of cell membranes and efficient preservation of functions such as transport or second messenger activation, are typically more demanding, although still feasible. A systematic approach can give considerable insight into the processes involved via identification of minimal necessary factors. Unfortunately, the actual relative arrangement of components, so critical to subtleties of glycolipid and glycoprotein function, remains almost totally unknown for lack of morphological information in the size range of individual macromolecules. The latter problem has come to be the most critical limitation to many studies.
Collapse
|