1
|
|
2
|
Apell HJ. Structure-function relationship in P-type ATPases--a biophysical approach. Rev Physiol Biochem Pharmacol 2004; 150:1-35. [PMID: 12811587 DOI: 10.1007/s10254-003-0018-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
P-type ATPases are a large family of membrane proteins that perform active ion transport across biological membranes. In these proteins the energy-providing ATP hydrolysis is coupled to ion-transport that builds up or maintains the electrochemical potential gradients of one or two ion species across the membrane. P-type ATPases are found in virtually all eukaryotic cells and also in bacteria, and they are transporters of a broad variety of ions. So far, a crystal structure with atomic resolution is available only for one species, the SR Ca-ATPase. However, biochemical and biophysical studies provide an abundance of details on the function of this class of ion pumps. The aim of this review is to summarize the results of preferentially biophysical investigations of the three best-studied ion pumps, the Na,K-ATPase, the gastric H,K-ATPase, and the SR Ca-ATPase, and to compare functional properties to recent structural insights with the aim of contributing to the understanding of their structure-function relationship.
Collapse
Affiliation(s)
- H-J Apell
- Department of Biology, University of Konstanz, Fach M635, 78457 Konstanz, Germany.
| |
Collapse
|
3
|
Koenderink JB, Geibel S, Grabsch E, De Pont JJHHM, Bamberg E, Friedrich T. Electrophysiological analysis of the mutated Na,K-ATPase cation binding pocket. J Biol Chem 2003; 278:51213-22. [PMID: 14532287 DOI: 10.1074/jbc.m306384200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Na,K-ATPase mediates net electrogenic transport by extruding three Na+ ions and importing two K+ ions across the plasma membrane during each reaction cycle. We mutated putative cation coordinating amino acids in transmembrane hairpin M5-M6 of rat Na,K-ATPase: Asp776 (Gln, Asp, Ala), Glu779 (Asp, Gln, Ala), Asp804 (Glu, Asn, Ala), and Asp808 (Glu, Asn, Ala). Electrogenic cation transport properties of these 12 mutants were analyzed in two-electrode voltage-clamp experiments on Xenopus laevis oocytes by measuring the voltage dependence of K+-stimulated stationary currents and pre-steady-state currents under electrogenic Na+/Na+ exchange conditions. Whereas mutants D804N, D804A, and D808A hardly showed any Na+/K+ pump currents, the other constructs could be classified according to the [K+] and voltage dependence of their stationary currents; mutants N776A and E779Q behaved similarly to the wild-type enzyme. Mutants E779D, E779A, D808E, and D808N had in common a decreased apparent affinity for extracellular K+. Mutants N776Q, N776D, and D804E showed large deviations from the wild-type behavior; the currents generated by mutant N776D showed weaker voltage dependence, and the current-voltage curves of mutants N776Q and D804E exhibited a negative slope. The apparent rate constants determined from transient Na+/Na+ exchange currents are rather voltage-independent and at potentials above -60 mV faster than the wild type. Thus, the characteristic voltage-dependent increase of the rate constants at hyperpolarizing potentials is almost absent in these mutants. Accordingly, dislocating the carboxamide or carboxyl group of Asn776 and Asp804, respectively, decreases the extracellular Na+ affinity.
Collapse
Affiliation(s)
- Jan B Koenderink
- Department of Biophysical Chemistry, Max-Planck-Institute of Biophysics, Marie-Curie-Strasse 15, D-60439 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
4
|
Abstract
Like several other ion transporters, the Na(+)-K(+) pump of animal cells is electrogenic. The pump generates the pump current I(p). Under physiological conditions, I(p) is an outward current. It can be measured by electrophysiological methods. These methods permit the study of characteristics of the Na(+)-K(+) pump in its physiological environment, i.e., in the cell membrane. The cell membrane, across which a potential gradient exists, separates the cytosol and extracellular medium, which have distinctly different ionic compositions. The introduction of the patch-clamp techniques and the enzymatic isolation of cells have facilitated the investigation of I(p) in single cardiac myocytes. This review summarizes and discusses the results obtained from I(p) measurements in isolated cardiac cells. These results offer new exciting insights into the voltage and ionic dependence of the Na(+)-K(+) pump activity, its effect on membrane potential, and its modulation by hormones, transmitters, and drugs. They are fundamental for our current understanding of Na(+)-K(+) pumping in electrically excitable cells.
