1
|
Ruzin A, Singh G, Severin A, Yang Y, Dushin RG, Sutherland AG, Minnick A, Greenstein M, May MK, Shlaes DM, Bradford PA. Mechanism of action of the mannopeptimycins, a novel class of glycopeptide antibiotics active against vancomycin-resistant gram-positive bacteria. Antimicrob Agents Chemother 2004; 48:728-38. [PMID: 14982757 PMCID: PMC353120 DOI: 10.1128/aac.48.3.728-738.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The naturally occurring mannopeptimycins (formerly AC98-1 through AC98-5) are a novel class of glycopeptide antibiotics that are active against a wide variety of gram-positive bacteria. The structures of the mannopeptimycins suggested that they might act by targeting cell wall biosynthesis, similar to other known glycopeptide antibiotics; but the fact that the mannopeptimycins retain activity against vancomycin-resistant organisms suggested that they might have a unique mode of action. By using a radioactive mannopeptimycin derivative bearing a photoactivation ligand, it was shown that mannopeptimycins interact with the membrane-bound cell wall precursor lipid II [C(55)-MurNAc-(peptide)-GlcNAc] and that this interaction is different from the binding of other lipid II-binding antibiotics such as vancomycin and mersacidin. The antimicrobial activities of several mannopeptimycin derivatives correlated with their affinities toward lipid II, suggesting that the inhibition of cell wall biosynthesis was primarily through lipid II binding. In addition, it was shown that mannopeptimycins bind to lipoteichoic acid in a rather nonspecific interaction, which might facilitate the accumulation of antibiotic on the bacterial cell surface.
Collapse
Affiliation(s)
- Alexey Ruzin
- Wyeth Research, Pearl River, New York 10965, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Plata C, Rubio V, Gamba G. Protein kinase C activation reduces the function of the Na(+):K(+):2Cl(-) cotransporter in Xenopus laevis oocytes. Arch Med Res 2000; 31:21-7. [PMID: 10767476 DOI: 10.1016/s0188-4409(99)00070-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The basolateral isoform of the Na(+):K(+):2Cl(-) cotransporter is expressed in several epithelial and non-epithelial cells, in which it is involved in ion secretion processes and in cell volume regulation. In humans, this cotransporter has been implicated in the development of primary hypertension. The major goal of the present study was to characterize the effect of protein kinase C activation on the function of the Na(+):K(+):2Cl(-) cotransporter isoform present in Xenopus laevis oocytes. METHODS Oocytes were surgically harvested from adult female Xenopus laevis frogs, defolliculated by incubation in frog ringer containing collagenase B (2 mg/mL) under vigorous shaking, and by hand under the microscope. Only stage V-VI oocytes were used in the study. After overnight incubation in regular frog Ringer, oocytes were switched to a Cl(-)-free ringer for at least 12 h before beginning uptake experiments. The function of the Na(+):K(+):2Cl(-) cotransporter was determined by assessing tracer 22Na(+) uptake in the control group as well as under several experimental conditions, such as changes in extracellular osmolarity, absence of one of the cotransported ions, or the presence of drugs such as the specific cotransporter inhibitor bumetanide, phorbol esters (TPA, PDBu, or 4alphaPDD), and the PKC inhibitor bisindolylmaleimide I. At the end of the uptake period, tracer Na(+) uptake was counted by liquid scintillation of each individual oocyte previously dissolved in SDS. RESULTS Xenopus oocytes exhibited a bumetanide-sensitive Na(+):K(+):2Cl(-) cotransporter in the plasma membrane activated by hypertonicity and inhibited by hypotonicity. The bumetanide-sensitive fraction of Na(+) uptake was significantly reduced by the addition of phorbol esters TPA or PDBu to the uptake media. This inhibitory effect of PKC activators was dose- and time-dependent. Phorbol ester 4alphaPDD, which cannot activate PKC, exhibited no effect on Na(+):K(+):2Cl(-) cotransporter function. In addition, pretreatment of oocytes with the PKC inhibitor bisindolylmaleimide I partially abolished TPA-induced reduction in the cotransporter function. CONCLUSION In defolliculated Xenopus laevis oocytes, phorbol esters reduce the function of the Na(+):K(+):2Cl(-) cotransporter by a mechanism that includes the activation of an endogenous PKC.
Collapse
Affiliation(s)
- C Plata
- Unidad de Fisiología Molecular, Instituto Nacional de la Nutrición Salvador Zubirán, México, D.F., Mexico
| | | | | |
Collapse
|
3
|
Abstract
Obligatory, coupled cotransport of Na(+), K(+), and Cl(-) by cell membranes has been reported in nearly every animal cell type. This review examines the current status of our knowledge about this ion transport mechanism. Two isoforms of the Na(+)-K(+)-Cl(-) cotransporter (NKCC) protein (approximately 120-130 kDa, unglycosylated) are currently known. One isoform (NKCC2) has at least three alternatively spliced variants and is found exclusively in the kidney. The other (NKCC1) is found in nearly all cell types. The NKCC maintains intracellular Cl(-) concentration ([Cl(-)](i)) at levels above the predicted electrochemical equilibrium. The high [Cl(-)](i) is used by epithelial tissues to promote net salt transport and by neural cells to set synaptic potentials; its function in other cells is unknown. There is substantial evidence in some cells that the NKCC functions to offset osmotically induced cell shrinkage by mediating the net influx of osmotically active ions. Whether it serves to maintain cell volume under euvolemic conditons is less clear. The NKCC may play an important role in the cell cycle. Evidence that each cotransport cycle of the NKCC is electrically silent is discussed along with evidence for the electrically neutral stoichiometries of 1 Na(+):1 K(+):2 Cl- (for most cells) and 2 Na(+):1 K(+):3 Cl(-) (in squid axon). Evidence that the absolute dependence on ATP of the NKCC is the result of regulatory phosphorylation/dephosphorylation mechanisms is decribed. Interestingly, the presumed protein kinase(s) responsible has not been identified. An unusual form of NKCC regulation is by [Cl(-)](i). [Cl(-)](i) in the physiological range and above strongly inhibits the NKCC. This effect may be mediated by a decrease of protein phosphorylation. Although the NKCC has been studied for approximately 20 years, we are only beginning to frame the broad outlines of the structure, function, and regulation of this ubiquitous ion transport mechanism.