Collapse
Affiliation(s)
- H G Glitsch
- Arbeitsgruppe Muskelphysiologie, Fakultät für Biologie, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
5
|
Salonikidis PS, Kirichenko SN, Tatjanenko LV, Schwarz W, Vasilets LA. Extracellular pH modulates kinetics of the Na(+),K(+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1509:496-504. [PMID: 11118558 DOI: 10.1016/s0005-2736(00)00356-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To investigate effects of pH on the Na(+),K(+)-ATPase, we used the Xenopus oocytes to measure transient charge movements in the absence of extracellular K(+), and steady-state currents mediated by the pump as well as ATPase activity. The activity of purified Na(+), K(+)-ATPase strongly depends on pH, which has been attributed to protonation of intracellular sites. The steady-state current reflects pump activity, the transient charge movement voltage-dependent interaction of external Na(+) ions with the pump molecule and/or conformational changes during Na(+)/Na(+) exchange. The steady-state current exhibits a characteristic voltage dependence with maximum at about 0 mV at low external K(+) (< or =2 mM) and with 50 Na(+). This dependency is not significantly affected by changes in external pH in the range from pH 9 to pH 6. Only below pH 6, the voltage dependence of pump current becomes less steep, and may be attributed to a pH-dependent inhibition of the forward pump cycle by external Na(+). External stimulation of the pump by K(+) in the absence of Na(+) can be described by a voltage-dependent K(m) value with an apparent valency z(K). At higher external pH the z(K) value is reduced. The transient current signal in the absence of external K(+) can be described by the sum of three exponentials with voltage-dependent time constants of about 50 ms, 700 micros and less than 100 micros during pulses to 0 mV. The charge distribution was calculated by integration of the transient current signals. The slowest component and the associated charge distributions do not significantly depend on external pH changes. The intermediate component of the transients is represented by a voltage-dependent rate constant which shows a minimum at about -120 mV and increases with decreasing pH. Nevertheless, the contribution to the charge movement is not altered by pH changes due to a simultaneous increase of the amplitude of this component. We conclude that reduction of external pH counteracts external K(+) and Na(+) binding.
Collapse
|
6
|
Eckstein-Ludwig U, Rettinger J, Vasilets LA, Schwarz W. Voltage-dependent inhibition of the Na+,K+ pump by tetraethylammonium. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1372:289-300. [PMID: 9675315 DOI: 10.1016/s0005-2736(98)00066-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tetraethylammonium (TEA+) is an effective inhibitor of a variety of K+ channels, and has been widely used to reduce K+-sensitive background conductances in electrophysiological investigations of the Na+,K+-ATPase. Here we demonstrate by combination of two-electrode voltage clamp (TEVC) and giant patch clamp of Xenopus oocytes, and measurements of the activity of purified ATPase of pig kidney that TEA+ directly inhibits the Na+,K+-ATPase from the outside. The KI value in TEVC experiments at 0 mV is about 10 mM increasing with more negative potentials. A similar voltage-dependent inhibition by TEA+ was observed in the excised membrane patches except that the apparent KI value at 0 mV is about 100 mM, a value nearly identical to that found for inhibition of purified kidney ATPase. The voltage-dependent inhibition can be described by an effective valency of 0.39 and is attributed to an interference with the voltage-dependent binding of K+ at an external access channel. The apparent dielectric length of the access channel for K+ is not affected by TEA+.
Collapse
Affiliation(s)
- U Eckstein-Ludwig
- Max-Planck Institut für Biophysik, Kennedyallee 70, D-60596 Frankfurt/Main, Germany
| | | | | | | |
Collapse
|
7
|
Yoshimura SH, Vasilets LA, Ishii T, Takeyasu K, Schwarz W. The Na+,K+-ATPase carrying the carboxy-terminal Ca2+/calmodulin binding domain of the Ca2+ pump has 2Na+,2K+ stoichiometry and lost charge movement in Na+/Na+ exchange. FEBS Lett 1998; 425:71-4. [PMID: 9541009 DOI: 10.1016/s0014-5793(98)00202-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An altered ion-transport stoichiometry from 3Na+,2K+ to 2Na+,2K+ is observed in a chimeric Na+,K+ATPase, which carries the Ca2+/calmodulin binding domain (CBD) of the plasma membrane Ca2+-ATPase at its carboxy-terminus [Zhao et al., FEBS Lett. 408 (1997) 271-2751. The ouabain-resistant mutant of this chimera (ORalpha1-CBD) was constructed to further investigate the effect of the CBD on ion-transport properties. The ORalpha1-CBD still shows the 2Na+,2K+ stoichiometry. The loss of electrogenicity is accompanied by the disappearance of transient charge movements in the Na+/Na+ exchange mode. We conclude that the binding of the third Na+ ion, but not of the two others, in 3Na+,2K+ transport mode apparently senses the electric field, and that the voltage-dependent Na+ binding is likely to be lost in the chimera with CBD.