Collapse
Affiliation(s)
- J M Russell
- Department of Biology, Biological Research Laboratories, Syracuse, New York, USA. .,edu
| |
Collapse
|
4
|
Lytle C, Xu JC, Biemesderfer D, Forbush B. Distribution and diversity of Na-K-Cl cotransport proteins: a study with monoclonal antibodies. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 269:C1496-505. [PMID: 8572179 DOI: 10.1152/ajpcell.1995.269.6.c1496] [Citation(s) in RCA: 283] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Na-K-Cl cotransporter (NKCC) is present in most animal cells where it functions in cell volume homeostasis and epithelial salt transport. We developed six monoclonal antibodies (designated T4, T8, T9, T10, T12, and T14) against a fusion protein fragment encompassing the carboxy-terminal 310 amino acids of the human colonic NKCC. These T antibodies selectively recognized putative NKCC proteins in a diverse variety of animal tissues. Western blot analysis of membranes isolated from 23 types of cells identified single bands of immunoreactive protein ranging in mass from 146 to 205 kDa. The amount of immunoreactive protein detected in these cells correlated with loop diuretic binding site density. Proteins identified previously as Na-K-Cl cotransporters by loop diuretic photoaffinity labeling were mutually recognized by multiple T antibodies. Most of the T antibodies effectively immunoprecipitated the denatured form of the NKCC protein. Immunocytochemical studies on the rabbit parotid gland demonstrated that NKCC is restricted to the basolateral margin of the acinar cells and absent from the ducts, in accord with the central role of Na-K-Cl cotransport in chloride secretion. In the rabbit kidney, NKCC was localized to the apical membrane of thick ascending limb cells, consistent with its role in chloride reabsorption.
Collapse
Affiliation(s)
- C Lytle
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
5
|
Tanimura A, Kurihara K, Reshkin SJ, Turner RJ. Involvement of direct phosphorylation in the regulation of the rat parotid Na(+)-K(+)-2Cl- cotransporter. J Biol Chem 1995; 270:25252-8. [PMID: 7559664 DOI: 10.1074/jbc.270.42.25252] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We identify a 175-kDa membrane phosphoprotein (pp175) in rat parotid acini whose properties correlate well with the Na(+)-K(+)-2Cl- cotransporter previously characterized functionally and biochemically in this tissue. pp175 was the only phosphoprotein immunoprecipitated by an anti-Na(+)-K(+)-2Cl- cotransporter antibody and the only membrane protein whose phosphorylation state was conspicuously altered after a brief (45-s) exposure of acini to the beta-adrenergic agonist isoproterenol. Phosphopeptide mapping provided evidence for three phosphorylation sites on pp175, only one of which was labeled in response to isoproterenol treatment. The half-maximal effect of isoproterenol on phosphorylation of pp175 (approximately 20 nM) was in excellent agreement with its previously demonstrated up-regulatory effect on cotransport activity. Increased phosphorylation of pp175 was also seen following acinar treatment with a permeant cAMP analogue and with forskolin, conditions that have likewise been shown to up-regulate the cotransporter. Combined with earlier results from our laboratory, these data provide strong evidence that the up-regulation of the cotransporter by these agents is due to direct phosphorylation mediated by protein kinase A. AlF(-)4 treatment, which results in an up-regulation of cotransport activity comparable with that observed with isoproterenol (approximately 6-fold), caused a similar increase in phosphorylation of pp175. However, hypertonic shrinkage and treatment with the protein phosphatase inhibitor calyculin A, which also up-regulate the cotransporter (approximately 3-fold and approximately 6-fold, respectively) caused no change in the phosphorylation level. Furthermore, although acinar treatment with the muscarinic agonist carbachol results in a dramatic up-regulation of cotransport activity and a concomitant phosphorylation of pp175, no phosphorylation of pp175 was seen with the Ca(2+)-mobilizing agent thapsigargin, which is able to fully mimic the up-regulatory effect of carbachol on transport activity. Taken together, these results indicate that direct phosphorylation is only one of the mechanisms involved in secretagogue-induced regulation of the rat parotid Na(+)-K(+)-2Cl- cotransporter.
Collapse
Affiliation(s)
- A Tanimura
- Clinical Investigations and Patient Care Branch, NIDR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
6
|
Payne JA, Forbush B. Molecular characterization of the epithelial Na-K-Cl cotransporter isoforms. Curr Opin Cell Biol 1995; 7:493-503. [PMID: 7495568 DOI: 10.1016/0955-0674(95)80005-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recent advances in the molecular characterization of specific isoforms of the Na-K-Cl cotransporter have allowed rapid progress in the study of the structure, function, and regulation of these members of a family of Cl-dependent cation cotransporters. Two distinct isoforms have been identified, one from Cl(-)-secretory epithelia and another found specifically in the diluting segment of the vertebrate kidney, a Cl(-)-absorptive epithelium. The discovery of three alternatively spliced variants of the absorptive isoform, which differ only by 31 amino acids and which appear to be differentially distributed within the mammalian thick ascending limb of the loop of Henle, highlight this spliced region as an important functional component of the protein.
Collapse
Affiliation(s)
- J A Payne
- Department of Human Physiology, University of California School of Medicine, Davis 95616, USA
| | | |
Collapse
|
7
|
Payne JA, Xu JC, Haas M, Lytle CY, Ward D, Forbush B. Primary structure, functional expression, and chromosomal localization of the bumetanide-sensitive Na-K-Cl cotransporter in human colon. J Biol Chem 1995; 270:17977-85. [PMID: 7629105 DOI: 10.1074/jbc.270.30.17977] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
By moving chloride into epithelial cells, the Na-K-Cl cotransporter aids transcellular movement of chloride across both secretory and absorptive epithelia. Using cDNA probes from the recently identified elasmobranch secretory Na-K-Cl cotransporter (sNKCC1) (Xu, J. C., Lytle, C. Zhu, T. T., Payne, J. A., Benz, E., and Forbush, B., III (1994) Proc. Natl. Acad. Sci. 91, 2201-2205), we have identified the human homologue. By screening cDNA libraries of a human colonic carcinoma line, T84 cell, we identified a sequence of 4115 bases from overlapping clones. The deduced protein is 1212 amino acids in length, and analysis of the primary structure indicates 12 transmembrane segments. The primary structure is 74% identical to sNKCC1, 91% identical to a mouse Na-K-Cl cotransporter (mNKCC1), 58% identical to rabbit and rat renal Na-K-Cl cotransporters (NKCC2), and 43% identical to the thiazide-sensitive Na-Cl cotransporters from flounder urinary bladder and rat kidney. Similar to sNKCC1 and mNKCC1, the 5'-end of the human colonic cotransporter is rich in G + C content. Interestingly, a triple repeat (GCG)7 occurs within the 5'-coding region and contributes to a large alanine repeat (Ala15). Two sites for N-linked glycosylation are predicted on an extracellular loop between putative transmembrane segments 7 and 8. A single potential site for phosphorylation by protein kinase A is present in the predicted cytoplasmic C-terminal domain. Northern blot analysis revealed a 7.4-7.5-kilobase transcript in T84 cells and shark rectal gland and a approximately 7.2-kilobase transcript in mammalian colon, kidney, lung, and stomach. Metaphase spreads from lymphocytes were probed with biotin-labeled cDNA and avidin fluorescein (the cotransporter gene was localized to human chromosome 5 at position 5q23.3). Human embryonic kidney cells stably transfected with the full-length cDNA expressed a approximately 170-kDa protein recognized by anti-cotransporter antibodies. Following treatment with N-glycosidase F, the molecular mass of the expressed protein was similar to that predicted for the core protein from the cDNA sequence (132-kDa) and identical to that of deglycosylated T84 cotransporter (approximately 135-kDa). The stably transfected cells exhibited a approximately 15-fold greater bumetanide-sensitive 86Rb influx than control cells, and this flux required external sodium and chloride. Flux kinetics were consistent with an electroneutral cotransport of 1Na:1K:2Cl. Preincubation in chloride-free media was necessary to activate fully the expressed cotransporter, suggesting a [Cl]-dependent regulatory mechanism.
Collapse
Affiliation(s)
- J A Payne
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | |
Collapse
|
8
|
Torchia J, Yi Q, Sen AK. Carbachol-stimulated phosphorylation of the Na-K-Cl cotransporter of avian salt gland. Requirement for Ca2+ and PKC Activation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43949-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
Abstract
The Na-K-Cl cotransporters are a class of membrane proteins that transport Na, K, and Cl ions into and out of cells in an electrically neutral manner, in most cases with a stoichiometry of 1Na:1K:2Cl. Na-K-Cl cotransporters are present in a wide variety of cells and tissues, including reabsorptive and secretory epithelia, nerve and muscle cells, endothelial cells, fibroblasts, and blood cells. Na-K-Cl cotransport plays a vital role in renal salt reabsorption and in salt secretion by intestinal, airway, salivary gland, and other secretory epithelia. Cotransport function also appears to be important in the maintenance and regulation of cell volume and of ion gradients by both epithelial and nonepithelial cells. Na-K-Cl cotransport activity is inhibited by "loop" diuretics, including the clinically efficacious agents bumetanide and furosemide. The regulation of Na-K-Cl cotransport is mediated, at least in some cases, through direct phosphorylation of the cotransport protein. Cotransporter regulation is highly tissue specific, perhaps in part related to the presence of different Na-K-Cl cotransporter isoforms. In epithelia, both absorptive (kidney-specific) and secretory isoforms have been identified by cDNA cloning and sequencing and Northern blot analysis; alternatively spliced variants of the kidney-specific isoform have also been identified. The absorptive and secretory isoforms exhibit approximately 60% identity at the amino acid sequence level; these sequences in turn show approximately 45% overall homology with those of thiazide-sensitive, bumetanide-insensitive, Na-Cl cotransport proteins of winter flounder urinary bladder and mammalian kidney. This review focuses on recent developments in the identification of Na-K-Cl cotransport proteins in epithelial and on the regulation of epithelial Na-K-Cl cotransporter function at cellular and molecular levels.