Collapse
Affiliation(s)
- S H Yoshimura
- Max-Planck-Institut für Biophysik, Frankfurt, Germany
| | | | | | | | | |
Collapse
|
8
|
Zhao J, Vasilets LA, Gu Q, Ishii T, Takeyasu K, Schwarz W. Transport activity of a chimeric Na+,K(+)-ATPase with Ca2+/calmodulin binding domain from Ca(2+)-ATPase in Xenopus oocytes. Ann N Y Acad Sci 1997; 834:372-5. [PMID: 9405827 DOI: 10.1111/j.1749-6632.1997.tb52274.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J Zhao
- Max-Planck-Institut für Biophysik, Frankfurt/M, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Zhao J, Vasilets LA, Yoshimura SH, Gu Q, Ishii T, Takeyasu K, Schwarz W. The Ca2+/calmodulin binding domain of the Ca2+-ATPase linked to the Na+,K+-ATPase alters transport stoichiometry. FEBS Lett 1997; 408:271-5. [PMID: 9188774 DOI: 10.1016/s0014-5793(97)00435-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Using Xenopus oocytes as an expression system, we have investigated ion-transport and ouabain-binding properties of a chimeric ATPase (alpha1-CBD; Ishii and Takeyasu (1995) EMBO J. 14, 58-67) formed by the alpha1-subunit of chicken Na+,K(+)-ATPase (alpha1) and the calmodulin binding domain (CBD) of the rat plasma membrane Ca2(+)-ATPase. alpha1-CBD can be expressed and transported to the oocyte plasma membrane without the beta-subunit, and shows ouabain binding. In contrast to ouabain binding, this chimera requires the beta-subunit for its cation (Na+ and K+) transport activity. alpha1-CBD exhibits an altered stoichiometry of Na(+)-K+ exchange. A detailed analysis of 22Na+ efflux, 86Rb+ uptake, pump current and ouabain binding suggests that the chimeric molecule can operate in an electrically silent 2Na(+)-2K+ exchange mode and, with much lower probability, in its normal 3Na(+)-2K+ exchange mode.
Collapse
Affiliation(s)
- J Zhao
- Max-Planck Institut für Biophysik, Frankfurt/Main, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Kockskämper J, Gisselmann G, Glitsch HG. Comparison of ouabain-sensitive and -insensitive Na/K pumps in HEK293 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1325:197-208. [PMID: 9168145 DOI: 10.1016/s0005-2736(96)00259-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Na/K pump current I(p) of single HEK293 cells either untransfected (endogenous I(p)) or transfected with the alpha1 subunit of the rat Na/K pump (exogenous I(p)) was investigated in Na-containing solution by means of whole-cell recording at 30 degrees C. The endogenous I(p) was irreversibly blocked by 10(-4) M ouabain or 2 x 10(-4) M dihydro-ouabain (DHO). Its density amounted to 0.33 pA pF(-1) at 0 mV and 5.4 mM K(o). It was half maximally activated at 1.5 mM K(o) and increased linearly with depolarization over the entire voltage range studied (-80 to +60 mV). In contrast, HEK293 cells stably transfected with cDNA for the cardiac glycoside-resistant alpha1 subunit of the rat Na/K pump showed an I(p) in the presence of 10(-4) M ouabain and 2 x 10(-4) M DHO, respectively. This exogenous I(p) was reversibly blocked by 10(-2) M ouabain. Half maximal activation of the exogenous I(p) occurred at 1.7 mM K(o). Its amplitude increased linearly with depolarization at negative voltages but remained almost constant at positive membrane potentials. Comparison with the I(p) of isolated rat cardiac ventricular myocytes strongly suggests that the exogenous I(p) in HEK293 cells is generated by the alpha1 subunit of the rat Na/K pump since it displays identical properties. Therefore, HEK293 cells represent an expression system well suited for the electrophysiological analysis of recombinant, cardiac glycoside-resistant Na/K pumps by means of whole-cell recording.
Collapse
Affiliation(s)
- J Kockskämper
- Arbeitsgruppe Muskelphysiologie, Ruhr-Universität, Bochum, Germany
| | | | | |
Collapse
|
11
|
Munzer J, Daly S, Jewell-Motz E, Lingrel J, Blostein R. Tissue- and isoform-specific kinetic behavior of the Na,K-ATPase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)89442-5] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
12
|
Vasilets LA, Schwarz W. Structure-function relationships of cation binding in the Na+/K(+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1154:201-22. [PMID: 8218338 DOI: 10.1016/0304-4157(93)90012-d] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- L A Vasilets
- Institute of Chemical Physics in Chernogolovka, Russian Academy of Sciences, Chernogolovka, Moscow region
| | | |
Collapse
|
13
|
|
14
|
Bielen FV, Glitsch HG, Verdonck F. Na+ pump current-voltage relationships of rabbit cardiac Purkinje cells in Na(+)-free solution. J Physiol 1993; 465:699-714. [PMID: 8229858 PMCID: PMC1175454 DOI: 10.1113/jphysiol.1993.sp019701] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. The Na+ pump current (Ip) of isolated, single rabbit cardiac Purkinje cells in Na(+)-free solution was measured at 32-34 degrees C by means of whole-cell recording. 2. The Ip amplitude was studied as a function of clamp potential (Vc) and external concentration of various monovalent cations known to activate the Na(+)-K+ pump. 3. Under conditions which strongly activated Ip the Ip-Vc curve of the cells displayed a positive slope at membrane potentials negative to -20 mV and little variation at more positive potentials. 4. The Ip-Vc relationship showed an extended region of negative slope at positive and negative potentials in solutions containing low concentrations of activator cations which caused little Ip activation. A positive slope of the Ip-Vc curve was occasionally observed at clamp potentials negative to -60 mV under these conditions. 5. The shape of the Ip-Vc relation was independent of the cation species used as external Ip activator. 6. At zero membrane potential half-maximum Ip activation (K0.5(Vc = 0 mV) occurred at 0.05 mM Tl+, 0.08 mM K+, 0.4 mM NH4+ and 1.5 mM Cs+. The Hill coefficient derived amounted to 0.9 for Tl+, 1.2 for K+, 1.04 for NH4+ and 1.5 for Cs+. 7. The concentrations of external activator cations required for half-maximum Ip activation increased with depolarization. The voltage dependence of the K0.5 values could be described by a single exponential function for clamp potentials positive to -40 mV. 8. The steepness of the function is determined by a factor alpha, indicating the apparent fraction of an elementary charge which moves in the electrical field across the sarcolemma when external monovalent cations bind to the Na(+)-K+ pump. 9. The alpha values were calculated to be 0.32 for Tl+, 0.24 for K+, 0.29 for NH4+ and 0.18 for Cs+. Possible interpretations of the alpha values are considered. 10. It is suggested that binding of external monovalent activator cations to the Na(+)-K+ pump (or a process related to the binding) is voltage dependent. This potential-dependent process determines mainly the shape of the Ip-Vc curve in cardiac Purkinje cells superfused with Na(+)-free media containing low concentrations (< K0.5(Vc = 0 mV)) of K+ or its congeners.
Collapse
Affiliation(s)
- F V Bielen
- Interdisciplinary Research Centre, Catholic University of Leuven, Kortrijk, Belgium
| | | | | |
Collapse
|
15
|
Vasilets LA, Ohta T, Noguchi S, Kawamura M, Schwarz W. Voltage-dependent inhibition of the sodium pump by external sodium: species differences and possible role of the N-terminus of the alpha-subunit. EUROPEAN BIOPHYSICS JOURNAL : EBJ 1993; 21:433-43. [PMID: 8383596 DOI: 10.1007/bf00185871] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Currents generated by the Na+/K+ ATPase were measured under voltage clamp in oocytes of Xenopus laevis. The dependence of pump current on external [Na+] was investigated for the endogenous Xenopus pump as well as for wild-type and mutated pumps of electroplax of Torpedo californica expressed in the oocytes. The mutants had alpha-subunits truncated before position Lys28 (alpha delta K28) or Thr29 (alpha delta T29) of the N-terminus. The currents generated by all variants of pump molecules in the presence of 5 mM K+ show voltage-dependent inhibition by external [Na+]. The apparent KI values increase with membrane depolarisation, and the potential dependence can be described by the movement of effective charges in the electrical potential gradient across the membrane. Taking into account Na(+)-K+ competition for external binding to the E2P form, apparent KI values and effective charges for the interaction of the Na+ ions with the E2P form can be estimated. For the Xenopus pump the effective charge amounts to 1.1 of an elementary charge and the KI value at 0 mV to 44 mM. For the wild-type Torpedo pump, the analysis yields values of 0.73 of an elementary charge and 133 mM, respectively. Truncation at the N-terminus removing a lysine-rich cluster of the alpha-subunit of the Torpedo pump leads to an increase of the effective charge and decrease of the KI value. For alpha delta K28, values of 0.83 of an elementary charge and 117 mM are obtained, respectively. If Lys28 is included in the truncation (alpha delta T29), the effective charge increases to 1.5 of an elementary charge and the apparent KI value is reduced to 107 mM. The KI values for pump inhibition by external Na+, calculated by taking into account Na(+)-K+ competition, are smaller than the K1/2 values determined in the presence of 5 mM [K+]. The difference is more pronounced for those pump variants that have higher Km values. The variations of the parameters describing inhibition by external [Na+] are qualitatively similar to those described for the stimulation of the pumps by external [K+] in the absence of extracellular [Na+]. The observations may be explained by an access channel within the membrane dielectric that has to be passed by the external Na+ and K+ ions to reach or leave their binding sites. The potential-dependent access and/or the interaction with the binding sites shows species differences and is affected by cytoplasmic lysine residues in the N-terminus.