Collapse
Affiliation(s)
- M Haas
- Department of Pathology, University of Chicago, Illinois 60637
| |
Collapse
|
10
|
Suvitayavat W, Dunham PB, Haas M, Rao MC. Characterization of the proteins of the intestinal Na(+)-K(+)-2Cl- cotransporter. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 267:C375-84. [PMID: 8074174 DOI: 10.1152/ajpcell.1994.267.2.c375] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Absorptive intestinal epithelia, such as that of the winter flounder, absorb salt via a bumetanide-sensitive Na(+)-K(+)-2Cl- cotransport mechanism on the brush-border membrane (BBM). The present study demonstrates the first molecular characterization of the intestinal Na(+)-K(+)-2Cl- cotransporter and its unique regulation. The photoaffinity bumetanide analogue, 4-[3H]benzoyl-5-sulfamoyl-3- (3-thenyloxy)benzoic acid, specifically labeled three groups of proteins in flounder intestinal microsomal membranes (MM): a approximately 180-kDa peptide, prominently labeled, and diffuse bands at approximately 110-70 and 50 kDa, less intensely labeled. Subcellular fractionation revealed a single prominently labeled protein of approximately 170 kDa in BBM but not in basolateral membranes (BLM) and little or no labeling of proteins of approximately 110-70 or 50 kDa. Polyclonal antiserum raised against the Ehrlich ascites cell cotransporter identified a 180-kDa peptide in MM and a 175-kDa peptide (pI approximately 5.4) in BBM but none in BLM or in the cytosol of flounder intestine. As predicted from the regulation of cotransport in this tissue, phosphorylation of this protein is increased by guanosine 3',5'-cyclic monophosphate (cGMP)-dependent but not by adenosine 3',5'-cyclic monophosphate-dependent protein kinase. In addition, phosphorylation of the protein is not increased by protein kinase C or Ca2+/calmodulin-dependent protein kinase but is increased by the phosphatase inhibitor calyculin A. Finally, calyculin A preserves the inhibitory effect of cGMP on ion transport, even in the absence of the nucleotide, suggesting that phosphorylation-dephosphorylation mechanisms are crucial in cotransporter regulation. Thus the flounder intestinal cotransporter is a approximately 175-kDa BBM protein that can be regulated by phosphorylation.
Collapse
Affiliation(s)
- W Suvitayavat
- Department of Physiology and Biophysics, University of Illinois at Chicago 60612
| | | | | | | |
Collapse
|
11
|
Suvitayavat W, Palfrey HC, Haas M, Dunham PB, Kalmar F, Rao MC. Characterization of the endogenous Na(+)-K(+)-2Cl- cotransporter in Xenopus oocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 266:C284-92. [PMID: 8304423 DOI: 10.1152/ajpcell.1994.266.1.c284] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Over time, Xenopus laevis changed from producing stage V and VI oocytes with little native Na(+)-K(+)-2Cl- cotransport activity to those with substantial activity. In oocytes with high endogenous activity, K+ uptake, using the tracer 86Rb+ was approximately 20 pmol.min-1.oocyte-1 in the presence of blockers of Na(+)-K(+)-ATPase and conductive K+ transport. Bumetanide (10 microM) inhibited > 90% of this uptake, suggesting involvement of Na(+)-K(+)-2Cl- cotransport. This was confirmed by two observations that are found in this cotransporter in other tissues: 1) The related diuretics, thiobenzmetanide [50% inhibitory concentration (IC50), 2 x 10(-11) M] > bumetanide (IC50, 7 x 10(-8) M) > furosemide (IC50, 2.5 x 10(-6) M) inhibited the cotransporter in a dose-dependent manner. 2) There was little uptake of K+ in the absence of extracellular Na+ or Cl-. Halving medium osmolarity to 92 mosM decreased bumetanide-sensitive K+ uptake by approximately 75%, whereas a doubling of medium osmolarity increased it by approximately 50%. The cotransport activity was increased fourfold by the phosphatase inhibitor calyculin A (200 nM) but was unaffected by 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate, 8-bromoguanosine 3',5'-cyclic monophosphate, ATP, ionomycin, or okadaic acid. Both the photoaffinity bumetanide analogue, 4-[3H]benzoyl-5-sulfamoyl-3-(3-thenyloxy)benzoic acid, and an antiserum raised against Ehrlich ascites cell cotransporter specifically labeled an approximately 140-kDa oocyte membrane protein. These results demonstrated that, in addition to the Na+ pump and K+ channels, K+ uptake in Xenopus oocytes occurs via a loop-diuretic-sensitive Na(+)-K(+)-2Cl- cotransporter.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W Suvitayavat
- Department of Physiology and Biophysics, University of Illinois at Chicago 60612
| | | | | | | | | | | |
Collapse
|
12
|
Reshkin SJ, Lee SI, George JN, Turner RJ. Identification, characterization and purification of a 160 kD bumetanide-binding glycoprotein from the rabbit parotid. J Membr Biol 1993; 136:243-51. [PMID: 8107077 DOI: 10.1007/bf02505766] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We demonstrate the presence of a 160 kD protein in rabbit parotid basolateral membranes that can be labeled with the irreversible sulfhydryl reagent [14C]-N-ethylmaleimide in a bumetanide-protectable fashion. The specificity of this labeling, and our previous evidence for the existence of an essential sulfhydryl group closely associated with the bumetanide-binding site on the parotid Na(+)-K(+)-Cl-cotransporter (J. Membrane Biol. 112:51-58, 1989), provide strong evidence that this protein is a part or all of the parotid bumetanide-binding site. When this protein is treated with endoglycosidase F/N-glycosidase F to remove N-linked oligosaccharides, its apparent molecular weight decreases to 135 kD. The pI of this deglycosylated protein is approximately 6.4. The bumetanide-binding protein was purified using two preparative electrophoresis steps. First, a Triton X-100 extract enriched in this protein was run on preparative electrophoresis to obtain fractions containing proteins in the 160 kD range. These were then deglycosylated with endoglycosidase F/N-glycosidase F and selected fractions were pooled and rerun on preparative electrophoresis to obtain a final 135 kD fraction. The enrichment of the bumetanide-binding protein in this final 135 kD fraction estimated from [14C]-N-ethylmaleimide labeling was approximately 48 times relative to the starting membrane extract. Since the bumetanide-binding site represents approximately 2% of the total protein in this starting extract, this enrichment indicates a high degree of purity of this protein in the 135 kD fraction.