Collapse
Affiliation(s)
- L A Vasilets
- Max-Planck-Institut für Biophysik, Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
16
|
Chinese hamster ovary mRNA-dependent, Na(+)-independent L-leucine transport in Xenopus laevis oocytes. Mol Cell Biol 1992. [PMID: 1360143 DOI: 10.1128/mcb.12.12.5281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In freshly prepared uninjected folliculated oocytes, Na(+)-independent leucine uptake is mediated predominantly by a system L-like transport system. Removal of follicular cells, however, results in an irreversible loss of this transport activity. When total poly(A)+ mRNA derived from Chinese hamster ovary (CHO) cells was injected into prophase-arrested stage V or VI Xenopus laevis oocytes, enhanced expression of Na(+)-independent leucine transport was observed. The injected mRNAs associated with increased levels of leucine uptake were between 2 and 3 kb in length. The newly expressed leucine transport activity exhibited important differences from the known characteristics of system L, which is the dominant Na(+)-independent leucine transporter in CHO cells as well as in freshly isolated folliculated oocytes. The CHO mRNA-dependent leucine uptake in oocytes was highly sensitive to the cationic amino acids lysine, arginine, and and ornithine (> 95% inhibition). As with the leucine uptake, an enhanced lysine uptake was also observed in size-fractionated CHO mRNA-injected oocytes. The uptakes of leucine and lysine were mutually inhibitable, suggesting that the newly expressed transporter was responsible for uptakes of both leucine and lysine. The inhibition of uptake of lysine by leucine was Na+ independent, thus clearly distinguishing it from the previously reported endogenous system y+ activity. Furthermore, the high sensitivity to tryptophan of the CHO mRNA-dependent leucine transport was in sharp contrast to the properties of the recently cloned leucine transport-associated gene from rat kidney tissue, although leucine transport from both sources was sensitive to cationic amino acids. Our results suggest that there may be a family of leucine transporters operative in different tissues and possibly under different conditions.
Collapse
|
17
|
Su TZ, Logsdon CD, Oxender DL. Chinese hamster ovary mRNA-dependent, Na(+)-independent L-leucine transport in Xenopus laevis oocytes. Mol Cell Biol 1992; 12:5281-7. [PMID: 1360143 PMCID: PMC360465 DOI: 10.1128/mcb.12.12.5281-5287.1992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In freshly prepared uninjected folliculated oocytes, Na(+)-independent leucine uptake is mediated predominantly by a system L-like transport system. Removal of follicular cells, however, results in an irreversible loss of this transport activity. When total poly(A)+ mRNA derived from Chinese hamster ovary (CHO) cells was injected into prophase-arrested stage V or VI Xenopus laevis oocytes, enhanced expression of Na(+)-independent leucine transport was observed. The injected mRNAs associated with increased levels of leucine uptake were between 2 and 3 kb in length. The newly expressed leucine transport activity exhibited important differences from the known characteristics of system L, which is the dominant Na(+)-independent leucine transporter in CHO cells as well as in freshly isolated folliculated oocytes. The CHO mRNA-dependent leucine uptake in oocytes was highly sensitive to the cationic amino acids lysine, arginine, and and ornithine (> 95% inhibition). As with the leucine uptake, an enhanced lysine uptake was also observed in size-fractionated CHO mRNA-injected oocytes. The uptakes of leucine and lysine were mutually inhibitable, suggesting that the newly expressed transporter was responsible for uptakes of both leucine and lysine. The inhibition of uptake of lysine by leucine was Na+ independent, thus clearly distinguishing it from the previously reported endogenous system y+ activity. Furthermore, the high sensitivity to tryptophan of the CHO mRNA-dependent leucine transport was in sharp contrast to the properties of the recently cloned leucine transport-associated gene from rat kidney tissue, although leucine transport from both sources was sensitive to cationic amino acids. Our results suggest that there may be a family of leucine transporters operative in different tissues and possibly under different conditions.
Collapse
Affiliation(s)
- T Z Su
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109
| | | | | |
Collapse
|
18
|
Omay HS, Schwarz W. Voltage-dependent stimulation of Na+/K(+)-pump current by external cations: selectivity of different K+ congeners. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1104:167-73. [PMID: 1312862 DOI: 10.1016/0005-2736(92)90146-d] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Currents generated by the endogenous Na+/K+ pump in the oocytes of Xenopus laevis were determined under voltage-clamp as currents activated by different K+ congeners. The voltage dependence of the pump current reflects voltage-dependent steps in the reaction cycle. The decrease of K(+)-activated pump current at positive potentials has been attributed to voltage-dependent stimulation by the external K+ (Rakowski, Vasilets, LaTona and Schwarz (1991) J. Membr. Biol. 121, 177-187). In Na(+)-free solution, activation of the pump by external cations seems to be the dominating voltage-dependent and rate-determining step in the reaction cycle. Under these conditions, the voltage dependence of apparent Km values for pump activation can be analyzed. The dependence suggests voltage-dependent binding of extracellular cations assuming that an effective charge of about 0.4 of an elementary charge is moved in the electrical field during a step associated with the cation binding. The apparent Km values at 0 mV differ for various cations that stimulate pump activity. The values are in mM: 0.10 for Tl+, 0.63 for K+, 0.71 for Rb+, 9.3 for NH4+, and 12.9 for Cs+. The corresponding apparent affinities follow the same sequence as the cation permeability of the K(+)-selective delayed rectifier channel of nerve cells. The results are compatible with the interpretation that the cations have to pass an ion-selective access channel to reach their binding sites in the pump molecule.
Collapse
Affiliation(s)
- H S Omay
- Max-Planck-Institut für Biophysik, Frankfurt/Main, Germany
| | | |
Collapse
|
19
|
Vasilets LA, Schwarz W. Regulation of endogenous and expressed Na+/K+ pumps in Xenopus oocytes by membrane potential and stimulation of protein kinases. J Membr Biol 1992; 125:119-32. [PMID: 1313113 DOI: 10.1007/bf00233352] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Modulation of the current generated by the Na+/K+ pump by membrane potential and protein kinases was investigated in oocytes of Xenopus laevis. In addition to a positive slope region in the current-voltage (I-V) relationship of the Na+/K+ pump, a negative slope region has been described in these cells (Lafaire & Schwarz, 1986) and has been attributed to a voltage-dependent apparent Km value for pump stimulation by external [K+] (Rakowski et al., 1991). To study this feature in more detail, Xenopus oocytes were used for comparative analysis of the negative slope of the I-V relationship of the endogenous Na+/K+ pump and of the Na+/K+ pump of the electric organ of Torpedo californica expressed in the oocytes. The effects of stimulation of protein kinases A and C on the negative slope were also analyzed. To investigate the negative slope over a wide potential range, experiments were performed in Na(+)-free solution and in the presence of high concentrations of Ba2+ and tetraethylammonium, to block all nonpump related K(+)-sensitive currents. Pump currents and pump-mediated fluxes were determined as differences of currents or fluxes in solutions with and without extracellular K+. The voltage dependence of the Km value for stimulation of the Na+/K+ pump by external [K+] shows significant species differences. Over the entire voltage range from -140 to +20 mV, the Km value for the Na+/K+ pump of Torpedo electroplax is substantially higher than for the endogenous pump and exhibits more pronounced voltage dependence. For the Xenopus pump, the voltage dependence can be described by voltage-dependent stimulation by external [K+] and can be interpreted by voltage-dependent K+ binding, assuming that an effective charge between 0.37 and 0.56 of an elementary charge is moved in the electrical field. An analogous evaluation of the voltage dependence of the Torpedo pump requires the assumption of movement of two effective charges of 0.16 and 1.0 of an elementary charge. Application of 1,2-dioctanoyl-sn-glycerol (diC8, 10-50 microM), which is known to stimulate protein kinase C, reduces the maximum activity of the Xenopus pumps in the oocyte membrane by 40% and modulates the voltage dependence of K+ stimulation. For the endogenous Xenopus pump, the apparent effective charge increased from 0.37 to 0.51 of elementary charge and the apparent Km at 0 mV increased from 0.46 to 0.83 mM. For the Torpedo pump, one of the apparent effective charges increased from 1.0 to 2.5 of elementary charge.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- L A Vasilets
- Max-Planck-Institut für Biophysik, Frankfurt/Main, Germany
| | | |
Collapse
|
20
|
Horisberger JD, Jaunin P, Good PJ, Rossier BC, Geering K. Coexpression of alpha 1 with putative beta 3 subunits results in functional Na+/K+ pumps in Xenopus oocytes. Proc Natl Acad Sci U S A 1991; 88:8397-400. [PMID: 1717977 PMCID: PMC52515 DOI: 10.1073/pnas.88.19.8397] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The active Na+/K+ pump is composed of an alpha and a beta subunit. Until now, three putative isoforms of the beta subunit have been identified that share sequence similarity. We have expressed the beta 1 and beta 3 isoforms of Xenopus laevis Na+/K(+)-ATPase in Xenopus oocytes to compare functional properties of the Na+/K+ pump, including either of these two isoforms. Na+/K+ pump current, estimated as K(+)-induced outward current in voltage-clamped oocytes, was doubled by coexpression of alpha 1 subunits with either isoform of the beta subunit compared to expression of alpha 1 subunits alone. The kinetics of activation by external K+ and the voltage dependence of the electrogenic activity of the Na+/K+ pump were similar with both beta isoforms, indicating that both beta 1 and beta 3 isoforms can support expression at the oocyte surface of an active Na+/K+ pump with similar functional properties.