Collapse
Affiliation(s)
- S J Reshkin
- Clinical Investigations and Patient Care Branch, National Institute of Dental Research, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
13
|
Palfrey HC, Leung S. Inhibition of Na-K-2Cl cotransport and bumetanide binding by ethacrynic acid, its analogues, and adducts. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 264:C1270-7. [PMID: 8498486 DOI: 10.1152/ajpcell.1993.264.5.c1270] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The inhibitory effect of ethacrynic acid (EA) and a variety of its derivatives on Na-K-2Cl cotransport in avian erythrocytes was investigated. The most potent compound tested was the adduct of EA with L-cysteine, with an IC50 of 7.2 x 10(-7) M. EA itself, dihydro-EA, EA-D-cysteine, and adducts of EA with other sulfhydryl (-SH) compounds were much less potent. The mechanism of action of EA and EA-L-cysteine differed in several respects: 1) EA-L-cysteine acted more rapidly than EA (half times of < 1 and 4 min, respectively, at 37 degrees C); 2) the action of EA-L-cysteine was reversible by washing, whereas that of EA was not; and 3) the degree of inhibition by EA-L-cysteine varied with medium [K], whereas that of EA did not. The inhibitory effects of both EA-L-cysteine and EA were affected by medium [Na] and [Cl]. We conclude that EA-L-cysteine does not "deliver" EA to transport-related -SH residues or act as an alkylating agent but has some stereospecific effect on cotransport that is a property of the entire molecule. EA does appear to inhibit cotransport by alkylating -SH residues, as closely related compounds lacking the ability to covalently react with such groups were reversible, and other -SH reagents (e.g., N-ethylmaleimide) also inhibited cotransport. EA, EA-L-cysteine, and EA-D-cysteine all inhibited [3H]bumetanide binding to membranes from activated avian erythrocytes at concentrations similar to those that inhibited cotransport. It is possible that the EA and bumetanide types of diuretics interact with closely apposed sites on the Na-K-2Cl cotransporter.
Collapse
Affiliation(s)
- H C Palfrey
- Department of Pharmacological and Physiological Sciences, University of Chicago, Illinois 60637
| | | |
Collapse
|
14
|
|
15
|
Torchia J, Lytle C, Pon D, Forbush B, Sen A. The Na-K-Cl cotransporter of avian salt gland. Phosphorylation in response to cAMP-dependent and calcium-dependent secretogogues. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)74061-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
16
|
Fan PY, Haas M, Middleton JP. Identification of a regulated Na/K/Cl cotransport system in a distal nephron cell line. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1111:75-80. [PMID: 1327143 DOI: 10.1016/0005-2736(92)90276-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lack of an adequate cell model has limited investigation of Na/K/Cl cotransporter regulation in the kidney. Using A6 cells, an amphibian distal renal cell line, we observed that 63% of rubidium uptake in confluent A6 monolayers was ouabain-insensitive. Ouabain-insensitive rubidium uptake was inhibited in a dose-dependent fashion by furosemide (IC50 6.6 microM) or bumetanide (IC50 1.7 microM). Kinetic studies confirmed that furosemide-sensitive rubidium uptake had features consistent with cotransporter activity in other cell lines. Furthermore, specific binding of [3H]bumetanide occurred with a capacity of 8.6 pmol/mg protein and a Kd of 1.6 microM bumetanide. Finally, furosemide-sensitive rubidium uptake was rapidly regulated by a calcium ionophore, the phorbol ester PDBu, forskolin, and adenosine. These data demonstrate an Na/K/Cl cotransport system in the A6 cell which will serve as a useful model for studying cotransporter regulation by endogenous signaling pathways.