Collapse
Affiliation(s)
- J D Horisberger
- Institut of Pharmacology and Toxicology, University of Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
21
|
Bielen FV, Glitsch HG, Verdonck F. Dependence of Na+ pump current on external monovalent cations and membrane potential in rabbit cardiac Purkinje cells. J Physiol 1991; 442:169-89. [PMID: 1665855 PMCID: PMC1179884 DOI: 10.1113/jphysiol.1991.sp018788] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
1. The effect of membrane potential and various extracellular monovalent cations on the Na+ pump current (Ip) was studied on isolated, single Purkinje cells of the rabbit heart by means of whole-cell recording. 2. Ip was identified as current activated by external K+ or its congeners NH4+ and Tl+. The current was blocked by dihydroouabain (1-5 x 10(-4) M) over the whole range of membrane potentials tested. 3. In Na(+)-containing solution half-maximum Ip activation (K0.5) occurred at 0.4 mM-Tl+, 1.9 mM-K+ and 5.7 mM-NH4+ (holding potential, -20 mV). 4. The pump current (Ip)-voltage (V) relationship of the cells in Na(+)-containing media with K+ or its congeners at the tested concentrations greater than K0.5 displayed a steep positive slope at negative membrane potentials between -120 and -20 mV. Little voltage dependence of Ip was observed at more positive potentials up to +40 mV. At even more positive potentials Ip measured at 2 and 5.4 mM-K+ decreased. 5. Lowering the concentration of K+ or its congeners below the K0.5 value in Na(+)-containing solution induced a region of negative slope of the Ip-V curve at membrane potentials positive to -20 mV. 6. The shape of the Ip-V relationship remained unchanged when the K+ concentration (5.4 mM) of the Na(+)-containing medium was replaced by NH4+ or Tl+ concentrations of similar potency to activate Ip (20 mM-NH4+ or 2 mM-Tl+). 7. In Na(+)-free, choline-containing solution half-maximum Ip activation occurred at 0.13 mM-K+ (holding potential, -20 mV). 8. At negative membrane potentials the positive slope of the Ip-V curve was flatter in Na(+)-free than in Na(+)-containing media. A reduced voltage dependence of Ip persisted, regardless of whether choline ions or Li+ were used as a Na+ substitute. 9. Lowering the K+ concentration of the Na(+)-free, choline-containing solution to 0.05 mM evoked an extended region of negative slope in the Ip-V relationship at membrane potentials between -40 and +60 mV. 10. It is concluded that the apparent affinity of the Na(+)-K+ pump towards K+ in cardiac Purkinje cells depends on both the membrane potential and the extracellular Na+ concentration. 11. The region of negative slope of the Ip-V curve observed in cells which were superfused with media containing low concentrations of K+ or its congeners strongly suggests the existence of at least two voltage-sensitive steps in the cardiac Na(+)-K+ pump cycle.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- F V Bielen
- Interdisciplinary Research Centre, Catholic University of Leuven, Kortrijk, Belgium
| | | | | |
Collapse
|
22
|
Efthymiadis A, Schwarz W. Conditions for a backward-running Na+/K+ pump in Xenopus oocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1068:73-6. [PMID: 1654105 DOI: 10.1016/0005-2736(91)90062-d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Current generated by the electrogenic Na+/K+ pump protein was determined in oocytes of Xenopus laevis as strophantidine-sensitive current measured under voltage clamp. Under conditions of reduced intracellular [Na+] and [ATP], both to values below 1 mM, and in extracellularly K(+)-free medium, the Na+/K+ pump seems to operate in a reversed mode pumping Na+ into the cell and K+ out of the cell. This is demonstrated by strophantidine-induced hyperpolarization of the membrane and inward-directed current mediated by the pump protein. In addition, strophantidine-sensitive uptake of 22Na+ can be demonstrated under these conditions. The pump current decreases with membrane depolarization as expected for a pump cycle that involves inward movement of positive charges during Na+ translocation.