Collapse
Affiliation(s)
- P Y Fan
- Department of Internal Medicine, Duke University Medical Center, Durham, NC 27710
| | | | | |
Collapse
|
17
|
Forbush B, Haas M, Lytle C. Na-K-Cl cotransport in the shark rectal gland. I. Regulation in the intact perfused gland. THE AMERICAN JOURNAL OF PHYSIOLOGY 1992; 262:C1000-8. [PMID: 1566806 DOI: 10.1152/ajpcell.1992.262.4.c1000] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To investigate regulation of the Na-K-Cl cotransport system in the rectal gland of the dogfish shark Squalus acanthias, we examined binding of the loop diuretic [3H]benzmetanide to the intact gland. Glands were perfused with a shark Ringer solution, either in a basal state or stimulated with vasoactive intestinal peptide (VIP). [3H]benzmetanide was added to the perfusion solution for the last 25 min of perfusion, after which the gland was homogenized and the amount of bound [3H]benzmetanide was determined in the membrane fraction. Most of the membrane-associated [3H]-benzmetanide appeared to be associated with the Na-K-Cl cotransporter as judged by the dissociation rates at 0 degree C and 20 degrees C, by labeling with a photosensitive analogue, and by continued association of [3H]benzmetanide with membrane protein on solubilization. With the use of [3H]4-benzoyl-5-sulfamoyl-3-(3- thenyloxy)benzoic acid, a photosensitive analogue of benzmetanide, a 200-kDa protein was selectively labeled on exposure to ultraviolet light. It was also possible to detect [3H]-benzmetanide binding during the perfusion period as an arterial-venous difference, thereby providing a time course of the binding process. In comparing two groups of five glands each, VIP stimulated NaCl secretion 20-fold and [3H]benzmetanide binding 16-fold, providing strong evidence that the Na-K-Cl cotransport system is activated as part of the process of stimulation of secretion. The VIP-stimulated increase in [3H]benzmetanide binding was completely inhibited when Ba was added to the perfusate to block K channel-mediated K exit across the basolateral membrane.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B Forbush
- Mount Desert Island Biological Laboratory, Salsbury Cove, Maine 04672
| | | | | |
Collapse
|
18
|
Petzinger E, Honscha W, Schenk A, Föllmann W, Deutscher J, Zierold K, Kinne RK. Photoaffinity labeling of plasma membrane proteins involved in the transport of loop diuretics into hepatocytes. Eur J Pharmacol 1991; 208:53-65. [PMID: 1936129 DOI: 10.1016/0922-4106(91)90051-i] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To identify proteins involved in the hepatocellular uptake of loop diuretics, [3H]bumetanide was photoactivated by light flash in the presence of either intact isolated rat hepatocytes, rat liver basolateral plasma membranes or integral membrane proteins extracted from the basolateral plasma membranes. Proteins of 52-54, 48, 33, 27, 25 and 23 kDa in sodium dodecyl sulfate (SDS) gel electrophoresis were radiolabeled on intact hepatocytes. On liver basolateral plasma membranes a 50-52 kDa protein was the most intensely labeled protein. After separation into integral and associated membrane proteins by extraction with Triton X-114, radioactive labeling was only found in integral membrane proteins with a molecular weight of 50-52 kDa. Photoactivated bumetanide irreversibly inhibited the hepatocellular uptake of cholate, taurocholate but not of serine. Binding proteins for photoactivated bumetanide were absent on AS 30-D ascites hepatoma cells. Labeling of all proteins was sodium dependent in intact hepatocytes but was sodium independent in plasma membranes. Labeling was prevented by non-labeled bumetanide and by the loop diuretics piretanide and furosemide. Labeling protection was further achieved with organic anions such as bromosulfophthalein, rifampicin, probenecid and by the bile acids taurocholate, deoxycholate and dehydrocholate. The radiolabeled proteins did not belong to the bumetanide-sensitive NaCl/KCl co-transport system which apparently does not occur in intact isolated rat hepatocytes.
Collapse
Affiliation(s)
- E Petzinger
- Institut für Pharmakologie und Toxikologie, Giessen, F.R.G
| | | | | | | | | | | | | |
Collapse
|
19
|
Haas M, Dunham PB, Forbush B. [3H]bumetanide binding to mouse kidney membranes: identification of corresponding membrane proteins. THE AMERICAN JOURNAL OF PHYSIOLOGY 1991; 260:C791-804. [PMID: 2018111 DOI: 10.1152/ajpcell.1991.260.4.c791] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Crude plasma membranes from whole mouse kidneys have two classes of [3H]bumetanide binding sites. High-affinity sites (K1/2 approximately equal to 0.04 microM; Bmax = 1-2 pmol/mg protein) are similar to those identified on dog kidney membranes (B. Forbush and H.C. Palfrey. J. Biol. Chem. 258: 11787-11792, 1983) both with respect to affinity and in that Na, K, and Cl are required for [3H]bumetanide binding. Low-affinity sites (K1/2 approximately equal to 1 microM; Bmax = 7-14 pmol/mg) are unaffected by removal of these ions; such sites are not seen with dog kidney. When mouse kidney membranes are photolabeled with 4-[3H]benzoyl-5-sulfamoyl-3-(3-thenyloxy)benzoic acid [( 3H]BSTBA), a photoreactive bumetanide analogue, specific incorporation of the label is seen in two regions. As with dog kidney [M. Haas and B. Forbush. Am. J. Physiol. 253 (Cell Physiol. 22): C243-C252, 1987], an approximately 150-kDa protein is labeled with high affinity (K1/2 approximately equal to 0.05 microM). This labeling also requires Na, K, and Cl and appears to correspond to the high-affinity [3H]bumetanide binding sites and to the Na-K-Cl cotransport system. A second peak of [3H]BSTBA photolabeling, centered at approximately 75 kDa, incorporates the label with lower affinity (K1/2 = 2-3 microM). The photolabeling at approximately 75 kDa is unaffected by Na, K, and Cl concentrations and thus may correspond, at least in part, to the low-affinity [3H]bumetanide binding sites. Western blot analysis of [3H]BSTBA-labeled mouse kidney membranes was performed using an antiserum raised to proteins of approximately 82 and approximately 39 kDa isolated from mouse Ehrlich ascites tumor cells using a bumetanide affinity gel (P. B. Dunham, F. Jessen, and E. K. Hoffmann. Proc. Natl. Acad. Sci. USA 87: 6828-6832, 1990). This antiserum cross-reacts with a approximately 150-kDa mouse kidney protein, the staining profile of which on Western blot corresponds very closely to the peak of specific [3H]BSTBA incorporation in this region. The antiserum also reacts with proteins in the range of 65-85 kDa, overlapping the low-affinity peak of [3H]BSTBA incorporation.