Collapse
Affiliation(s)
- A Efthymiadis
- Max-Planck-Institut für Biophysik, Frankfurt, Main F.R.G
| | | |
Collapse
|
23
|
Rakowski RF, Vasilets LA, LaTona J, Schwarz W. A negative slope in the current-voltage relationship of the Na+/K+ pump in Xenopus oocytes produced by reduction of external [K+]. J Membr Biol 1991; 121:177-87. [PMID: 1880791 DOI: 10.1007/bf01870531] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To investigate the voltage dependence of the Na+/K+ pump, current-voltage relations were determined in prophase-arrested oocytes of Xenopus laevis. All solutions contained 5 mM Ba2+ and 20 mM tetraethylammonium (TEA) to block K+ channels. If, in addition, the Na+/K+ pump is blocked by ouabain, K(+)-sensitive currents no larger than 50 nA/cm2 remain. Reductions in steady-state current (on the order of 700 nA/cm2) produced by 50 microM ouabain or dihydro-ouabain or by K+ removal, therefore, primarily represent current generated by the Na+/K+ pump. In Na(+)-free solution containing 5 mM K+, Na+/K+ pump current is relatively voltage independent over the potential range from -160 to +40 mV. If external [K+] is reduced below 0.5 mM, negative slopes are observed over this entire voltage range. Similar results are seen in Na(+)- and Ca(2+)-free solutions in the presence of 2 mM Ni2+, an experimental condition designed to prevent Na+/Ca2+ exchange. The occurrence of a negative slope can be explained by the voltage dependence of the apparent affinity for activation of the Na+/K+ pump by external K+, consistent with the existence of an external ion well for K+ binding. In 90 mM Na+, 5 mM K+ solution, Na+/K+ pump current-voltage curves at negative membrane potentials have a positive slope and can be described by a monotonically increasing sigmoidal function. At an extracellular [K+] of 1.3 mM, a negative slope was observed at positive potentials. These findings suggest that in addition to a voltage-dependent step associated with Na+ translocation, a second voltage-dependent step that is dependent on external [K+], possibly external K+ binding, participates in the overall reaction mechanism of the Na+/K+ pump.
Collapse
Affiliation(s)
- R F Rakowski
- Max-Planck-Institut für Biophysik, Frankfurt am Main, Federal Republic of Germany
| | | | | | | |
Collapse
|
24
|
Sigel E. Use of Xenopus oocytes for the functional expression of plasma membrane proteins. J Membr Biol 1990; 117:201-21. [PMID: 2231695 DOI: 10.1007/bf01868451] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- E Sigel
- Pharmakologisches Institut, Universität Bern, Switzerland
| |
Collapse
|
25
|
Affiliation(s)
- H J Apell
- Department of Biology, University of Konstanz, Federal Republic of Germany
| |
Collapse
|
26
|
Clarke RJ, Apell HJ, Läuger P. Pump current and Na+/K+ coupling ratio of Na+/K+-ATPase in reconstituted lipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 981:326-36. [PMID: 2543461 DOI: 10.1016/0005-2736(89)90044-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A method is described for studying the coupling ratio of the Na+/K+ pump, i.e., the ratio of pump-mediated fluxes of Na+ and K+, in a reconstituted system. The method is based on the comparison of the pump-generated current with the rate of K+ transport. Na+/K+-ATPase from kidney is incorporated into the membrane of artificial lipid vesicles; ATPase molecules with outward-oriented ATP-binding site are activated by addition of ATP to the medium. Using oxonol VI as a potential-sensitive dye for measuring transmembrane voltage, the pump current is determined from the change of voltage with time t. In a second set of experiments, the membrane is made selectively K+-permeable by addition of valinomycin, so that the membrane voltage U is equal to the Nernst potential of K+. Under this condition, dU/dt reflects the change of intravesicular K+ concentration and thus the flux of K+. Values of the Na+/K+ coupling ratio determined in this way are close to 1.5 in the experimental range (10-75 mM) of extravesicular (cytoplasmic) Na+ concentrations.
Collapse
Affiliation(s)
- R J Clarke
- Department of Biology, University of Konstanz, F.R.G
| | | | | |
Collapse
|