Collapse
Affiliation(s)
- M Haas
- Department of Pathology, University of Chicago, Illinois 60637
| | | | | |
Collapse
|
20
|
Corcelli A, Turner RJ. Role of phospholipids in the binding of bumetanide to the rabbit parotid Na/K/Cl cotransporter. J Membr Biol 1991; 120:125-30. [PMID: 2072383 DOI: 10.1007/bf01872395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It was recently reported (Turner, R.J., George, J.N., 1990, J. Membrane Biol. 113:203-210) that the high affinity bumetanide binding site of the rabbit parotid Na/K/Cl cotransporter could be extracted from a basolateral membrane preparation from this gland using relatively low concentrations of the non-ionic detergent Triton X-100. At the detergent:protein ratios required for complete membrane solubilization bumetanide binding activity in this extract was lost but could be recovered by the addition of crude soybean lipids. In the present paper the ability of various purified lipids to restore high affinity bumetanide binding activity in detergent solubilized rabbit parotid basolateral membranes is studied. We show that the effect of exogenous lipid on the detergent-inactivated bumetanide binding site is to increase the affinity of binding without affecting the number of binding sites. Of the 11 lipid species tested, several relatively minor, negatively charged membrane phospholipids are the most effective in restoring binding activity (phosphatidylserine approximately phosphatidylglycerol greater than phosphatidylinositol greater than cardiolipin), while the major mammalian plasma membrane lipid components phosphatidylcholine, phosphatidylethanolamine, sphingomyelin and cholesterol are without effect. In addition, we show that in the presence of these minor lipids the affinity of bumetanide binding is considerably increased over that observed in the native membrane (e.g., Kd approximately 0.06 microM in membranes extracted with 0.3% Triton and treated with 0.15% wt/vol phosphatidylserine, vs. Kd approximately 3 microM in native basolateral membranes). This dramatic dependence of bumetanide binding affinity on the presence of certain lipid species suggests that the properties of the bumetanide binding protein in situ may be quite dependent on the minor lipid content of the plasma membrane.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Corcelli
- Istituto di Fisiologia Generale, Universita degli Studi di Bari, Italy
| | | |
Collapse
|
21
|
Pewitt EB, Hegde RS, Haas M, Palfrey HC. The regulation of Na/K/2Cl cotransport and bumetanide binding in avian erythrocytes by protein phosphorylation and dephosphorylation. Effects of kinase inhibitors and okadaic acid. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)45279-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Inhibition of Na-K-C1 cotransport in Ehrlich ascites cells by antiserum against purified proteins of the cotransporter. Proc Natl Acad Sci U S A 1990; 87:6828-32. [PMID: 2395875 PMCID: PMC54631 DOI: 10.1073/pnas.87.17.6828] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Two proteins were purified earlier from solubilized membranes of Ehrlich ascites cells by using a bumetanide-Sepharose affinity column. These proteins were proposed to be constituents of the Na-K-C1 cotransporter. However, the specificity of binding of bumetanide to the cotransporter was insufficient evidence for this proposal. We now have direct evidence that the purified protein contains components of the cotransporter. Antiserum raised against the bumetanide-binding proteins strongly inhibits Na-K-C1 cotransport measured by two independent methods. Cotransport was induced by hypertonic challenge and was measured as the bumetanide-sensitive portion of unidirectional C1 influx and as regulatory cell volume increase. In both assays, cotransport was strongly inhibited by the antiserum. Fab fragments of the antibodies inhibited cotransport to a similar extent.
Collapse
|
23
|
Pewitt E, Hedge R, Palfrey H. [3H]bumetanide binding to avian erythrocyte membranes. Correlation with activation and deactivation of Na/K/2Cl cotransport. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77310-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Turner RJ, George JN. Solubilization and partial purification of the rabbit parotid Na/K/Cl-dependent bumetanide binding site. J Membr Biol 1990; 113:203-10. [PMID: 2335808 DOI: 10.1007/bf01870072] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We demonstrate that the high affinity bumetanide binding site of the rabbit parotid acinar cell can be extracted from a basolateral membrane fraction using relatively low concentrations (0.07%, wt/vol; 1 mg membrane protein/ml) of the nonionic detergent Triton X-100. This extracted site cannot be sedimented by ultracentrifugation at 100,000 x g x 1 hr. Bumetanide binding to this site retains the ionic characteristics of bumetanide binding to native membranes but shows a fivefold increase in binding affinity (Kd = 0.57 +/- 0.15 microM vs. Kd = 3.3 +/- 0.7 microM for native membranes). Inactivation of the extracted bumetanide binding site observed at detergent/protein ratios greater than 1 can be prevented or (partially) reversed by the addition of exogenous lipid (0.2% soybean phosphatidylcholine). When the 0.07% Triton extract is fractionated by sucrose density gradient centrifugation in 0.24% Triton X-100, 0.2% exogenous lipid and 200 mM salt, the high affinity bumetanide binding site sediments as a single band with S20,w = 8.8 +/- 0.8 S. This corresponds to a molecular weight approximately 200 kDa for the bumetanide binding protein-detergent-lipid complex and represents a sevenfold purification of this site relative to the starting membrane fraction. In contrast to previous attempts to purify Na/K/Cl cotransport proteins and their associated bumetanide binding sites, the present method avoids harsh detergent treatment as well as direct covalent modification (inactivation) of the transporter itself. As a consequence, one can follow the still active protein through a series of extraction and purification steps by directly monitoring its bumetanide binding properties.
Collapse
Affiliation(s)
- R J Turner
- Clinical Investigations and Patient Care Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
25
|
Affiliation(s)
- W D Stein
- Department of Biochemistry, Hebrew University, Jerusalem, Israel
| |
Collapse
|
26
|
|
27
|
Franklin CC, Turner JT, Kim HD. Regulation of Na+/K+/Cl- Cotransport and [3H]Bumetanide Binding Site Density by Phorbol Esters in HT29 Cells. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83479-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Holman GD, Karim AR, Karim B. Photolabeling of erythrocyte and adipocyte hexose transporters using a benzophenone derivative of bis(D-mannose). BIOCHIMICA ET BIOPHYSICA ACTA 1988; 946:75-84. [PMID: 3207733 DOI: 10.1016/0005-2736(88)90459-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The benzophenone derivative of 1,3-bis(D-mannos-4-yloxy)-2-propylamine (BB-BMPA) has been tested as an exofacial photoaffinity label for the sugar transport systems of human erythrocytes and rat adipocytes. The half-maximal inhibition constants for the reagent are 971 microM in erythrocytes and 536 microM in basal and 254 microM in insulin-treated adipocytes. The photolabelling of erythrocyte membranes is very specific for the 50 kDa transporter peptide and is completely displaced by D-glucose. The exofacial photoaffinity labelling of adipocytes also shows labelling of a 50 kDa transporter peptide, which is displaced by cytochalasin B, but extensive nonspecific labelling of a 75 kDa plasma membrane peptide occurs. The transporter is labelled in insulin-treated cells but not in basal cells which indicates that this in situ labelling technique selectively reveals only those transporters that visit and are active in the plasma membrane during the labelling period. This also indicates that in basal cells transporters do not turn over rapidly. Subcellular redistribution of transporters after the labelling period has been studied. Following incubation and washing at 37 degrees C in the presence of insulin, 30% of the transporters photolabelled at the plasma membrane are internalised and are found in the light microsome fraction of the cell. The proportion of transporter that is observed to be internalised is much greater than can be accounted for by a contamination of the light microsome fraction by plasma membrane. The labelled 50 kDa transporter peptide in the light microsomes is enriched when compared with the carry-over of the 75 kDa nonspecifically labelled plasma membrane peptide. Thus we have obtained direct evidence for transporter translocation.
Collapse
Affiliation(s)
- G D Holman
- Department of Biochemistry, University of Bath, U.K
| | | | | |
Collapse
|
29
|
Feit PW, Hoffmann EK, Schiødt M, Kristensen P, Jessen F, Dunham PB. Purification of proteins of the Na/Cl cotransporter from membranes of Ehrlich ascites cells using a bumetanide-sepharose affinity column. J Membr Biol 1988; 103:135-47. [PMID: 3184172 DOI: 10.1007/bf01870944] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bumetanide-binding proteins were isolated from membranes of Ehrlich ascites tumor cells by affinity chromatography. An affinity column was constructed with the active moiety of bumetanide as a ligand using 4'-azidobumetanide, a photoactive analogue which inhibits Na/Cl cotransport in Ehrlich cells with high specificity. Covalent binding of the 4'-azidobumetanide with Sepharose was promoted by photolysis. Membranes isolated from Ehrlich cells were solubilized with n-octylglucoside. Solubilized proteins retarded by the affinity column were readily eluted by bumetanide. In reducing gels the major proteins eluted by bumetanide were approximately 76 kDa and 38-39 kDa. There were also two proteins of 32 to 35 kDa eluted in lesser amounts. No proteins retarded by the affinity column were eluted with extensive washing without bumetanide. Furthermore, bumetanide eluted no proteins from a "control" column lacking the specific ligand. Upon rechromatography with bumetanide in solution, bumetanide-eluted proteins were not retarded, but their purity was increased by the retardation of contaminating proteins. Bumetanide-binding protein purified in this manner were characterized further by electrophoresis in nonreducing, nondenaturing gels.
Collapse
Affiliation(s)
- P W Feit
- Leo Pharmaceutical Products, Ballerup, Denmark
| | | | | | | | | | | |
Collapse
|